Please wait a minute...
Journal of Arid Land  2024, Vol. 16 Issue (1): 14-28    DOI: 10.1007/s40333-024-0050-y
Research article     
Ecological effect of the plantation of Sabina vulgaris in the Mu Us Sandy Land, China
NAN Weige1, DONG Zhibao1, ZHOU Zhengchao1,*(), LI Qiang2, CHEN Guoxiang3
1School of Geography and Tourism, Shaanxi Normal University, Xi'an 710062, China
2Shaanxi Key Laboratory of Ecological Restoration in Shaanbei Mining Area, Yulin University, Yulin 719000, China
3College of Prataculture, Gansu Agricultural University, Lanzhou 730070, China
Download: HTML     PDF(1577KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Vegetation restoration through artificial plantation is an effective method to combat desertification, especially in arid and semi-arid areas. This study aimed to explore the ecological effect of the plantation of Sabina vulgaris on soil physical and chemical properties on the southeastern fringe of the Mu Us Sandy Land, China. We collected soil samples from five depth layers (0-20, 20-40, 40-60, 60-80, and 80-100 cm) in the S. vulgaris plantation plots across four plantation ages (4, 7, 10, and 16 years) in November 2019, and assessed soil physical (soil bulk density, soil porosity, and soil particle size) and chemical (soil organic carbon (SOC), total nitrogen (TN), available nitrogen (AN), available phosphorus (AP), available potassium (AK), cation-exchange capacity (CEC), salinity, pH, and C/N ratio) properties. The results indicated that the soil predominantly consisted of sand particles (94.27%-99.67%), with the remainder being silt and clay. As plantation age increased, silt and very fine sand contents progressively rose. After 16 years of planting, there was a marked reduction in the mean soil particle size. The initial soil fertility was low and declined from 4 to 10 years of planting before witnessing an improvement. Significant positive correlations were observed for the clay, silt, and very fine sand (mean diameter of 0.000-0.100 mm) with SOC, AK, and pH. In contrast, fine sand and medium sand (mean diameter of 0.100-0.500 mm) showed significant negative correlations with these indicators. Our findings ascertain that the plantation of S. vulgaris requires 10 years to effectively act as a windbreak and contribute to sand fixation, and needs 16 years to improve soil physical and chemical properties. Importantly, these improvements were found to be highly beneficial for vegetation restoration in arid and semi-arid areas. This research can offer valuable insights for the protection and restoration of the vegetation ecosystem in the sandy lands in China.



Key wordsSabina vulgaris      plantation age      soil physical and chemical properties      soil particle size      soil fertility      vegetation restoration      Mu Us Sandy Land     
Received: 13 July 2023      Published: 31 January 2024
Corresponding Authors: *ZHOU Zhengchao (E-mail address: zczhou@snnu.edu.cn)
Cite this article:

NAN Weige, DONG Zhibao, ZHOU Zhengchao, LI Qiang, CHEN Guoxiang. Ecological effect of the plantation of Sabina vulgaris in the Mu Us Sandy Land, China. Journal of Arid Land, 2024, 16(1): 14-28.

URL:

http://jal.xjegi.com/10.1007/s40333-024-0050-y     OR     http://jal.xjegi.com/Y2024/V16/I1/14

Mean particle size Sorting Skewness Kurtosis
Range (φ) Definition Range (φ) Definition Range Definition Range Definition
> 9.00 Clay <0.35 Very well sorted -1.00- -0.30 Very negative skewed <0.67 Very platykurtic
4.00-9.00 Silt sand 0.35-0.50 Well sorted -0.30- -0.10 Negative skewed 0.67-0.90 Platykurtic
3.00-4.00 Very fine sand 0.50-1.00 Moderately sorted -0.10-0.10 Nearly symmetrical 0.90-1.11 Mesokurtic
2.00-3.00 Fine sand 1.00-2.00 Poorly sorted 0.10-0.30 Positive skewed 1.11-1.50 Leptokurtic
1.00-2.00 Medium sand 2.00-4.00 Very poorly sorted 0.30-1.00 Very positive skewed 1.50-3.00 Very leptokurtic
0.00-1.00 Coarse sand >4.00 Extremely poorly sorted >3.00 Extremely leptokurtic
-1.00-0.00 Very coarse sand
Table 1 Particle size classification and the grading standard of particle size parameters
Fig. 1 Variations in soil bulk density (a) and soil porosity (b) at different soil depth layers in the 4-, 7-, 10-, and 16-year-old S. vulgaris plantations. Bars mean standard errors (n=3).
