Please wait a minute...
Journal of Arid Land  2025, Vol. 17 Issue (3): 368-380    DOI: 10.1007/s40333-025-0008-8     CSTR: 32276.14.JAL.02500088
Research article     
Degradation of alpine meadows exacerbated plant community succession and soil nutrient loss on the Qinghai-Xizang Plateau, China
LI Shuangxiong1,2,3, CHAI Jiali1,2,3, YAO Tuo1,2,3,*(), LI Changning1,2,3, LEI Yang1,2,3
1College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China
2Key Laboratory of Grassland Ecosystem, Ministry of Education/Sino-U.S. Center for Grazingland Ecosystem Sustainability, Lanzhou 730070, China
3Pratacultural Engineering Laboratory of Gansu Province, Lanzhou 730070, China
Download: HTML     PDF(582KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

In recent decades, global climate change and overgrazing have led to severe degradation of alpine meadows. Understanding the changes in soil characteristics and vegetation communities in alpine meadows with different degrees of degradation is helpful to reveal the mechanism of degradation process and take the remediation measures effectively. This study analyzed the changes in vegetation types and soil characteristics and their interrelationships under three degradation degrees, i.e., non-degradation (ND), moderate degradation (MD), and severe degradation (SD) in the alpine meadows of northeastern Qinghai-Xizang Plateau, China through the long-term observation. Results showed that the aggressive degradation changed the plant species, with the vegetation altering from leguminous and gramineous to forbs and harmful grasses. The Pielou evenness and Simpson index increased by 24.58% and 7.01%, respectively, the Shannon-Wiener index decreased by 17.52%, and the species richness index remained constant. Soil conductivity, soil organic matter, total potassium, available potassium, and porosity declined. However, the number of vegetation species increased in MD. Compared with ND, the plant diversity in MD enhanced by 8.33%, 8.69%, and 7.41% at family, genus, and species levels, respectively. In conclusion, changes in soil properties due to degradation can significantly influence the condition of above-ground vegetation. Plant diversity increases, which improves the structure of belowground network. These findings may contribute to designing better protection measures of alpine meadows against global climate change and overgrazing.



Key wordsalpine meadow      degradation      long-term observation      plant diversity      soil and vegetation characteristics     
Received: 09 July 2024      Published: 31 March 2025
Corresponding Authors: *YAO Tuo (E-mail: yaotuo@gsau.edu.cn)
Cite this article:

LI Shuangxiong, CHAI Jiali, YAO Tuo, LI Changning, LEI Yang. Degradation of alpine meadows exacerbated plant community succession and soil nutrient loss on the Qinghai-Xizang Plateau, China. Journal of Arid Land, 2025, 17(3): 368-380.

URL:

http://jal.xjegi.com/10.1007/s40333-025-0008-8     OR     http://jal.xjegi.com/Y2025/V17/I3/368

Fig. 1 Overview map of non-degraded (ND; a), moderately degraded (MD; b), and severely degraded (SD; c) alpine meadows in the Haibei Scientific Station, Qinghai Province, China
Index Abbreviation Measurement method Reference
Soil total potassium TK Flame photometry Bao, 2000
Soil available potassium AK Ammonium acetate leaching-flame photometry
Electrical conductivity EC Conductivity meter method
Soil porosity SP Ring knife method
Soil organic matter SOM Potassium dichromate external heating method
