Please wait a minute...
Journal of Arid Land  2023, Vol. 15 Issue (2): 218-230    DOI: 10.1007/s40333-023-0004-9
Research article     
Exogenous addition of nitrate nitrogen regulates the uptake and translocation of lead (Pb) by Iris lacteal Pall. var. chinensis (Fisch.) Koidz.
SUN Mengjie1, GUO Shiwen2, XIONG Chunlian3, LI Pinfang1,*()
1College of Land Science and Technology, China Agricultural University, Beijing 100193, China
2College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
3Yibin Ecological Environment Monitoring Center, Sichuan 644099, China
Download: HTML     PDF(1179KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Since Pb is a non-biodegradable inorganic pollutant and a non-essential metal, its long-term presence in soil poses a great threat to the environment. Iris lactea Pall. var. chinensis (Fisch.) Koidz., a perennial dense bush herb with high resistance of Pb and wide adaptability, was used in pot experiments to study the effects of exogenous nitrate N ($\text{NO}_{3}^{-}-\text{N}$) on the absorption and transportation of Pb and plant growth under different Pb concentrations. Then, the mechanism of $\text{NO}_{3}^{-}-\text{N}$ affecting Pb and nutrient uptake and transport was explored. The concentration of Pb in the experiment ranged from 0 to 1600 mg/kg, and the added concentration of $\text{NO}_{3}^{-}-\text{N}$ was 0.0-0.3 g/kg. The results showed that I. lactea was highly tolerant to Pb, and the shoot fraction was more sensitive to varied Pb concentrations in the soil than the root fraction. This protective function became more pronounced under the condition of raised Pb concentration in the soil. When the concentration of Pb in the soil reached 800 mg/kg, the highest Pb content of I. lactea was found under the condition of 0.1 g/kg of $\text{NO}_{3}^{-}-\text{N}$ addition. When Pb concentration in the soil increased to 1600 mg/kg, the increase in $\text{NO}_{3}^{-}-\text{N}$ addition promoted Pb uptake by the root. To ensure the well growth of I. lactea and the effect of remediation of Pb-contaminated soil, the recommended concentration of $\text{NO}_{3}^{-}-\text{N}$ in the soil is 0.1 g/kg. This result provides a theoretical basis for exogenous N regulation of phytoremediation of Pb-contaminated soil.



Key wordsIris lactea      nitrate nitrogen      plant nutrient      lead accumulation      absorb      transport     
Received: 31 May 2022      Published: 28 February 2023
Corresponding Authors: *LI Pinfang (E-mail: pfli@cau.edu.cn)
Cite this article:

SUN Mengjie, GUO Shiwen, XIONG Chunlian, LI Pinfang. Exogenous addition of nitrate nitrogen regulates the uptake and translocation of lead (Pb) by Iris lacteal Pall. var. chinensis (Fisch.) Koidz.. Journal of Arid Land, 2023, 15(2): 218-230.

URL:

http://jal.xjegi.com/10.1007/s40333-023-0004-9     OR     http://jal.xjegi.com/Y2023/V15/I2/218

pH EC
(μS/cm)
CEC
(cmol/kg)
SOM
(g/kg)
Total N
(g/kg)
Available P
(mg/kg)
Available K
(mg/kg)
Total Pb
(mg/kg)
8.22 198.00 13.81 12.67 0.59 13.06 146.32 17.56
Table 1 Physical-chemical properties of the soil
Treatment Pb (mg/kg) $\text{NO}_{3}^{-}-\text{N}$ (g/kg)
CK (control) 0 0.0
Pb0N1 0 0.1
Pb0N2 0 0.2
Pb0N3 0 0.3
Pb1N0 800 0.0
Pb1N1 800 0.1
Pb1N2 800 0.2
Pb1N3 800 0.3
Pb2N0 1600 0.0
Pb2N1 1600 0.1
Pb2N2 1600 0.2
Pb2N3 1600 0.3
Table 2 Experimental treatment
Step Extraction form Chemical reagents and extraction condition
1 Acid soluble Taking 1 g of air dried soil into a 100-mL centrifuge tube, adding 40 mL of 0.11 mol/L HOAc, shaking at 22°C (±5°C) for 16 h, centrifuging for 20 min at 3000 r/min, and then transferring the supernatant to a polyethylene bottle.