Plantation age Soil depth layer (cm) Soil particle size distribution (%)
Clay
(0.000-
0.002 mm)
Silt
(0.002-
0.050 mm)
Very fine sand (0.050-
0.100 mm)
Fine sand
(0.100-
0.250 mm)
Medium sand (0.250-
0.500 mm)
Coarse sand
(0.500-
1.000 mm)
Very coarse sand (1.000-
2.000 mm)
4-year-old 0-20 0.00±0.00 1.35±0.83 0.17±0.13 46.79±7.23 48.28±3.97 3.41±3.11 0.00±0.00
20-40 0.00±0.00 0.59±0.15 0.09±0.30 48.61±1.52 48.31±1.71 2.39±0.38 0.00±0.00
40-60 0.00±0.00 0.53±0.05 0.03±0.22 44.02±3.33 51.91±2.94 3.51±0.91 0.00±0.00
60-80 0.00±0.00 0.58±0.36 0.09±0.28 44.71±7.88 50.80±4.98 3.81±3.21 0.00±0.00
80-100 0.00±0.00 0.49±0.20 0.07±0.17 47.56±1.96 48.83±1.27 3.05±0.64 0.00±0.00
Mean 0.00±0.00 0.71±0.36bc 0.09±0.05c 46.34±1.93a 49.63±1.64b 3.23±0.54c 0.00±0.00
7-year-old 0-20 0.00±0.00 0.52±0.47 0.24±0.18 44.12±9.08 50.13±5.17 4.75±3.60 0.00±0.00
20-40 0.00±0.00 0.29±0.50 0.44±0.20 50.67±1.56 48.40±1.51 2.38±0.23 0.00±0.00
40-60 0.00±0.00 0.24±0.41 0.26±0.21 45.66±6.48 49.43±4.43 4.18±2.29 0.00±0.00
60-80 0.00±0.00 0.00±0.00 0.42±0.17 46.97±7.69 47.36±4.27 4.21±3.39 0.00±0.00
80-100 0.00±0.00 0.35±0.41 0.27±0.20 42.51±6.24 50.53±3.48 5.43±2.32 0.00±0.00
Mean 0.00±0.00 0.28±0.19c 0.34±0.10bc 45.98±3.11a 49.17±1.29b 4.19±1.13c 0.00±0.00
10-year-old 0-20 0.00±0.00 0.75±0.52 0.36±0.36 26.42±5.31 52.53±2.08 20.07±6.15 0.00±0.00
20-40 0.00±0.00 0.46±0.06 0.40±0.37 29.75±3.77 52.50±5.46 15.48±3.28 0.00±0.00
40-60 0.00±0.00 0.98±0.04 0.31±0.25 32.96±2.35 51.96±3.43 14.43±4.93 0.00±0.00
60-80 0.00±0.00 1.05±0.53 0.78±1.32 35.32±5.98 53.45±9.52 10.60±2.42 0.00±0.00
80-100 0.00±0.00 1.27±0.65 0.34±0.46 27.33±4.56 54.06±2.52 16.93±4.81 0.00±0.00
Mean 0.00±0.00 0.90±0.31b 0.44±0.19b 30.36±3.74b 52.90±0.84a 15.40±3.47b 0.00±0.00
16-year-old 0-20 0.16±0.14 6.39±1.83 3.83±0.76 23.59±4.35 45.93±1.61 19.94±5.49 0.06±0.11
20-40 0.17±0.19 5.71±2.82 3.68±1.88 23.85±5.37 46.66±3.46 19.83±6.50 0.00±0.00
40-60 0.18±0.39 5.41±6.49 4.69±4.05 19.39±5.90 45.58±6.60 24.51±10.07 0.14±0.25
60-80 0.19±0.14 5.04±1.41 4.42±0.68 22.36±1.85 46.56±2.01 21.33±1.06 0.00±0.00
80-100 0.21±0.07 5.01±0.74 4.41±0.72 22.94±1.69 46.34±0.90 20.99±1.23 0.00±0.00
Mean 0.18±0.02 5.51±0.57a 4.21±0.43a 22.43±1.79c 46.21±0.45c 21.32±0.19a 0.05±0.06
Table 2 Soil particle size distribution in different soil depth layers in the 4-, 7-, 10-, and 16-year-old S. vulgaris plantations