Table 1 Methods for measurement of soil physical-chemical characteristics
No. Species Family Life
type
IV (%)
ND MD SD
S1 Elymus nutans Griseb. Gramineae P 40.05±2.4362a 33.61±2.0526b 25.15±1.0638c
S2 Medicago archiducis-nicolai Sirj. Leguminosae P 13.95±1.8952a 8.16±0.3524b 4.99±0.6614c
S3 Potentilla anserina Linn. Rosaceae P 7.54±0.5236c 11.36±1.9931b 28.55±3.5268a
S4 Potentilla saundersiana Royle Rosaceae P 5.85±0.7455a 4.68±0.3869b 0.65±0.0142c
S5 Lancea tibetica Hook. f. et Thoms. Scrophulariaceae P 5.46±0.4538b 15.67±1.2514a 5.51±0.6891b
S6 Oxytropis ochrocephala Bunge Leguminosae P 4.71±0.3869a 1.75±0.1417b 0.72±0.0302c
S7 Saussurea nigrescens Maxim. Compositae P 3.16±0.4258a 1.07±0.1314b 0.22±0.0624c
S8 Gentiana straminea Maxim. Gentianaceae P 2.65±0.4736a 0.62±0.0695b -
S9 Koeleria litvinowii Dom. Gramineae P 2.07±0.3847a 0.98±0.0524b 0.49±0.0625c
S10 Astragalus peterea Tsai et YV Leguminosae P 1.93±0.1652a 1.32±0.0589b 0.22±0.0056c
S11 Aster farreri W. W. Sm. et J.F. Jeffr. Compositae P 1.85±0.0769b 5.37±0.1564a -
S12 Angelica nitida Wolff Umbelliferae P 1.58±0.1449 - -
S13 Gentiana macrophylla Pall. Gentianaceae P 1.17±0.1864 - -
S14 Oxytropis kansuensis Bunge Leguminosae P 1.11±0.0558a 0.40±0.0146b -
S15 Thalictrum rutifolium Hook. f. et Thoms. Ranunculaceae P 1.02±0.0498 - -
S16 Allium cyaneum Regel Liliaceae P 0.92±0.0089a 0.65±0.0042b -
S17 Thalictrum alpinum Linn. Ranunculaceae P 0.91±0.0735 - -
S18 Gentianella azurea (Bunge) Holub Gentianaceae A 0.71±0.1248b - 2.17±0.4561a
S19 Artemisia moorcroftiana Wall. ex DC. Compositae P 0.64±0.0864 - -
S20 Ranunculus tanguticus (Maxim.) Ovcz. Ranunculaceae P 0.57±0.0548a 0.37±0.0423b 0.08±0.0081c
S21 Euphrasia regelii Wettst. Scrophulariaceae A 0.56±0.0039b - 0.66±0.0041a
S22 Microula sikkimensis (Clarke) Hemsl. Boraginaceae P 0.52±0.0713b 1.59±0.1347a -
S23 Festuca sinensis Keng Gramineae P 0.44±0.0059 - -
S24 Anemone rivularis Buch.-Ham. Ranunculaceae P 0.37±0.0024 - -
S25 Tibetia himalaica (Baker) Tsui Leguminosae P 0.26±0.0089c 1.20±0.1489b 1.49±0.1312a
S26 Saussurea pulchra Lipsch. Compositae P - 2.50±0.3337b 5.57±0.7855a
S27 Anaphalis lactea Maxim. Compositae P - 2.20±0.0568 -
S28 Erigeron acer Linn. Compositae P - 1.86±0.1004 -
S29 Ajania tenuifolia (Jacq.) Tzvel. Compositae P - 1.24±0.6389b 6.13±0.9184a
S30 Morina chinensis (Bat.) Diels Dipsacaceae P - 0.77±0.1832b 1.31±0.3537a
S31 Ligularia sagitta (Maxim.) Mattf. Compositae P - 0.69±0.0518b 4.21±0.4113a
S32 Gentianopsis paludosa (Hook.f.) Ma Gentianaceae A - 0.49±0.3737 -
S33 Aconitum gymnandrum Maxim. Ranunculaceae A - 0.49±0.0045a 0.05±0.0001b
S34 Delphinium caeruleum Jacq. ex Camb. Ranunculaceae P - 0.44±0.0121 -
S35 Astragalus polycladus Bur. et Franch. Leguminosae P - 0.29±0.0526a 0.33±0.0051a
S36 Viola bulbosa Maxim. Violaceae P - 0.23±0.0109b 0.89±0.0417a
S37 Stachys sieboldin Miq. Labiatae P - - 3.30±0.2568
S38 Polygonum sibiricum Laxm. Polygonaceae A - - 2.59±0.1471
S39 Taraxacum mongolicum Hand.-Mazz. Compositae P - - 2.39±0.6627
S40 Stipa penicillate Hand.-Mazz. Gramineae P - - 1.17±0.0504
S41 Festuca rubra Linn. Gramineae P - - 0.73±0.0068
S42 Cerastium pusillum Seringe Caryophyllaceae P - - 0.43±0.0037
Table 2 Species and their important values (IV) of different degraded alpine meadows
Fig. 2 Changes in vegetation characteristics of ND, MD, and SD alpine meadows. (a), number at family level; (b), number at genus level; (c), number at species level; (d), percentage of plant functional group.
