Please wait a minute...
Journal of Arid Land  2024, Vol. 16 Issue (10): 1303-1326    DOI: 10.1007/s40333-024-0086-z     CSTR: 32276.14.s40333-024-0086-z
Research article     
Spatiotemporal evolution and future simulation of land use/land cover in the Turpan-Hami Basin, China
CHEN Yiyang1,2,3, ZHANG Li1,2,*(), YAN Min1,2, WU Yin4, DONG Yuqi1,2,3, SHAO Wei1,5, ZHANG Qinglan1,6
1Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
2International Research Center of Big Data for Sustainable Development Goals, Beijing 100094, China
3University of Chinese Academy of Sciences, Beijing 100094, China
4Xinjiang Uygur Autonomous Region Natural Resources Planning and Research Institute, Urumqi 830011, China
5School of Geomatics and Marine Information, Jiangsu Ocean University, Lianyungang 222001, China
6College of Geomatics and Geoinformation, Guilin University of Technology, Guilin 541004, China
Download: HTML     PDF(3964KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

The Turpan-Hami (Tuha) Basin in Xinjiang Uygur Autonomous Region of China, holds significant strategic importance as a key economic artery of the ancient Silk Road and the Belt and Road Initiative, necessitating a holistic understanding of the spatiotemporal evolution of land use/land cover (LULC) to foster sustainable planning that is tailored to the region's unique resource endowments. However, existing LULC classification methods demonstrate inadequate accuracy, hindering effective regional planning. In this study, we established a two-level LULC classification system (8 primary types and 22 secondary types) for the Tuha Basin. By employing Landsat 5/7/8 imagery at 5-a intervals, we developed the LULC dataset of the Tuha Basin from 1990 to 2020, conducted the accuracy assessment and spatiotemporal evolution analysis, and simulated the future LULC under various scenarios via the Markov-Future Land Use Simulation (Markov-FLUS) model. The results revealed that the average overall accuracy values of our LULC dataset were 0.917 and 0.864 for the primary types and secondary types, respectively. Compared with the seven mainstream LULC products (GlobeLand30, Global 30-meter Land Cover with Fine Classification System (GLC_FCS30), Finer Resolution Observation and Monitoring of Global Land Cover PLUS (FROM_GLC PLUS), ESA Global Land Cover (ESA_LC), Esri Land Cover (ESRI_LC), China Multi-Period Land Use Land Cover Change Remote Sensing Monitoring Dataset (CNLUCC), and China Annual Land Cover Dataset (CLCD)) in 2020, our LULC data exhibited dramatically elevated overall accuracy and provided more precise delineations for land features, thereby yielding high-quality data backups for land resource analyses within the basin. In 2020, unused land (78.0% of the study area) and grassland (18.6%) were the dominant LULC types of the basin; although cropland and construction land constituted less than 1.0% of the total area, they played a vital role in arid land development and primarily situated within oases that form the urban cores of the cities of Turpan and Hami. Between 1990 and 2020, cropland and construction land exhibited a rapid expansion, and the total area of water body decreased yet resurging after 2015 due to an increase in areas of reservoir and pond. In future scenario simulations, significant increases in areas of construction land and cropland are anticipated under the business-as-usual scenario, whereas the wetland area will decrease, suggesting the need for ecological attention under this development pathway. In contrast, the economic development scenario underscores the fast-paced expansion of construction land, primarily from the conversion of unused land, highlighting the significant developmental potential of unused land with a slowing increase in cropland. Special attention should thus be directed toward ecological and cropland protection during development. This study provides data supports and policy recommendations for the sustainable development goals of Tuha Basin and other similar arid areas.



Key wordsland use/land cover (LULC)      future simulation      manual interpretation      Markov-Future Land Use Simulation (Markov-FLUS) model      Turpan-Hami (Tuha) Basin      Xinjiang     
Received: 31 May 2024      Published: 31 October 2024
Corresponding Authors: * ZHANG Li (E-mail: zhangli@aircas.ac.cn)
Cite this article:

CHEN Yiyang, ZHANG Li, YAN Min, WU Yin, DONG Yuqi, SHAO Wei, ZHANG Qinglan. Spatiotemporal evolution and future simulation of land use/land cover in the Turpan-Hami Basin, China. Journal of Arid Land, 2024, 16(10): 1303-1326.