Fig. 2 Soil particle size distribution (a), frequency distribution curves of soil particle size in the 0-100 cm soil profile (b1) and 0-20 cm soil depth layer (b2), and cumulative probability curves of soil particle size in the 0-100 cm soil profile (c1) and 0-20 cm soil depth layer (c2) in the 4-, 7-, 10-, and 16-year-old S. vulgaris plantations. Different lowercase letters within the same particle size fraction indicate significant differences among the four plantation ages at the P<0.05 level. Bars mean standard errors.
Fig. 3 Variations in the soil particle size parameters across all soil depth layers in the 4-, 7-, 10-, and 16-year-old S. vulgaris plantations. (a), mean particle size; (b), sorting; (c), skewness; (d), kurtosis. Bars mean standard errors.
Fig. 4 Variations in the soil chemical properties across all soil depth layers in the 4-, 7-, 10-, and 16-year-old S. vulgaris plantations. (a), soil organic carbon (SOC); (b), total nitrogen (TN); (c), available nitrogen (AN); (d), available phosphorus (AP); (e), available potassium (AK); (f), salinity; (g), cation-exchange capacity (CEC); (h), pH. Bars mean standard errors.
Property 4-year-old plantation 7-year-old plantation 10-year-old plantation 16-year-old plantation
μ SD CV μ SD CV μ SD CV μ SD CV
SOC (g/kg) 1.95b 0.66 33.62 1.81b 0.60 33.12 1.78b 0.46 26.00 3.80a 0.62 16.80
TN (mg/kg) 55.76a 10.17 18.24 53.36a 8.36 15.66 53.22a 12.17 22.88 54.78a 9.10 16.61
AN (mg/kg) 18.67bc 3.55 19.01 19.68ab 1.93 9.83 14.72cd 2.83 19.22 22.20a 4.01 18.93
AP (mg/kg) 1.62a 0.22 13.56 0.85bc 0.26 31.32 0.76bc 0.13 17.43 0.92b 0.53 57.96
AK (mg/kg) 26.27b 3.91 14.89 22.59b 2.46 10.91 24.96b 2.40 9.61 50.46a 11.53 22.84
Salinity (g/kg) 0.20a 0.03 13.02 0.10bc 0.03 27.63 0.13b 0.02 13.99 0.20a 0.06 29.25
CEC (cmol/kg) 12.93a 0.83 6.42 12.98a 0.61 4.74 12.79a 0.81 6.31 13.18a 0.59 4.49
pH 7.45bc 0.04 0.57 7.50ab 0.04 0.56 7.38c 0.03 0.39 7.54a 0.05 0.66
C/N ratio 35.00 33.90 33.40 69.40
Table 3 Statistical characteristics of soil chemical properties in the 0-100 cm soil profile
Clay Silt Very fine sand Fine sand Medium sand Coarse sand Very coarse sand
SOC 0.842** 0.837** 0.825** -0.664** -0.567** 0.667** 0.434
AK 0.878** 0.917** 0.845** -0.509** -0.676** 0.591** 0.357
pH 0.599** 0.476* 0.606** -0.742* -0.541* 0.732** 0.349
Salinity 0.485* 0.419 0.438 -0.020 -0.031 0.009 0.313
TN 0.027 0.068 0.064 -0.062 0.112 0.008 0.370
AN -0.286 -0.196 -0.308 0.409 -0.224 -0.406 -0.115
AP 0.239 0.309 -0.259 -0.354 -0.153 0.383 0.364
CEC 0.162 0.193 0.204 -0.180 -0.041 -0.155 0.240
Table 4 Correlation coefficients between soil chemical properties and particle size fraction