2 Reducible Adding 40 mL of 0.5 mol/L NH2OH•HCl (pH 1.5) solution containing 25 mL HNO3 to the solid residue in step 1, shaking at 22°C (±5°C) for 16 h, centrifuging for 20 min at 3000 r/min, and then transferring the supernatant to a polyethylene bottle.
3 Oxidizable Adding 10 mL of 8.8 mol/L H2O2 (pH 2-3) to the solid residue in step 2, keeping at room temperature for 1 h, and water bathing at 85°C (±2°C) for 1 h. When heated to a volume less than 3 mL, adding another 10 mL of H2O2, then water bathing at 85°C (±2°C) for 1 h. When heating to a volume less than 1 mL, adding 50 mL of 1 mol/L NH4OAc (pH 2), centrifuging for 20 min at 3000 r/min, and then transferring the supernatant to a polyethylene bottle.
4 Residual Differential subtraction method.
Table 3 BCR (Bureau of Reference, European Community) three-step sequential extraction procedure
Fig. 1 Biomass of Iris lactea in lead (Pb)-contaminated soil with exogenous nitrate nitrogen ($\text{NO}_{3}^{-}-\text{N}$). CK, 0.0 g/kg Pb and N; N0, 0.0 g/kg; N1, 0.1 g/kg, N2, 0.2 g/kg; N3, 0.3 g/kg; Pb0, 0 mg/kg; Pb1, 800 mg/kg; Pb2, 1600 mg/kg. (a), Pb0 treatment; (b), Pb1 treatment; (c), Pb2 treatment. The detailed treatment of Pb and N is shown in Table 2. Different lowercase letters within the same Pb treatment indicate significant differences among different N treatments in root or shoot at P<0.05 level according to Tukey's test. Bars are standard errors.
Fig. 2 pH value varied in Pb-contaminated soil with exogenous nitrate nitrogen ($\text{NO}_{3}^{-}-\text{N}$). CK, 0.0 g/kg Pb and N; N0, 0.0 mg/kg; N1, 0.1 g/kg, N2, 0.2 g/kg; N3, 0.3 g/kg; Pb0, 0 mg/kg; Pb1, 800 mg/kg; Pb2, 1600 mg/kg. The detailed treatment is shown in Table 2. Different lowercase letters within the same Pb treatment denote significant differences among different N treatments at P<0.05 level according to Tukey's test. Bars are standard errors.
Fig. 3 Transformation of lead (Pb) and proportions in different forms with exogenous nitrate nitrogen ($\text{NO}_{3}^{-}-\text{N}$). N0, 0.0 mg/kg; N1, 0.1 g/kg, N2, 0.2 g/kg; N3, 0.3 g/kg; Pb1, 800 mg/kg; Pb2, 1600 mg/kg. (a), Pb1 treatment; (b), Pb2 treatment. The detailed treatment is shown in Table 2. Different lowercase letters within the same Pb treatment denote significant differences among different forms of Pb at P<0.05 level according to Tukey's test. Bars are standard errors.
Fig. 4 Lead (Pb) content of Iris lactea in Pb-contaminated soil with exogenous nitrate nitrogen ($\text{NO}_{3}^{-}-\text{N}$). N0, 0.0 mg/kg; N1, 0.1 g/kg, N2, 0.2 g/kg; N3, 0.3 g/kg; Pb1, 800 mg/kg; Pb2, 1600 mg/kg. (a), Pb1 treatment; (b), Pb2 treatment. The detailed treatment is shown in Table 2. Different lowercase letters within the same Pb treatment denote significant differences among different N treatments at P<0.05 level according to Tukey's test. Bars are standard errors.
Fig. 5 Lead (Pb) accumulation content of Iris lactea in Pb-contaminated soil with exogenous nitrate nitrogen ($\text{NO}_{3}^{-}-\text{N}$). N0, 0.0 mg/kg; N1, 0.1 g/kg, N2, 0.2 g/kg; N3, 0.3 g/kg; Pb1, 800 mg/kg; Pb2, 1600 mg/kg. (a), Pb1 treatment; (b) Pb2 treatment. The detailed treatment is shown in Table 2. Different lowercase letters within the same Pb treatment denote significant differences among different N treatments at P<0.05 level according to Tukey's test. Bars are standard errors.