URL:

http://jal.xjegi.com/10.1007/s40333-024-0086-z     OR     http://jal.xjegi.com/Y2024/V16/I10/1303

Fig. 1 Overview of the Turpan-Hami (Tuha) Basin based on the remote sensing images in 2020. The images are sourced from Google Earth (https://www.google.com/). The boundary is based on the standard map (GS (2020)4619) of the Map Service System (https://bzdt.ch.mnr.gov.cn/), and the boundary has not been modified.
Fig. 2 Flow diagram of the study. LULC, land use/land cover; Markov-FLUS, Markov-Future Land Use Simulation.
ID Primary LULC type ID Secondary LULC type ID Primary LULC type ID Secondary LULC type
1 Cropland - - 7 Construction land 71 Urban residential area
2 Orchard - - 72 Rural residential area
3 Woodland 31 Forestland 73 Mining land
32 Shrub land 74 Wind power and photovoltaic land
33 Sparse woodland 75 Other construction land
34 Other woodland 8 Unused land 81 Sandy land
4 Grassland 41 High-coverage grassland 82 Gobi
42 Mid-coverage grassland 83 Saline‒alkali land
43 Low coverage grassland 84 Bare land
5 Wetland - - 85 Bare rocky land
6 Water body 61 River 86 Other unused land
62 Lake
63 Reservoir and pond
64 Permanent glacier
Table 1 Classification system of land use/land cover (LULC) in the study
Year Primary LULC type Secondary LULC type
Overall accuracy Kappa coefficient Overall accuracy Kappa coefficient
1990 0.915 0.845 0.870 0.835
1995 0.906 0.828 0.858 0.819
2000 0.911 0.839 0.862 0.825
2005 0.907 0.833 0.863 0.827
2010 0.916 0.860 0.854 0.822
2015 0.919 0.871 0.848 0.817
2020 0.946 0.918 0.894 0.875
Average 0.917 0.856 0.864 0.831
Table 2 Overall accuracy and kappa coefficients for the primary and secondary types of our LULC dataset
Fig. 3 Comparison of LULC classification performance between our LULC data and seven mainstream LULC products for primary LULC types in 2020 in five typical regions. (a1-a5), natural-color images created using bands 4, 3, and 2 from Landsat 8 data in 2020; (b1-b5), Tuha_LC; (c1-c5), GLC_FCS30; (d1-d5), Globelland30; (e1-e5), FROM_GLC PLUS; (f1-f5), ESA_LC; (g1-g5), ESRI_LC; (h1-h5), CLCD; (i1-i5), CNLUCC. Tuha_LC represents our LULC data. GLC_FCS30, Global 30-meter Land Cover with Fine Classification System; FROM_GLC PLUS, Finer Resolution Observation and Monitoring of Global Land Cover PLUS; ESA_LC, ESA Global Land Cover; ESRI_LC, Esri Land Cover; CLCD, China Annual Land Cover Dataset; CNLUCC, China Multi-Period Land Use Land Cover Change Remote Sensing Monitoring Dataset.
Fig. 4 Spatial distribution of LULC in the Tuha Basin in 1990 (a), 1995 (b), 2000 (c), 2005 (d), 2010 (e), 2015 (f), and 2020 (g)
Fig. 5 Temporal variation in area of each primary LULC type in the Tuha Basin from 1990 to 2020. Note that grassland and unused land are represented on the right-hand axis, while other LULC types correspond to the left-hand axis.