Principal component (PC) Total variance explained Proportion of the total variance explained (%) Cumulative proportion (%)
PC1 2.433 30.407 30.407
PC2 1.834 22.930 53.337
PC3 1.397 17.464 70.800
PC4 0.912 11.402 82.203
PC5 0.572 7.150 89.352
PC6 0.481 6.016 95.368
PC7 0.200 2.506 97.874
PC8 0.170 2.126 100.000
Table 5 Results of the principal component analysis (PCA) to determine the contributions of soil chemical properties to soil fertility
[1]   Chen X H, Duan Z H. 2009. Changes in soil physical and chemical properties during reversal of desertification in Yanchi County of Ningxia Hui Autonomous Region, China. Environmental Geology, 57: 975-985.
doi: 10.1007/s00254-008-1382-1
[2]   Chen X H, Duan Z H, Tan M L. 2016. Restoration affect soil organic carbon and nutrients in different particle-size fractions. Land Degradation & Development, 27(3): 561-572.
doi: 10.1002/ldr.v27.3
[3]   Cui X J, Sun H, Dong Z B, et al. 2019. Temporal variation of the wind environment and its possible causes in the Mu Us Dunefield of Northern China, 1960-2014. Theoretical and Applied Climatology, 135(3-4): 1017-1029.
doi: 10.1007/s00704-018-2417-5
[4]   Deng L, Yan W M, Zhang Y W, et al. 2016. Severe depletion of soil moisture following land-use changes for ecological restoration: Evidence from northern China. Forest Ecology and Management, 366: 1-10.
doi: 10.1016/j.foreco.2016.01.026
[5]   Deng L, Shangguan Z P. 2017. Afforestation drives soil carbon and nitrogen changes in China. Land Degradation & Development, 28(1): 151-165.
doi: 10.1002/ldr.v28.1
[6]   Dong Z B, Hu G Y, Yan C Z, Lu J, et al. 2012. Aeolian Desertification in the Source Regions of the Yangtze River and Yellow River. Beijing: Science Press, 198-199. (in Chinese)
[7]   Duan S H, Cui R R, Jiang R F, et al. 2020. Research advance in determining soil particle size distribution by laser diffraction method. Soils, 52(2): 247-253. (in Chinese)
[8]   Duan Z H, Xiao H L, Li X R, et al. 2004. Evolution of soil properties on stabilized sands in the Tengger Desert, China. Geomorphology, 59(1-4): 237-246.
doi: 10.1016/j.geomorph.2003.07.019
[9]   Elser J J, Bracken M E S, Cleland E E, et al. 2007. Global and analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters, 10(12): 1135-1142.
doi: 10.1111/ele.2007.10.issue-12
[10]   FAO Food and Agriculture Organization of the United Nations. 2015. World reference base for soil resources 2014: International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports 106. FAO, Rome, Italy. [2023-04-20]. https://www.fao.org/3/i3794en/I3794en.pdf.