Fig. 6 Correlations of Iris lactea growth with absorption and transport of Pb. *, P<0.05 level.
$\text{NO}_{3}^{-}-\text{N}$ treatment Pb0 Pb1 Pb2
N0 0.4988 0.5093 0.5202
N1 0.5221 0.4553 0.5300
N2 0.5485 0.4874 0.5584
N3 0.5889 0.4887 0.5672
Table S1 Effect of $\text{NO}_{3}^{-}-\text{N}$ on root/shoot ratio of Iris lactea in Pb-contaminated soil
Nutrient element Nitrate nitrogen treatment Content in shoot (g/kg) Content in root (g/kg)
Pb0 Pb1 Pb2 Pb0 Pb1 Pb2
N N0 20.82±1.52c 20.49±1.36b 15.60±1.34b 9.57±1.02a 10.46±0.33b 8.60±1.33b
N1 23.89±0.89a 21.12±0.90b 18.15±1.42a 9.55±1.14 a 10.69±0.31b 9.55±1.89a
N2 22.77±0.33ab 24.61±0.75a 17.52±0.57ab 10.55±1.02a 13.70±0.20 a 9.96±1.00ab
N3 22.12±1.47ab 16.36±0.91c 17.12±0.01ab 11.24±0.51a 13.54±3.06 c 10.17±0.70ab
P N0 6.19±0.45a 4.65±0.16b 10.71±3.62ab 10.28±1.16ab 7.53±0.47a 8.58±2.23a
N1 6.27±0.29a 6.72±0.69b 8.79±0.26ab 17.32±7.66a 8.29±0.91a 6.37±0.39a
N2 6.19±0.07a 6.81±1.02b 13.47±3.43a 2.82±0.38b 8.69±0.68a 6.73±0.48a
N3 6.46±0.06a 12.77±1.70a 4.47±0.04b 7.56±0.15b 8.64±0.54a 8.38±0.52a
K N0 31.33±0.18a 34.97±1.07a 32.94±0.59a 10.58±0.13b 12.70±0.76ab 12.48±1.37b
N1 31.85±0.79a 30.38±0.90b 31.79±1.56a 15.47±1.99a 11.51±0.64b 13.43±1.41ab
N2 28.85±0.53b 28.97±0.29c 28.42±0.28b 14.17±1.66a 11.20±0.99b 15.40±1.14a
N3 28.46±1.06b 28.61±0.40c 24.88±1.06c 13.00±0.16ab 13.54±0.86a 12.46±1.18b
Table S2 Effect of $\text{NO}_{3}^{-}-\text{N}$ on N, P, and K uptake and transportation of Iris lactea in Pb-contaminated soil
Nutrient element Nitrate nitrogen treatment Accumulation in shoot Accumulation in root
(mg/plant) (mg/plant)
Pb0 Pb1 Pb2 Pb0 Pb1 Pb2
N N0 1.50±0.06ab 1.74±0.10a 1.16±0.12a 0.42±0.05a 0.46±0.05a 0.33±0.08a
N1 1.94±0.17a 1.84±0.12a 1.15±0.15 a 0.40±0.05ab 0.45±0.10b 0.32±0.10a
N2 1.40±0.03bc 1.88±0.03a 0.94±0.12ab 0.36±0.04b 0.48±0.01a 0.30±0.04a
N3 1.24±0.10c 1.15±0.04b 0.83±0.02b 0.35±0.03b 0.44±0.11b 0.28±0.07a
P N0 0.52±0.08a 0.41±0.02c 0.80±0.33ab 0.37±0.04ab 0.33±0.03 a 0.33±0.07a
N1 0.52±0.01a 0.60±0.01b 0.52±0.10ab 0.74±0.41a 0.34±0.06a 0.21±0.07ab
N2 0.38±0.01b 0.49±0.02c 0.76±0.29a 0.09±0.01b 0.30±0.02a 0.19±0.03b
N3 0.36±0.03b 0.88±0.06a 0.22±0.00b 0.24±0.02b 0.30±0.05a 0.22±0.04ab
K N0 2.44±0.24a 2.98±0.30a 2.45±0.12 a 0.43±0.10b 0.57±0.10a 0.48±0.07 a
N1 2.58±0.24a 2.64±0.11a 2.01±0.37b 0.64±0.00 a 0.48±0.12a 0.45±0.10ab
N2 1.78±0.02b 2.12±0.16b 1.52±0.19c 0.49±0.10ab 0.40±0.05a 0.46±0.08ab
N3 1.52±0.08b 2.02±0.13b 1.10±0.13c 0.41±0.05b 0.48±0.09a 0.30±0.00b