Fig. 3 Plant diversity indices of ND, MD, and SD alpine meadows. (a), Shannon-Wiener index; (b), Simpson index; (c), Pielou evenness index; (d), species richness index. In Figure 3, width indicates the density of data, and length indicates the range of variability.
Fig. 4 Soil characteristics of ND, MD, and SD alpine meadows. (a), EC (electrical conductivity); (b), SOM (soil organic matter); (c), TK (total potassium); (d), AK (available potassium); (e), SP (soil porosity). Different lowercase letters indicate significant differences among different degraded alpine meadows at P<0.050 level. The abbreviations are the same in the following figures.
Fig. 5 Comparison of soil nutrient status in ND, MD, and SD alpine meadows. The values represent the relative distribution of the data in each dimension, and the overall approximation to a positive polygon represents a more balanced distribution of the soil nutrient status.
Fig. 6 Pearson's correlation coefficient between species diversity index and soil physical-chemical properties. H', Shannon-Wiener index; D, Simpson index; E, Pielou evenness index; S, species richness index. *, P<0.050 level; **, P<0.010 level; ***, P<0.001 level.
[1]   Anjali G, Aditi K. 2024. A holistic approach to sustainable manufacturing: Rework, green technology, and carbon policies. Expert Systems with Applications, 244: 122943, doi: 10.1016/j.eswa.2023.122943.
[2]   Anna L, Daniela H, Josef Z. 2015. Structures of microbial communities in alpine soils: Seasonal and elevational effects. Frontiers in Microbiology, 26(6): 1330, doi: 10.3389/fmicb.2015.01330.
[3]   Bao S D. 2000. Soil Agrochemical Analysis (3rd ed). Beijing: China Agriculture Press. (in Chinese)
[4]   Bethany J, Silva G A, Nelson C, et al. 2019. Optimizing the production of nursery-based biological soil crusts for restoration of arid land soils. Applied and Environmental Microbiology, 85(15): e00735-19, doi: 10.1128/AEM.00735-19.
[5]   Borchard N, Wolf A, Laabs V, et al. 2012. Physical activation of biochar and its meaning for soil fertility and nutrient leaching-a greenhouse experiment. Soil Use and Management, 28(2): 177-184.
[6]   Brierley G, Li X L, Fryirs K, et al. 2022. Degradation and recovery of alpine meadow catenas in the source zone of the Yellow River, Western China. Journal of Mountain Science, 19(9): 2487-2505.
[7]   Britton J A, Gibbs S, Fisher M J, et al. 2019. Impacts of nitrogen deposition on carbon and nitrogen cycling in alpine Racomitrium heath in the UK and prospects for recovery. Environmental Pollution, 254: 112986, doi: 10.1016/j.envpol.2019.112986.
[8]   Bullard T F. 2012. Human or natural impacts? Comparing prehistoric and modern geomorphic response to extreme change in a Mediterranean ecosystem from excessive grazing, Southern California, U.S.A. Quaternary International, 279-280: 74.
[9]   Chen K Y, Xing S, Shi H L, et al. 2023. Long-term fencing can't benefit plant and microbial network stability of alpine meadow and alpine steppe in Three-River-Source National Park. Science of the Total Environment, 902: 166076, doi: 10.1016/j.scitotenv.2023.166076.
[10]   Chen S D, Elrys S A, Yang W Y, et al. 2024. Soil recalcitrant but not labile organic nitrogen mineralization contributes to microbial nitrogen immobilization and plant nitrogen uptake. Global Change Biology, 30(4): e17290, doi: 10.1111/GCB.17290.
[11]   Chippano T, Mendoza R, Cofre N, et al. 2021. Divergent root P uptake strategies of three temperate grassland forage species. Rhizosphere, 17: 100312, doi: 10.1016/j.rhisph.2021.100312.
[12]   Dong Q M, Zhao X Q, Wu G L, et al. 2013. A review of formation mechanism and restoration measures of ''black-soil-type'' degraded grassland in the Qinghai-Tibetan Plateau. Environmental Earth Sciences, 70(5): 2359-2370.
[13]   Evanylo G K, Porta S N, Li J L, et al. 2016. Compost practices for improving soil properties and turfgrass establishment and quality on a disturbed urban soil. Compost Science & Utilization, 24(2): 136-145.