[11]   Folk R L, Ward W C. 1957. Brazos River bar: a study in the significance of grain size parameters. Journal of Sediment Research, 27(1): 3-26.
doi: 10.1306/74D70646-2B21-11D7-8648000102C1865D
[12]   Guan Q G, Hubisgalt, Yang Y, et al. 2013. Effects of artificial vegetation restoration on soil physicochemical properties in the southern margin of Mu Us Sandy Land. Journal of Anhui Agricultural Sciences, (34): 13217-13220. (in Chinese)
[13]   He W M. 2000. Responses of an evergreen shrub Sabina vulgaris to changing environments. PhD Dissertation. Beijing: Institute of Botany, Chinese Academy of Sciences. (in Chinese)
[14]   He W M, Zhang X S. 2003. Responses of an evergreen shrub Sabina vulgaris to soil water and nutrient shortages in the semi-arid Mu Us Sandland in China. Journal of Arid Environments, 53(3): 307-316.
doi: 10.1006/jare.2002.1051
[15]   He W M. 2007. Analyses on dynamic change and the reason of Sabina vulgaris plant resources in Mu Us Sandy Land. MSc Thesis. Hohhot: Inner Mongolia Normal University. (in Chinese)
[16]   ISSCAS Institute of Soil Sciences, Chinese Academy of Sciences. 1978. Physical and Chemical Analysis Methods of Soils. Shanghai: Shanghai Science and Technology Press, 7-59. (in Chinese)
[17]   Gao C, Ma X X, Hao X R, et al. 2023. Restoration of natural Sabina vulgaris in sandy area of Yulin through layering and sand barrier establishment. Shaanxi Forest Science and Technology, 51(1): 103-104. (in Chinese)
[18]   Kottek M, Grieser J, Beck C, et al. 2006. World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, 15: 259-263.
doi: 10.1127/0941-2948/2006/0130
[19]   Li H R, Liu B, Wang R X, et al. 2018a. Particle-size distribution affected by testing methods. Journal of Desert Research, 38(3): 619-627. (in Chinese)
[20]   Li P, Wang J, Liu M M, et al. 2021. Spatio-temporal variation characteristics of NDVI and its response to climate on the Loess Plateau from 1985 to 2015. Catena, 203(1): 105331, doi: 10.1016/j.catena.2021.105331.
[21]   Li S J, Su P X, Zhang H N, et al. 2018b. Distribution patterns of desert plant diversity and relationship to soil properties in the Heihe River Basin, China. Ecosphere, 9(7): e02355, doi: 10.1002/ecs2.2355.
[22]   Li W P, Shi H B, Hu M. 2012. The effect of root diameter of Sabina vulgaris on the shear strength in root-soil composites. Chinese Journal of Soil Science, 43(4): 934-937. (in Chinese)
[23]   Li X B, Zhang Y F, Chen L, et al. 2017. Relationship between soil particle size distribution and soil nutrient distribution characteristics in typical communities of desert grassland. Acta Botanica Boreali-Occidentalia Sinica, 37(8): 1635-1644. (in Chinese)
[24]   Li X R, He M Z, Duan Z H, et al. 2007. Recovery of topsoil physicochemical properties in revegetated sites in the sand-burial ecosystems of the Tengger Desert, northern China. Geomorphology, 88(3-4): 254-265.
doi: 10.1016/j.geomorph.2006.11.009
[25]   Li Y Q, Wang X Y, Niu Y Y, et al. 2018c. Spatial distribution of soil organic carbon in the ecologically fragile Horqin grassland of northeastern China. Geoderma, 325: 102-109.
doi: 10.1016/j.geoderma.2018.03.032
[26]   Liang P, Yang X P. 2016. Landscape spatial patterns in the Maowusu (Mu Us) Sandy Land, northern China and their impact factors. Catena, 145: 321-333.
doi: 10.1016/j.catena.2016.06.023
[27]   Nan W G, Liu S Q, Yang S J, et al. 2020. Changes of Sabina vulgaris growth and of soil moisture in natural stands and plantations in semi-arid northern China. Global Ecology and Conservation, 21: e00859, doi: 10.1016/j.gecco.2019.e00859.
