Please wait a minute...
Journal of Arid Land  2015, Vol. 7 Issue (4): 481-487    DOI: 10.1007/s40333-015-0047-7
Research Articles     
Effects of exotic and endogenous shrubs on under-story vegetation and soil nutrients in the south of Tunisia
Zouhaier NOUMI*
Department of Life Sciences, Faculty of Sciences, University of Sfax, Sfax 3000, Tunisia
Download:   PDF(95KB)
Export: BibTeX | EndNote (RIS)      

Abstract  This study was conducted in southern Tunisia in the growing seasons of 2013 and 2014, and aimed to compare the effects of exotic and endogenous shrub species (Haloxylon persicum and Retama raetam, respectively) on understory vegetation and soil nutrients. For each shrub species, the canopied sub-habitat (under the shrub crown) and un-canopied sub-habitat (in open grassland area) were distinguished. The concentrations of soil nutrients (organic matter, total nitrogen and extractable phosphorus) were found to be significantly higher (P<0.05) under R. raetam canopy than under H. persicum canopy and in open area. The result also showed that the presence of shrubs improved all the values of understory vegetation parameters (floristic composition, density, total plant cover and dry matter) and all these values were significantly higher under endogenous species canopy than under exotic species canopy. These results highlighted the positive effect of endogenous shrubs on understory vegetation and soil nutrients compared to the exotic ones in the Saharan areas of Tunisia.

Key wordstillage practice      soil surface roughness      overland flow      water erosion      Loess Plateau     
Received: 22 November 2014      Published: 10 August 2015
Corresponding Authors: Zouhaier NOUMI     E-mail:
Cite this article:

Zouhaier NOUMI. Effects of exotic and endogenous shrubs on under-story vegetation and soil nutrients in the south of Tunisia. Journal of Arid Land, 2015, 7(4): 481-487.

URL:     OR

Abdallah F, Noumi Z, Touzard B, et al. 2008. The influence of Acacia tortilis (Forssk.) subsp. raddiana (Savi) and livestock grazing on grass species composition, yield and soil nutrients in arid environments of South Tunisia. Flora, 203: 116–125.

Abdallah F, Noumi Z, Ouled Belgacem A, et al. 2012. The influence of Acacia tortilis (Forssk.) ssp. raddiana (Savi) Brenan presence, grazing, and water availability along the growing season, on understory herbaceous vegetation in southern Tunisia. Journal of Arid Environments, 76: 105–114.

Aerts R, Maes W, November E, et al. 2006. Surface runoff and seed trapping efficiency of shrubs in regenerating semiarid wooland in northern Ethiopia. Catena, 65: 61–70.

Aguiar M R, Sala O E. 1999. Patch structure, dynamics and implications for the functioning of arid ecosystems. Trends in Ecology and Evolution, 14: 273–277.

Al-Naib F A G, Al-Mousawi A H. 1976. Allelopathic effects of Eucalyptus microtheca. Kuwait Journal of Science, 3: 83–87.

Alpert P, Bone E, Holzapfel C. 2000. Invasiveness, invasibility and the role of environmental stress in the spread on non native plants. Perspectives in Plant Ecology, Evolution and Systematics, 3: 52–66.

Badano E I, Perez D, Vergara C H. 2009. Love of nurse plants is not enough for restoring oak forests in a seasonally dry tropical environment. Restoration Ecology, 17: 571–576.

Belsky A J, Amundson R G, Duxburg J M, et al. 1989. The effects of trees on their physical, chemical, and biological environments in a semi-arid savanna. Journal of Applied Ecology, 26: 1005–1024.

Callaway R M, Nadkarni N M, Mahall R E. 1991. Facilitation and interference of Quercus douglasii on understory productivity in central California. Ecology, 72: 1484–1499.

Casati P, Andrew C S, Edward G E. 1999.  Characterization of NADP-malic enzyme from two species of Chenopodiaceae: Haloxylon persicum (C4) and Chenopodium album (C3).  Phytochemistry, 52: 985–992.

Castillo V M, Martinez-Mena M, Albaladejo J. 1997. Runoff and soil loss response to vegetation removal in a semiarid environment. Soil Science Society of America Journal, 61: 1116–1121.

Cortina J, Maestre F T. 2005. Plant effects on soils in drylands: Implications for community dynamics and dryland restoration. In: Binkley D, Menyailo O. Tree Species Effects on Soils: Implications for Global Change. Dordrecht: Kluwer NATO Science Series Academic Publishers, 85–118.

Cowling R, Rundel P, Lamont B, et al. 1996. Plant diversity in Mediterranean-climate regions. Trends in Ecology and Evolution, 11: 362–366.

David L, Hodge J, Kuzyakov A. 2004. Plant and mycorrhizal regulation of rhizodeposition. New Phytologist, 163: 459–480.

Davis M A, Wrage K J, Reich P B. 1998. Competition between tree seedlings and herbaceous vegetation: support for a theory of resource supply and demand. Journal of Ecology, 86: 652–661.

Davis M A, Grime J P, Thompson K. 2000. Fluctuating resources in plant communities: a general theory of invasiblity. Journal of Ecology, 88: 528–534.

Davis S D, Heywood V H, Hamilton A C. 1994. Centres for Plant Diversity: A Guide and Strategy for their Conservation. Cambridge: World Wide Fund for Nature (WWF), International Union for Conservation of Nature (IUCN), 354.

Del Moral R, Muller C H. 1969. The Allelopathic effect of Eucalyptus camaldulensis. American Midland Naturalist, 83: 254–282.