[14]   Fan Q Y, Wang H K, Mao C L, et al. 2022. Structure and signal regulation mechanism of interspecies and interkingdom quorum sensing system receptors. Journal of Agricultural and Food Chemistry, 70(2): 429-445.
doi: 10.1021/acs.jafc.1c04751 pmid: 34989570
[15]   Feng T J, Qi Y L, Zhang Y F, et al. 2024. Long-term effects of vegetation restoration and forest management on carbon pools and nutrients storages in northeastern Loess Plateau, China. Journal of Environmental Management, 354: 120296, doi: 10.1016/j.jenvman. 2024.120296.
[16]   Gao X X, Dong S K, Xu Y D, et al. 2019. Resilience of revegetated grassland for restoring severely degraded alpine meadows is driven by plant and soil quality along recovery time: A case study from the Three-River Headwater area of Qinghai-Tibetan Plateau. Agriculture, Ecosystems and Environment, 279: 169-177.
[17]   Gu C J, Liu L S, Zhang Y L, et al. 2023. Understanding the spatial heterogeneity of grazing pressure in the Three-River-Source Region on the Tibetan Plateau. Journal of Geographical Sciences, 33(8): 1660-1680.
doi: 10.1007/s11442-023-2147-1
[18]   He J S, Liu Z P, Yao T, et al. 2020. Analysis of the main constraints and repair techniques of degraded grassland on the Tibetan Plateau. Science & Technology Review, 38 (17): 66-80. (in Chinese)
[19]   He K J, Huang Y M, Qi Y, et al. 2021. Effects of nitrogen addition on vegetation and soil and its linkages to plant diversity and productivity in a semi-arid steppe. Science of the Total Environment, 778: 146299, doi: 10.1016/j.scitotenv.2021.146299.
[20]   Hekkala A M, Tarvainen O, Tolvanen A. 2014. Dynamics of understory vegetation after restoration of natural characteristics in the boreal forests in Finland. Forest Ecology and Management, 330: 55-66.
[21]   Hu C, Xia J, She D X, et al. 2024. Precipitation exacerbates spatial heterogeneity in the propagation time of meteorological drought to soil drought with increasing soil depth. Environmental Research Letters, 19(6): 064021, doi: 10.1088/1748-9326/AD4975.
[22]   Hu T, Peter S, Ellen M, et al. 2018. Root biomass in cereals, catch crops and weeds can be reliably estimated without considering aboveground biomass. Agriculture, Ecosystems and Environment, 251: 141-148.
[23]   Li G R, Li X L, Chen W T, et al. 2019. Effects of degradation severity on the physical, chemical and mechanical properties of topsoil in alpine meadow on the Qinghai-Tibet Plateau, west China. CATENA, 187: 104370, doi: 10.1016/j.catena.2019.104370.
[24]   Li J W, Xie J B, Zhang Y, et al. 2022a. Interactive effects of nitrogen and water addition on soil microbial resource limitation in a temperate desert shrubland. Plant and Soil, 475(1-2): 361-378.
[25]   Li N N, Cui Y Z, Zhang Z J, et al. 2024. Overexpression of vacuolar H+-pyrophosphatase from a recretohalophyte Reaumuria trigyna enhances vegetative growth and salt tolerance in transgenic Arabidopsis thaliana. Frontiers in Plant Science, 13(15): 1435799, doi: 10.3389/fpls.2024.1435799.
[26]   Li T F, Kamran M, Chang S H, et al. 2022b. Climate-soil interactions improve the stability of grassland ecosystem by driving alpine plant diversity. Ecological Indicators, 141: 109002, doi: 10.1016/j.ecolind.2022.109002.
[27]   Liang Y M, He X Y, Liang S C, et al. 2014. Community structure analysis of soil ammonia oxidizers during vegetation restoration in southwest China. Journal of Basic Microbiology, 54(3): 180-189.
doi: 10.1002/jobm.201300217 pmid: 23897748
[28]   Ma L, Zhang Z H, Shi G X, et al. 2022. Warming changed the relationship between species diversity and primary productivity of alpine meadow on the Tibetan Plateau. Ecological Indicators, 145: 109691, doi: 10.1016/j.ecolind.2022.109691.