[28]   Nelson D W, Sommers L E. 1982. Total carbon, organic carbon and organic matter. In: Page A L. Methods of Soil Analysis. Part 2: Chemical and Microbial Properties (2nd ed.). Madison: American Society of Agronomy, Soil Science Society of America, 539-577.
[29]   Ning L, Liu C X, He W M, et al. 2013. Interactions of the indigenous evergreen shrub Sabina vulgaris with coexisting species in the Mu Us sandland. Journal of Plant Ecology, 6(1): 48-56.
doi: 10.1093/jpe/rts019
[30]   Pang Y J, Wu B, Jia X H, et al. 2022. Wind-proof and sand-fixing effects of Artemisia ordosica with different coverages in the Mu Us Sandy Land, northern China. Journal of Arid Land, 14(8): 877-893.
doi: 10.1007/s40333-022-0070-4
[31]   Qin Y W, Yan H M, Liu J Y, et al. 2013. Impacts of ecological restoration projects on agricultural productivity in China. Journal of Geographical Sciences, 23(3): 404-416.
doi: 10.1007/s11442-013-1018-6
[32]   Sang B Y, Zhu Y W, Liu K, et al. 2017. Soil nutrients properties and particle size composition under different forest pattern in Ili River Valley. Bulletin of Soil Water Conservation, 37(5): 328-332. (in Chinese)
[33]   Shi W Y, Zhu X C, Zhang F B, et al. 2020. Soil carbon biogeochemistry in arid and semiarid forests. In: Mazadiego L F, De Miguel Garcia E, Barrio-Parra F, et al. Applied Geochemistry with Case Studies on Geological Formations, Exploration Techniques and Environmental Issues. IntechOpen, doi: 10.5772/intechopen.74885.
[34]   Song X D, Zhang Y, Zhou F L, et al. 2003. The research development of the characters of Sabina vulgaris. Journal of Northwest Forest University, 18(4): 63-66. (in Chinese)
[35]   Su Y Z, Zhao H L, Zhao W Z, et al. 2004. Fractal features of soil particle size distribution and the implication for indicating desertification. Geoderma, 122(1): 43-49.
doi: 10.1016/j.geoderma.2003.12.003
[36]   Tang Y, Liu L Y, Yang Z P, et al. 2009. Soil moisture and grain size characteristic of typical nebkhas in south edge of Mu Us Sand Land. Research of Soil and Water Conservation, 16(2): 6-9. (in Chinese)
[37]   Tang Z S, Deng L, Shuangguan Z P, et al. 2019. Desertification and nitrogen addition cause species homogenization in a desert steppe ecosystem. Ecological Engineering, 138: 54-60.
doi: 10.1016/j.ecoleng.2019.07.013
[38]   Udden J A. 1914. Mechanical composition of clastic sediments. Geological Society of America Bulletin, 25(1): 655-744.
doi: 10.1130/GSAB-25-655
[39]   Wang H X, Zhang Y, Wang H J. 2015. Breeding of fine drought-resistant strains of Sabina vulgaris. Inner Mongolia Forestry, (3): 10-11. (in Chinese)
[40]   Wang T, Zhu Z D. 2001. Some problem of desertification in north China. Quaternary Sciences, 21(1): 56-65. (in Chinese)
[41]   Wang Y, Shen Q R, Yang Z M. 2000. Distribution of C, N, P and K in different particle size fractions of soil and availability of N in each fraction. Acta Pedologica Sinica, 37(1): 85-94. (in Chinese)
[42]   Wei L, Wei L,. 2017. Soil fertility characteristics of different soils in Shenmu County. City Geography, (10): 195-197. (in Chinese)
[43]   Wen L, Liu X L, Qi Y Y. 2023. Analysis of cold resistance of five Sabina vulgaris antoine seed sources. Qinghai Science and Technology, 30(4): 175-179, 196. (in Chinese)
[44]   Wentworth C K. 1922. A scale of grade and class terms for clastic sediments. The Journal of Geology, 30(5): 377-392.