Table S3 Effect of $\text{NO}_{3}^{-}-\text{N}$ on N, P, and K accumulation of Iris lactea in Pb-contaminated soil
$\text{NO}_{3}^{-}-\text{N}$ treatment N P K
Pb0 Pb1 Pb2 Pb0 Pb1 Pb2 Pb0 Pb1 Pb2
N0 2.18 1.96 1.81 0.60 0.62 1.25 2.96 2.75 2.64
N1 2.50 1.98 1.90 0.36 0.81 1.38 2.06 2.64 2.38
N2 2.16 1.80 1.76 2.20 0.78 2.00 2.05 2.59 1.85
N3 1.97 1.21 1.68 0.85 1.48 0.53 2.19 2.11 2.00
Table S4 Effect of $\text{NO}_{3}^{-}-\text{N}$ on transfer coefficients of N, P, and K of Iris lactea in Pb-contaminated soil
$\text{NO}_{3}^{-}-\text{N}$ treatment Pb treatment
Pb1 Pb2
N0 0.08 0.10
N1 0.06 0.08
N2 0.08 0.06
N3 0.08 0.05
Table S5 Effect of $\text{NO}_{3}^{-}-\text{N}$ on transfer coefficients of Pb of Iris lactea in Pb-contaminated soil
Index Acid soluble state Reducible state Oxidizable state Residual state
Pb content in root 0.972** 0.946** 0.889** 0.897**
Pb content in shoot 0.900** 0.877** 0.859** 0.875**
Table S6 Correlation between Pb forms in soil and contents of Pb in shoot and root of Iris lactea
[1]   Amari T, Ghnaya T, Abdelly C. 2017. Nickel, cadmium and lead phytotoxicity and potential of halophytic plants in heavy metal extraction. South African Journal of Botany, 111: 99-110.
doi: 10.1016/j.sajb.2017.03.011
[2]   Ayyasamy P M, Lee S. 2009. Redox transformation and biogeochemical interaction of heavy metals in Korean soil using different treatment columns in the presence of Shewanella sp. Chemosphere, 77(4): 501-509.
doi: 10.1016/j.chemosphere.2009.07.052
[3]   Bai W B, Li P F, Li B G, et al. 2008. Some physiological responses of Chinese Iris lactea to salt stress. Pedosphere, 18(4): 454-463.
doi: 10.1016/S1002-0160(08)60036-3
[4]   Bao S D. 2000. Agrochemical Analysis of Soil. Beijing: China Agriculture Press, 370-375. (in Chinese)
[5]   Boi M E, Cappai G, De Giudici G, et al. 2021. Ex situ phytoremediation trial of Sardinian mine waste using a pioneer plant species. Environmental Science and Pollution Research, 28 (39): 1-18.
doi: 10.1007/s11356-020-11060-z
[6]   Chandana C, Joseph G R. 2019. Lead accumulation, growth responses and biochemical changes of three plant species exposed to soil amended with different concentrations of lead nitrate. Ecotoxicology and Environmental Safety, 171: 26-36.
doi: S0147-6513(18)31355-1 pmid: 30594754
[7]   Chaney R L, Angle J S, Mcintosh M S, et al. 2005. Using hyperaccumulator plants to phytoextract soil Ni and Cd. Zeitschrift für Naturforschung C, 60(3-4): 190-198.