Delanoë O, de Montmollin B, Olivier L, et al. 1996. Conservation of Mediterranean Island Plants. 1. Strategy for Action. Cambridge: IUCN, 114.

Derbel S. 2012. Ecological status and adaptive and functional strategies of some North African Saharan plant species. PhD Dissertation. Sfax: University of Sfax.

di Castri F, Hansen A J, Debussche M. 1990. Biological Invasions in Europe and the Mediterranean Basin. Dordrecht: Kluwer Academic Publishers, 217–227.

Díaz Barradas M C, Zunzunegui M, Tirado R, et al. 1999. Plant functional types and ecosystems function in a Mediterranean shrubland. Journal of Vegetation Science, 4: 709–716.

Espigares T, López-Pinto A, Rey Benayas J M. 2004. Is the interaction between Retama sphaerocarpa and its understorey herbaceous vegetation always reciprocally positive? Competition–facilitation shift during Retama establishment. Acta Oecologica, 26: 121–128.

Facelli J M, Brock D J. 2000. Patch dynamics in arid lands: localized effects of Acacia papyrocarpa on soils and vegetation of open woodlands of south Australia. Ecography, 23: 479–491.

Facelli J M, Temby A M. 2002. Multiple effects of shrubs on annual plant communities in arid lands of South Australia. Austral Ecology, 27: 422–432.
[1] CHEN Shumin, JIN Zhao, ZHANG Jing, YANG Siqi. Soil quality assessment in different dammed-valley farmlands in the hilly-gully mountain areas of the northern Loess Plateau, China[J]. Journal of Arid Land, 2021, 13(8): 777-789.
[2] HUANG Laiming, ZHAO Wen, SHAO Ming'an. Response of plant physiological parameters to soil water availability during prolonged drought is affected by soil texture[J]. Journal of Arid Land, 2021, 13(7): 688-698.
[3] PEI Yanwu, HUANG Laiming, SHAO Ming'an, ZHANG Yinglong. Responses of Amygdalus pedunculata Pall. in the sandy and loamy soils to water stress[J]. Journal of Arid Land, 2020, 12(5): 791-805.
[4] GONG Yidan, XING Xuguang, WANG Weihua. Factors determining soil water heterogeneity on the Chinese Loess Plateau as based on an empirical mode decomposition method[J]. Journal of Arid Land, 2020, 12(3): 462-472.
[5] QIAO Xianguo, GUO Ke, LI Guoqing, ZHAO Liqing, LI Frank Yonghong, GAO Chenguang. Assessing the collapse risk of Stipa bungeana grassland in China based on its distribution changes[J]. Journal of Arid Land, 2020, 12(2): 303-317.
[6] Jun WU, STEPHEN Yeboah, Liqun CAI, Renzhi ZHANG, Peng QI, Zhuzhu LUO, Lingling LI, Junhong XIE, Bo DONG. Effects of different tillage and straw retention practices on soil aggregates and carbon and nitrogen sequestration in soils of the northwestern China[J]. Journal of Arid Land, 2019, 11(4): 567-578.
[7] Hongfen ZHU, Yi CAO, Yaodong JING, Geng LIU, Rutian BI, Wude YANG. Multi-scale spatial relationships between soil total nitrogen and influencing factors in a basin landscape based on multivariate empirical mode decomposition[J]. Journal of Arid Land, 2019, 11(3): 385-399.
[8] Shanshan JIN, Youke WANG, Xing WANG, Yonghong BAI, Leigang SHI. Effect of pruning intensity on soil moisture and water use efficiency in jujube (Ziziphus jujube Mill.) plantations in the hilly Loess Plateau Region, China[J]. Journal of Arid Land, 2019, 11(3): 446-460.
[9] Huimin YANG, Xueyong ZOU, Jing'ai WANG, Peijun SHI. An experimental study on the influences of water erosion on wind erosion in arid and semi-arid regions[J]. Journal of Arid Land, 2019, 11(2): 208-216.
[10] Chunlei ZHAO, Ming'an SHAO, Xiaoxu JIA, Laiming HUANG, Yuanjun ZHU. Spatial distribution of water-activesoil layer along the south-north transect in the Loess Plateau of China[J]. Journal of Arid Land, 2019, 11(2): 228-240.
[11] Guohua HE, Yong ZHAO, Jianhua WANG, Qingming WANG, Yongnan ZHU. Impact of large-scale vegetation restoration project on summer land surface temperature on the Loess Plateau, China[J]. Journal of Arid Land, 2018, 10(6): 892-904.
[12] Linhua WANG, Yafeng WANG, SASKIA Keesstra, ARTEMI Cerdà, Bo MA, Faqi WU. Effect of soil management on soil erosion on sloping farmland during crop growth stages under a large-scale rainfall simulation experiment[J]. Journal of Arid Land, 2018, 10(6): 921-931.
[13] Mingming GUO, Wenlong WANG, Hongliang KANG, Bo YANG. Changes in soil properties and erodibility of gully heads induced by vegetation restoration on the Loess Plateau, China[J]. Journal of Arid Land, 2018, 10(5): 712-725.
[14] Jing ZHENG, Junliang FAN, Fucang ZHANG, Shicheng YAN, Jinjin GUO, Dongfeng CHEN, Zhijun LI. Mulching mode and planting density affect canopy interception loss of rainfall and water use efficiency of dryland maize on the Loess Plateau of China[J]. Journal of Arid Land, 2018, 10(5): 794-808.
[15] Jiao WANG, Ming'an SHAO. Solute transport characteristics of a deep soil profile in the Loess Plateau, China[J]. Journal of Arid Land, 2018, 10(4): 628-637.