doi: 10.1086/622910
[45]   Wu G L, Liu Y, Fang N F, et al. 2016. Soil physical properties response to grassland conversion from cropland on the semi-arid area. Ecohydrology, 9(8): 1471-1479.
doi: 10.1002/eco.v9.8
[46]   Xu Z W, Hu R, Wang K X, et al. 2018. Recent greening (1981-2013) in the Mu Us dune field, north-central China, and its potential causes. Land Degradation & Development, 29(5): 1509-1520.
doi: 10.1002/ldr.v29.5
[47]   Yang J H, Dong Z B, Nan W G, et al. 2018. Soil grain size characteristics under Pinus sylvestris var. mongolica in the southeast Mu Us Sandy Land. Journal of Desert Research, 38(4): 815-822. (in Chinese)
[48]   Yang X H, Jia Z Q, Ci L J. 2010. Assessing effects of afforestation projects in China. Nature, 466(73044): 315, doi: 10.1038/466315c.
[49]   Yang Y, Hasi E, Sun B P, et al. 2012. Effects of vegetation restoration in different types on soil nutrients in southern edge of Mu Us Sandy Land. Agricultural Science & Technology, 13(8): 1708-1712, 1783.
[50]   Yang Y, Sun H, Han Y J, et al. 2014. Effects of artificial vegetation restoration on soil physicochemical properties in southern edge of Mu Us Sandy Land. Agricultural Science & Technology, 15(4): 648-652, 691.
[51]   Zhang L X, Duan Y X, Wang W F, et al. 2016. Characteristic of soil particle size distribution and soil organic carbon and nitrogen dynamics of different vegetation types in the Mu Us Sandy Land. Journal of Northeast Forestry University, 44(8): 55-60. (in Chinese)
[52]   Zhang Y, Cao C Y, Han X S, et al. 2013. Soil nutrient and microbiological property recoveries via native shrub and semi-shrub plantations on moving sand dunes in Northeast China. Ecological Engineering, 53: 1-5.
doi: 10.1016/j.ecoleng.2013.01.012
[53]   Zhang Y, Wei L Y, Wei X R, et al. 2018. Long-term afforestation significantly improves the fertility of abandoned farmland along soil clay gradient on the Chinese Loess Plateau. Land Degradation & Development, 29(10): 3521-3534.
doi: 10.1002/ldr.v29.10
[54]   Zhao S, Xia D S, Jin H L, et al. 2016. Long-term weakening of the East Asian summer and winter monsoons during the mid- to late Holocene recorded by aeolian deposits at the eastern edge of the Mu Us Desert. Palaeogeography, Palaeoclimatology, Palaeoecology, 457: 258-268.
doi: 10.1016/j.palaeo.2016.06.011
[55]   Zhao X L, Xia X L, Yin W L, et al. 2013. Age-based variation of several drought-resistance physiological characteristics for Juniperus sabina. Acta Botanica Boreali-Occidentalia Sinica, 33(12): 2513-2520.
[56]   Zhu Y H, Luo P P, GUO Q, et al. 2022. Analysis of warming and humidifying characteristics of Mu Us Sandy Land and its influence on vegetation change. Journal of Soil and Water Conservation, 36(5): 160-172, 180. (in Chinese)
[1] PANG Yingjun, WU Bo, JIA Xiaohong, XIE Shengbo. Wind-proof and sand-fixing effects of Artemisia ordosica with different coverages in the Mu Us Sandy Land, northern China[J]. Journal of Arid Land, 2022, 14(8): 877-893.
[2] HUANG Laiming, ZHAO Wen, SHAO Ming'an. Response of plant physiological parameters to soil water availability during prolonged drought is affected by soil texture[J]. Journal of Arid Land, 2021, 13(7): 688-698.