[29]   Ma Q Q, Chai L R, Hou F J, et al. 2019. Quantifying grazing intensity using remote sensing in alpine meadows on Qinghai-Tibetan Plateau. Sustainability, 11(2): 417, doi: 10.3390/su11020417.
[30]   Mao Y, Hu W, Chau H W, et al. 2020. Combined cultivation pattern reduces soil erosion and nutrients loss from sloping farmland on red soil in southwestern China. Agronomy, 10(8): 1071, doi: 10.3390/agronomy10081071.
[31]   Mari L, Saleh A, John D, et al. 2023. The nitrogen-fixing potential of plant communities depends on climate and land management. Journal of Biogeography, 50(3): 591-601.
[32]   Nassauer J I, Raskin J. 2014. Urban vacancy and land use legacies: A frontier for urban ecological research, design, and planning. Landscape and Urban Planning, 125: 245-253.
[33]   Nelson V R, Calvo R C, Ivan P T. 2005. Effects of forest harvesting techniques on species diversity in natural pine forest ecosystem. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 11(2): 125-130.
[34]   Olofsson J, Tømmervik H, Callaghan T V. 2012. Vole and lemming activity observed from space. Nature Climate Change, 2(12): 880-883.
[35]   Peng F, Xue X, Li C Y, et al. 2020. Plant community of alpine steppe shows stronger association with soil properties than alpine meadow alongside degradation. Science of the Total Environment, 733: 139048, doi: 10.1016/j.scitotenv.2020.139048.
[36]   Pubudu K, Kandiah P, Liyanage D. 2021. Assessment of yield loss in green gram (Vigna radiata (L.) R. Wilczek) cultivation and estimation of weed-free period for eco-friendly weed management. Biology and Life Sciences Forum, 3(1): 22, doi: 10.3390/IECAG2021-09691.
[37]   Rane N R, Tapase S, Kanojia A, et al. 2022. Molecular insights into plant-microbe interactions for sustainable remediation of contaminated environment. Bioresource Technology, 344: 126246, doi: 10.1016/j.biortech.2021.126246.
[38]   Romio L C, Zimmer T, Bremm T, et al. 2022. Influence of different methods to estimate the soil thermal properties from experimental dataset. Land, 11(11): 1960, doi: 10.3390/land11111960.
[39]   Roy S, Liu W, Nandety R S, et al. 2020. Celebrating 20 years of genetic discoveries in legume nodulation and symbiotic nitrogen fixation. Plant Cell, 32(1): 15-41.
[40]   Sadeghi S H, Chamani R, Zabihi Silabi M, et al. 2023. Watershed health and ecological security zoning throughout Iran. Science of the Total Environment, 905: 167123, doi: 10.1016/j.scitotenv.2023.167123.
[41]   Schneider K, Leopold U, Gerschlauer F, et al. 2011. Spatial and temporal variation of soil moisture in dependence of multiple environmental parameters in semi-arid grasslands. Plant and Soil, 340(1-2): 73-88.
[42]   Shannon V L, Vanguelova E L, Morison J I L, et al. 2022. The contribution of deadwood to soil carbon dynamics in contrasting temperate forest ecosystems. European Journal of Forest Research, 141(2): 241-252.
[43]   Shao W Y, Zhang Z P, Guan Q Y, et al. 2024. Comprehensive assessment of land degradation in the arid and semiarid area based on the optimal land degradation index model. Catena, 234: 107563, doi: 10.1016/j.catena.2023.107563.
[44]   Shen H, Dong S K, Li S, et al. 2019. Grazing enhances plant photosynthetic capacity by altering soil nitrogen in alpine grasslands on the Qinghai-Tibetan Plateau. Agriculture, Ecosystems and Environment, 280: 161-168.
[45]   Strömberg C A E, Staver A C. 2022. The history and challenge of grassy biomes. Science, 377(6606): 592-593.
doi: 10.1126/science.add1347 pmid: 35926015
[46]   Sun N, Liu N J, Zhao X, et al. 2022. Evaluation of spatiotemporal resilience and resistance of global vegetation responses to climate change. Remote Sensing, 14(17): 4332-4332.
[47]   Sun S S, Zhao S L, Liu X P, et al. 2023. Grazing impairs ecosystem stability through changes in species asynchrony and stability rather than diversity across spatial scales in desert steppe, Northern China. Agriculture, Ecosystems and Environment, 346: 108343, doi: 10.1016/j.agee.2023.108343.