Fig. 6 Temporal variation in area of each secondary LULC type in the Tuha Basin from 1990 to 2020
Fig. 7 Variation in single dynamic degree and comprehensive dynamic degree of LULC in the Tuha Basin in different periods from 1990 to 2020
Fig. 8 Sankey diagram illustrating the transitions between primary LULC types in the Tuha Basin during the periods of 1990-1995 (a), 1995-2000 (b), 2000-2005 (c), 2005-2010 (d), 2010-2015 (e), and 2015-2020 (f)
Scenario Year Area (km2)
Cropland Orchard Woodland Grassland Wetland Water body Construction land Unused
land
Business-as-
usual scenario
2030 2924.26 877.05 697.77 41,590.16 447.04 971.22 2886.44 171,325.79
2040 3326.94 767.46 694.54 41,948.26 400.11 1130.06 3596.53 169,855.80
2050 3697.84 678.18 691.28 42,306.87 358.48 1274.75 4290.44 168,421.88
Economic
development
scenario
2030 2864.47 872.64 701.90 39,740.00 425.18 958.00 2964.71 173,192.83
2040 3052.29 777.79 714.74 38,207.60 368.84 1169.38 4707.38 172,721.68
2050 3018.36 755.14 726.46 36,427.31 326.26 1234.33 7130.56 172,101.31
Table 3 Simulated area of each primary LULC type in the Tuha Basin under the business-as-usual and economic development scenarios in 2030, 2040, and 2050
Fig. 9 Spatial distribution of simulated LULC in the Tuha Basin and three partial regions under the business-as- usual and economic development scenarios in 2030 (a1-a8), 2040 (b1-b8), and 2050 (c1-c8)
Year Metric Cropland Orchard Woodland Grassland Wetland Water body Construction land Unused land
1990 PA 0.649 0.903 0.576 0.883 0.954 0.982 0.706 0.958
UA 0.897 0.509 0.810 0.792 0.883 0.809 0.857 0.983
1995 PA 0.638 0.897 0.559 0.861 0.943 0.944 0.813 0.952
UA 0.923 0.491 0.733 0.768 0.872 0.797 0.765 0.979
2000 PA 0.617 0.976 0.567 0.860 0.988 0.983 0.737 0.958
UA 0.985 0.577 0.756 0.775 0.876 0.881 0.875 0.972
2005 PA 0.591 0.974 0.586 0.897 0.837 0.978 0.769 0.963
UA 0.974 0.475 0.791 0.769 0.928 0.938 0.800 0.971
2010 PA 0.702 0.900 0.800 0.825 0.989 0.917 0.778 0.967
UA 0.890 0.600 0.698 0.880 0.918 0.815 0.946 0.978
2015 PA 0.907 0.778 0.765 0.834 0.978 0.921 0.892 0.960
UA 0.824 0.800 0.765 0.878 0.897 0.967 0.851 0.964
2020 PA 0.922 0.957 0.908 0.832 0.989 0.979 0.897 0.974
UA 0.870 0.968 0.814 0.940 0.979 0.912 0.853 0.976
Table S1 Accuracy assessment results for each primary LULC type of Tuha_LC from 1990 to 2020
LULC data Metric Cropland Woodland Grassland Water body Construction land Unused land OA Kappa
Tuha_LC PA 0.922 0.957 0.908 0.832 0.989 0.979 0.917 0.845
UA 0.870 0.968 0.814 0.940 0.979 0.912
GLC_FCS30 PA 0.060 0.121 0.288 0.214 0.000 0.703 0.553 0.154
UA 0.069 0.129 0.243 0.095 0.000 0.805
Global-land30 PA 0.128 0.316 0.360 0.477 0.056 0.708 0.585 0.209
UA 0.186 0.138 0.283 0.221 0.021 0.822
FROM_GLC PLUS PA 0.073 0.041 0.237 0.283 0.100 0.679 0.562 0.121
UA 0.069 0.023 0.177 0.137 0.010 0.839
ESA_LC PA 0.090 0.451 0.698 0.306 0.083 0.806 0.697 0.451
UA 0.098 0.586 0.822 0.116 0.010 0.861