[8]   Duzgoren-Aydin N S. 2007. Sources and characteristics of lead pollution in the urban environment of Guangzhou. Science of the Total Environment, 385(1-3): 182-195.
pmid: 17692900
[9]   Gerhardt K E, Gerwing P D, Greenberg B M. 2017. Opinion: Taking phytoremediation from proven technology to accepted practice. Plant Science, 256: 170-185.
doi: S0168-9452(16)30812-3 pmid: 28167031
[10]   Hamlin R L, Barker A V. 2006. Influence of ammonium and nitrate nutrition on plant growth and zinc accumulation by Indian mustard. Journal of Plant Nutrition, 29(8): 1523-1541.
doi: 10.1080/01904160600837709
[11]   Han Y L, Huang S Z, Gu J G, et al. 2008. Tolerance and accumulation of lead by species of Iris L. Ecotoxicology, 17(8): 853-859.
doi: 10.1007/s10646-008-0248-3
[12]   Han Y L, Huang S Z, Yuan H Y, et al. 2013. Organic acids on the growth, anatomical structure, biochemical parameters and heavy metal accumulation of Iris lactea var. chinensis seedling growing in Pb mine tailings. Ecotoxicology, 22(6): 1033-1042.
doi: 10.1007/s10646-013-1089-2 pmid: 23771790
[13]   He M J, Shen H R, Li Z T, et al. 2019. Ten-year regional monitoring of soil-rice grain contamination by heavy metals with implications for target remediation and food safety. Environmental Pollution, 244: 431-439.
doi: S0269-7491(18)33875-2 pmid: 30359925
[14]   Kastl E M, Schloter-H B, Buegger F, et al. 2015. Impact of fertilization on the abundance of nitrifiers and denitrifiers at the root-soil interface of plants with different uptake strategies for nitrogen. Biology & Fertility of Soils, 51(1): 57-64.
[15]   Lee P K, Choi B Y, Kang M J. 2015. Assessment of mobility and bio-availability of heavy metals in dry depositions of Asian dust and implications for environmental risk. Chemosphere, 119: 1411-1421.
doi: 10.1016/j.chemosphere.2014.10.028
[16]   Liu L, Wei L, Song W, et al. 2018. Remediation techniques for heavy metal-contaminated soils: Principles and applicability. Science of the Total Environment, 633: 206-219.
doi: 10.1016/j.scitotenv.2018.03.161
[17]   Lou Y L, Zhang Y S, Lin X Y, et al. 2005. Effects of forms of nitrogen fertilizer on the bioavailability of heavy metals in the soils amended with biosolids and their uptake by corn plant. Journal of Zhejiang University, 31(4): 392-398. (in Chinese)
[18]   Monsant A C, Tang C, Baker A. 2008. The effect of nitrogen form on rhizosphere soil pH and zinc phytoextraction by Thlaspi caerulescens. Chemosphere, 73(5): 635-642.
doi: 10.1016/j.chemosphere.2008.07.034 pmid: 18752830
[19]   Monsant A C, Wang Y, Tang C. 2010. Nitrate nutrition enhances zinc hyperaccumulation in Noccaea caerulescens (Prayon). Plant and Soil, 336(1-2): 391-404.
doi: 10.1007/s11104-010-0490-3
[20]   Park B, Son Y. 2017. Ultrasonic and mechanical soil washing processes for the removal of heavy metals from soils. Ultrasonics Sonochemistry, 35: 640-645.
doi: S1350-4177(16)30042-6 pmid: 26867953
[21]   Rauret G, López-Sánchez J F, Sahuquillo A, et al. 1999. Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. Journal of Environmental Monitoring, 1: 57-61.
pmid: 11529080
[22]   Rosik-Dulewska C, Karwaczyńska U. 2004. Effect of a landfill site operation on quantitative and qualitative changes of the heavy metal (Pb, Cd, Ni, Co) content in soil profiles. Ecological Chemistry and Engineering S, 11(11): 1203-1214.