[48]   Wang H M, Sun J, Li W P, et al. 2016. Effects of soil nutrients and climate factors on belowground biomass in an alpine meadow in the source region of the Yangtze-Yellow Rivers, Tibetan Plateau of China. Journal of Arid Land, 8(6): 881-889.
doi: 10.1007/s40333-016-0055-2
[49]   Wang J, Zhao W W, Xu Z X, et al. 2023a. Plant functional traits explain long-term differences in ecosystem services between artificial forests and natural grasslands. Journal of Environmental Management, 345: 118853, doi: 10.1016/j.jenvman.2023.118853.
[50]   Wang Q W, Robson M T, Pieriste M, et al. 2020. Testing trait plasticity over the range of spectral composition of sunlight in forb species differing in shade tolerance. Journal of Ecology, 108(5): 1923-1940.
[51]   Wang Y, Ji H F, Wang R, et al. 2017. Impact of root diversity upon coupling between soil C and N accumulation and bacterial community dynamics and activity: Result of a 30 year rotation experiment. Geoderma, 292: 87-95.
[52]   Wang Y F, Xue K, Hu R H, et al. 2023b. Vegetation structural shift tells environmental changes on the Tibetan Plateau over 40 years. Science Bulletin, 68(17): 1928-1937.
[53]   Yeom D J, Kim J H. 2011. Comparative evaluation of species diversity indices in the natural deciduous forest of Mt. Jeombong. Forest Science and Technology, 7(2): 68-74.
[54]   Yuan Z, Jiang Q Q, Yin J. 2023. Impact of climate change and land use change on ecosystem net primary productivity in the Yangtze River and Yellow River Source Region, China. Watershed Ecology and the Environment, 5: 125-133.
[55]   Zeng J B, Wang Y M, Wu G, et al. 2024. Comparative transcriptome analysis reveals the genes and pathways related to wheat root hair length. International Journal of Molecular Sciences, 25(4): 2069, doi: 10.3390/ijms25042069.
[56]   Zhang C B, Li D R, Jiang J, et al. 2019. Evaluating the potential slope plants using new method for soil reinforcement program. CATENA, 180: 346-354.
[57]   Zhang G Q, Yao T D, Xie H J, et al. 2020. Response of Tibetan Plateau lakes to climate change: Trends, patterns, and mechanisms. Earth-Science Reviews, 208: 103269, doi: 10.1016/j.earscirev.2020.103269.
[58]   Zhang H W, Yang S P, Wei X Q, et al. 2023a. Forecasting the favorable growth conditions and suitable regions for chicory (Cichorium intybus L.) on the Qinghai Plateau under current climatic conditions. Ecological Informatics, 78: 102343, doi: 10.1016/j.ecoinf.2023.102343.
[59]   Zhang M X, Zhao L Y, Hu J P, et al. 2023b. Different grazers and grazing practices alter the growth, soil properties, and rhizosphere soil bacterial communities of Medicago ruthenica in the Qinghai-Tibetan Plateau grassland. Agriculture, Ecosystems and Environment, 352: 108522, doi: 10.1016/j.agee.2023.108522.
[60]   Zhao Y N, Wang H M, Li Z G, et al. 2024. Anthropogenic shrub encroachment has accelerated the degradation of desert steppe soil over the past four decades. Science of the Total Environment, 946: 174487, doi: 10.1016/j.scitotenv.2024.174487.
[61]   Zheng H, Wang Q F, Li Y N, et al. 2013. Characteristics of evapotranspiration in an alpine shrub meadow in Haibei, Qinghai of Northwest China. Journal of Applied Ecology, 24(11): 3221-3228. (in Chinese)
[1] Mohammed SOUDDI, Haroun CHENCHOUNI, M'hammed BOUALLALA. Thriving green havens in baking deserts: Plant diversity and species composition of urban plantations in the Sahara Desert[J]. Journal of Arid Land, 2024, 16(9): 1270-1287.
[2] Asmaa S ABO HATAB, Yassin M AL-SODANY, Kamal H SHALTOUT, Soliman A HAROUN, Mohamed M EL-KHALAFY. Assessment of plant diversity of endemic species of the Saharo-Arabian region in Egypt[J]. Journal of Arid Land, 2024, 16(7): 1000-1021.