[3] Guohua HE, Yong ZHAO, Jianhua WANG, Qingming WANG, Yongnan ZHU. Impact of large-scale vegetation restoration project on summer land surface temperature on the Loess Plateau, China[J]. Journal of Arid Land, 2018, 10(6): 892-904.
[4] Qingyin ZHANG, Xiaoxu JIA, Chunlei ZHAO, Ming'an SHAO. Revegetation with artificial plants improves topsoil hydrological properties but intensifies deep-soil drying in northern Loess Plateau, China[J]. Journal of Arid Land, 2018, 10(3): 335-346.
[5] Ling NAN, Zhibao DONG, Weiqiang XIAO, Chao LI, Nan XIAO, Shaopeng SONG, Fengjun XIAO, Lingtong DU. A field investigation of wind erosion in the farming-pastoral ecotone of northern China using a portable wind tunnel: a case study in Yanchi County[J]. Journal of Arid Land, 2018, 10(1): 27-38.
[6] Xiaona Yu, Yongmei Huang, Engui Li, Xiaoyan Li, Weihua Guo. Effects of vegetation types on soil water dynamics during vegetation restoration in the Mu Us Sandy Land, northwestern China[J]. Journal of Arid Land, 2017, 9(2): 188-199.
[7] Donghui CHENG, Jibo DUAN, Kang QIAN, Lijun QI, Hongbin Yang, Xunhong CHEN. Groundwater evapotranspiration under psammophilous vegetation covers in the Mu Us northern China[J]. Journal of Arid Land, 2017, 9(1): 98-108.
[8] REN Zongping, ZHU Liangjun, WANG Bing, CHENG Shengdong. Soil hydraulic conductivity as affected by vegetation restoration age on the Loess Plateau, China[J]. Journal of Arid Land, 2016, 8(4): 546-555.
[9] WANG Kaibo, DENG Lei, REN Zongping, SHI Weiyu, CHEN Yiping, SHANG-GUAN Zhouping. Dynamics of ecosystem carbon stocks during vegetation restoration on the Loess Plateau of China[J]. Journal of Arid Land, 2016, 8(2): 207-220.
[10] YuGe ZHANG, Shan YANG, MingMing FU, JiangPing CAI, YongYong ZHANG, . Sheep manure application increases soil exchangeable base cations in a semi-arid steppe of Inner Mongolia[J]. Journal of Arid Land, 2015, 7(3): 361-369.
[11] DeMing JIANG, ChengYou CAO, Ying ZHANG, ZhenBo CUI, XiaoShu HAN. Plantations of native shrub species restore soil microbial diversity in the Horqin Sandy Land, northeastern China[J]. Journal of Arid Land, 2014, 6(4): 445-453.
[12] Feng YAN, Bo WU, YanJiao WANG. Estimating aboveground biomass in Mu Us Sandy Land using Landsat spectral derived vegetation indices over the past 30 years[J]. Journal of Arid Land, 2013, 5(4): 521-530.
[13] JunHong ZHANG, Bo WU, YongHua LI, WenBin YANG, YaKai LEI, HaiYan HAN, Ji HE. Biological soil crust distribution in Artemisia ordosica communities along a grazing pressure gradient in Mu Us Sandy Land, Northern China[J]. Journal of Arid Land, 2013, 5(2): 172-179.
[14] YuGe ZHANG, ZhuWen XU, DeMing JIANG, Yong JIANG. Soil exchangeable base cations along a chronosequence of Caragana microphylla plantation in a semi-arid sandy land, China[J]. Journal of Arid Land, 2013, 5(1): 42-50.
[15] QuanLai ZHOU, DeMing JIANG, ZhiMin LIU, Alamusa, XueHua LI, YongMing LUO, HongMei WANG. The return and loss of litter phosphorus in different types of sand dunes in Horqin Sandy Land, northeastern China[J]. Journal of Arid Land, 2012, 4(4): 431-440.