[23]   Salazar M J, Pignata M L. 2014. Lead accumulation in plants grown in polluted soils: Screening of native species for phytoremediation. Journal of Geochemical Exploration, 137: 29-36.
doi: 10.1016/j.gexplo.2013.11.003
[24]   Salazar M J, Rodriguez J H, Cid C V, et al. 2016. Soil variables that determine lead accumulation in Bidens pilosa L. and Tagetes minuta L. growing in polluted soils. Geoderma, 279: 97-108.
doi: 10.1016/j.geoderma.2016.06.011
[25]   Schwartz C, Echevarria G, Morel J L, et al. 2003. Phytoextraction of cadmium with Thlaspi caerulescens. Plant and Soil, 249: 27-35.
doi: 10.1023/A:1022584220411
[26]   Shen Z G, Li X D, Wang C, et al. 2002. Lead phytoextraction from contaminated soil with high-biomass plant species. Journal of Environmental Quality, 31(6): 1893-1900.
doi: 10.2134/jeq2002.1893
[27]   Sinha P, Dube B K, Srivastava P, et al. 2006. Alteration in uptake and translocation of essential nutrients in cabbage by excess lead. Chemosphere, 65(4): 651-656.
pmid: 16545426
[28]   Stanisław J, Mos M, Buckby S, et al. 2017. Establishment, growth, and yield potential of the perennial grass Miscanthus×giganteus on degraded coal mine soils. Frontiers in Plant Science, 8: 726, doi: 10.3389/fpls.2017.00726.
doi: 10.3389/fpls.2017.00726 pmid: 28659931
[29]   Vassil A D, Kapulnik Y, Salt R D E. 1998. The role of EDTA in lead transport and accumulation by Indian mustard. Plant Physiology, 117(2): 447-453.
pmid: 9625697
[30]   Wallace A. 1979. Excess trace metal effects on calcium distribution in plants. Communications in Soil Science and Plant Analysis, 10(1-2): 473-479.
doi: 10.1080/00103627909366909
[31]   Wang J, Xue S, Hartley W, et al. 2016. The physiological response of Mirabilis jalapa Linn. to lead stress and accumulation. International Biodeterioration & Biodegradation, 128: 11-14.
[32]   Williams D E, Vlamis J, Pukite A H. 1987. Metal movement in sludge-amended soils: A nine-year study. Soil Science, 143(2): 124-131.
doi: 10.1097/00010694-198702000-00007
[33]   Wu W H, Xie Z M, Xu J M. 2013. Immobilization of trace metals by phosphates in contaminated soil near lead/zinc mine tailings evaluated by sequential extraction and TCLP. Journals of Soils and Sediments, 13(8): 1386-1395.
[34]   Xie Y, Jiang R F, Zhang F S, et al. 2009. Effect of nitrogen form on the rhizosphere dynamics and uptake of cadmium and zinc by the hyperaccumulator Thlaspi caerulescens. Plant and Soil, 318: 205-215.
doi: 10.1007/s11104-008-9830-y
[35]   Xu F, Zhu J, Zhang B, et al. 2019. Sorption and immobilization of Cu and Pb in a red soil (Ultisol) after different long-term fertilizations. Environmental Science and Pollution Research, 26(2): 1716-1722.
doi: 10.1007/s11356-018-3714-3
[36]   Yuan H Y, Huang S Z, Guo Z, et al. 2015. Role of the non-protein thiols in accumulation, translocation and tolerance of lead in Iris lactea var. chinensis. Fresenius Environmental Bulletin, 24(3): 959-969.
[37]   Yuan H Y, Guo Z, Liu Q, et al. 2018. Exogenous glutathione increased lead uptake and accumulation in Iris lactea var. chinensis exposed to excess lead. International Journal of Phytoremediation, 20(11): 1136-1143.
doi: 10.1080/15226514.2018.1460307
[38]   Zeng X Y, Zou D S, Wang A D, et al. 2020. Remediation of cadmium-contaminated soils using Brassica napus: Effect of nitrogen fertilizers. Journal of Environmental Management, 255(1): 109885, doi: 10.1016/j.jenvman.2019.109885.
doi: 10.1016/j.jenvman.2019.109885
[39]   Zhuang J, Yu G R, Liu X Y. 2000. Characteristics of lead sorption on clay minerals in relation to metal oxides. Pedosphere, 10(1): 11-20.