[3] WU Yuechen, ZHU Haili, ZHANG Yu, ZHANG Hailong, LIU Guosong, LIU Yabin, LI Guorong, HU Xiasong. Characterization of alpine meadow surface crack and its correlation with root-soil properties[J]. Journal of Arid Land, 2024, 16(6): 834-851.
[4] YE He, HONG Mei, XU Xuehui, LIANG Zhiwei, JIANG Na, TU Nare, WU Zhendan. Responses of plant diversity and soil microorganism diversity to nitrogen addition in the desert steppe, China[J]. Journal of Arid Land, 2024, 16(3): 447-459.
[5] QIU Lisha, SHAN Wei, GUO Ying, ZHANG Chengcheng, LIU Shuai, YAN Aoxiang. Spatiotemporal dynamics of vegetation response to permafrost degradation in Northeast China[J]. Journal of Arid Land, 2024, 16(11): 1562-1583.
[6] SUN Lin, YU Zhouchang, TIAN Xingfang, ZHANG Ying, SHI Jiayi, FU Rong, LIANG Yujie, ZHANG Wei. Leguminosae plants play a key role in affecting soil physical-chemical and biological properties during grassland succession after farmland abandonment in the Loess Plateau, China[J]. Journal of Arid Land, 2023, 15(9): 1107-1128.
[7] Orhan DENGİZ, İnci DEMİRAĞ TURAN. Soil quality assessment for desertification based on multi-indicators with the best-worst method in a semi-arid ecosystem[J]. Journal of Arid Land, 2023, 15(7): 779-796.
[8] M'hammed BOUALLALA, Souad NEFFAR, Lyès BRADAI, Haroun CHENCHOUNI. Do aeolian deposits and sand encroachment intensity shape patterns of vegetation diversity and plant functional traits in desert pavements?[J]. Journal of Arid Land, 2023, 15(6): 667-694.
[9] LI Chunming, MA Jiahui, LI Liangyu, HUANG Junlin, LU Jinhua, HUANG Mei, Allan DEGEN, SHANG Zhanhuan. Effects of degradation and species composition on soil seed density in the alpine grasslands, China[J]. Journal of Arid Land, 2023, 15(12): 1510-1528.
[10] XU Mengran, ZHANG Jing, LI Zhenghai, MO Yu. Attribution analysis and multi-scenario prediction of NDVI drivers in the Xilin Gol grassland, China[J]. Journal of Arid Land, 2022, 14(9): 941-961.
[11] Mona KARAMI, Mehdi HEYDARI, Ali SHEYKHOLESLAMI, Majid ESHAGH NIMVARI, Reza OMIDIPOUR, YUAN Zuoqiang, Bernard PREVOSTO. Dieback intensity but not functional and taxonomic diversity indices predict forest productivity in different management conditions: Evidence from a semi-arid oak forest ecosystem[J]. Journal of Arid Land, 2022, 14(2): 225-244.
[12] Carlos R PINHEIRO JUNIOR, Conan A SALVADOR, Tiago R TAVARES, Marcel C ABREU, Hugo S FAGUNDES, Wilk S ALMEIDA, Eduardo C SILVA NETO, Lúcia H C ANJOS, Marcos G PEREIRA. Lithic soils in the semi-arid region of Brazil: edaphic characterization and susceptibility to erosion[J]. Journal of Arid Land, 2022, 14(1): 56-69.
[13] BAI Jie, LI Junli, BAO Anmin, CHANG Cun. Spatial-temporal variations of ecological vulnerability in the Tarim River Basin, Northwest China[J]. Journal of Arid Land, 2021, 13(8): 814-834.
[14] ZHOU Siyuan, DUAN Yufeng, ZHANG Yuxiu, GUO Jinjin. Vegetation dynamics of coal mining city in an arid desert region of Northwest China from 2000 to 2019[J]. Journal of Arid Land, 2021, 13(5): 534-547.
[15] XIANG Zeyu, Arvind BHATT, TANG Zhongbin, PENG Yansong, WU Weifeng, ZHANG Jiaxin, WANG Jingxuan, David GALLACHER, ZHOU Saixia. Disturbance of plateau zokor-made mound stimulates plant community regeneration in the Qinghai-Tibetan Plateau, China[J]. Journal of Arid Land, 2021, 13(10): 1054-1070.