[1] CHEN Yingying, LIN Yajun, ZHOU Xiaobing, ZHANG Jing, YANG Chunhong, ZHANG Yuanming. Effects of drought treatment on photosystem II activity in the ephemeral plant Erodium oxyrhinchum[J]. Journal of Arid Land, 2023, 15(6): 724-739.
[2] GAO Li, CHENG Jianjun, WANG Haifeng, YUAN Xinxin. Effects of different types of guardrails on sand transportation of desert highway pavement[J]. Journal of Arid Land, 2022, 14(9): 993-1008.
[3] WANG Tian, LI Peng, HOU Jingming, TONG Yu, LI Jing, WANG Feng, LI Zhanbin. Transport mechanism of eroded sediment particles under freeze-thaw and runoff conditions[J]. Journal of Arid Land, 2022, 14(5): 490-501.
[4] YANG Xiaoju, WU Fasi, XU Ruihong, LI Na, ZHANG Zhengmo, XUE Ping, WANG Wanfu, ZHAO Xueyong. Concentrations, sources, and influential factors of water- soluble ions of atmospheric particles in Dunhuang Mogao Grottoes, a world heritage site in China[J]. Journal of Arid Land, 2022, 14(12): 1395-1412.
[5] TANG Guodong, MENG Zhongju, GAO Yong, DANG Xiaohong. Impact of utility-scale solar photovoltaic array on the aeolian sediment transport in Hobq Desert, China[J]. Journal of Arid Land, 2021, 13(3): 274-289.
[6] CHEN Zongyan, XIAO Fengjun, DONG Zhibao. Fetch effect on the developmental process of aeolian sand transport in a wind tunnel[J]. Journal of Arid Land, 2020, 12(3): 436-446.
[7] Yang ZHANG, Min LI, Yuan WANG, Bin YANG. Reinvestigation of the scaling law of the windblown sand launch velocity with a wind tunnel experiment[J]. Journal of Arid Land, 2019, 11(5): 664-673.
[8] Jiao WANG, Ming'an SHAO. Solute transport characteristics of a deep soil profile in the Loess Plateau, China[J]. Journal of Arid Land, 2018, 10(4): 628-637.
[9] Zhongju MENG, Xiaohong DANG, Yong GAO, Xiaomeng REN, Yanlong DING, Meng WANG. Interactive effects of wind speed, vegetation coverage and soil moisture in controlling wind erosion in a temperate desert steppe, Inner Mongolia of China[J]. Journal of Arid Land, 2018, 10(4): 534-547.
[10] Shentang DOU, Xin YU, Heqiang DU, Fangxiu ZHANG. Numerical simulations of flow and sediment transport within the Ning-Meng reach of the Yellow River, northern China[J]. Journal of Arid Land, 2017, 9(4): 591-608.
[11] KeCun ZHANG, WeiMin ZHANG, LiHai TAN, ZhiShan AN, Hao ZHANG. Effects of gravel mulch on aeolian transport: a field wind tunnel simulation[J]. Journal of Arid Land, 2015, 7(3): 296-303.
[12] Anya Catherine C ARGUELLES, MinJae JUNG, Kristine Joy B MALLARI, GiJung PAK, Hafzullah AKSOY, Levent M KAVVAS, Ebru ERIS, JaeYoung YOON, YoungJoon LEE, SeonHwa HONG. Evaluation of an erosion-sediment transport model for a hillslope using laboratory flume data[J]. Journal of Arid Land, 2014, 6(6): 647-655.
[13] ZhiBao DONG, Ping LV, ZhengCai ZHANG, JunFeng LU. Aeolian transport over a developing transverse dune[J]. Journal of Arid Land, 2014, 6(3): 243-254.
[14] XingHua YANG, Qing HE, Mamtimin ALI, Wen HUO XinChun LIU. Near-surface sand-dust horizontal flux in Tazhong—the hinterland of the Taklimakan Desert[J]. Journal of Arid Land, 2013, 5(2): 199-206.
[15] LiJuan CHEN, Qi FENG. Soil water and salt distribution under furrow irrigation of saline water with plastic mulch on ridge[J]. Journal of Arid Land, 2013, 5(1): 60-70.