ESRI_LC PA 0.058 0.051 0.909 0.222 0.000 0.772 0.345 0.086
UA 0.069 0.484 0.042 0.105 0.000 0.477
CLCD PA 0.074 0.000 0.290 0.250 0.000 0.700 0.561 0.157
UA 0.088 0.000 0.296 0.116 0.000 0.814
CNLUCC PA 0.210 0.042 0.270 0.280 0.041 0.735 0.577 0.206
UA 0.127 0.034 0.296 0.147 0.021 0.828
Table S2 Accuracy assessment results for each primary LULC type of Tuha_LC and the seven mainstream LULC products in 2020
Land transition Area (km2)
1900-1995 1995-2000 2000-2005 2005-2010 2010-2015 2015-2020
Cropland to cropland 1243.79 941.15 1126.99 883.64 1569.73 1871.84
Cropland to orchard 62.46 41.35 95.80 290.30 22.47 288.33
Cropland to woodland 4.31 6.85 2.22 10.46 0.51 0.62
Cropland to grassland 19.23 330.82 33.82 154.76 88.61 98.49
Cropland to wetland 1.04 5.00 2.00 0.35 0.45 0.27
Cropland to water body 0.01 0.24 0.33 0.20 1.64 1.61
Cropland to construction land 5.74 20.64 14.19 48.64 49.55 48.27
Cropland to unused land 9.65 24.09 17.39 66.98 29.89 16.65
Orchard to cropland 32.34 35.07 81.35 230.11 483.09 297.40
Orchard to orchard 704.30 683.40 813.00 747.67 885.08 593.86
Orchard to woodland 26.03 15.98 9.77 0.58 0.04 1.17
Orchard to grassland 10.40 24.91 9.52 47.90 21.32 33.44
Orchard to wetland 0.30 0.00 0.03 0.42 0.17 0.75
Orchard to water body 0.07 0.06 0.10 0.11 0.93 1.08
Orchard to construction land 7.99 16.35 11.06 38.43 82.97 18.83
Orchard to unused land 3.15 11.16 1.80 16.39 15.48 4.92
Woodland to cropland 35.37 7.52 1.13 42.78 8.13 3.66
Woodland to orchard 5.75 40.35 33.50 79.62 0.72 3.82
Woodland to woodland 800.97 803.07 807.78 216.43 517.37 492.11
Woodland to grassland 32.45 32.31 9.06 497.77 160.08 37.78
Woodland to wetland 0.10 0.49 27.19 0.62 0.38
woodland to water body 0.22 0.09 0.00 1.12 0.27 23.46
woodland to construction land 1.51 3.38 1.16 4.80 3.45 1.72
woodland to unused land 16.67 9.57 3.73 59.38 21.20 12.06
Grassland to cropland 36.63 172.11 145.84 349.29 154.52 145.66
Grassland to orchard 8.47 95.23 98.02 150.46 19.47 50.67
Grassland to woodland 51.74 41.68 41.30 379.42 46.46 155.00
Grassland to grassland 32,988.39 32,937.56 33,334.00 27,364.77 39,803.95 38,602.64
Grassland to wetland 3.61 80.38 19.81 24.71 7.02 11.78
Grassland to water body 267.14 55.23 2.27 60.57 150.85 282.08
Grassland to construction land 5.57 11.95 4.31 57.41 59.56 151.86
Grassland to unused land 249.50 206.37 275.50 5390.03 667.37 1219.14
Wetland to cropland 0.08 0.12 0.96 11.21 0.75 0.69
Wetland to orchard 0.04 0.26 0.30 0.34 0.75 0.03
Wetland to woodland 0.30 0.07 0.76 4.37 0.00 0.27
Wetland to grassland 2.89 1.75 25.20 184.91 16.67 27.68
Wetland to wetland 516.43 532.83 622.76 495.31 495.64 468.58
Wetland to water body 0.18 8.37 0.03 1.39 4.37 7.17
Wetland to construction land 0.12 0.00 0.38 0.84 0.70 1.10
Wetland to unused land 13.93 8.53 339.78 76.71 33.75 5.91
Water body to cropland 0.24 0.01 0.34 0.77 1.51 1.37
Water body to orchard 0.09 0.62 0.04 0.67 0.20 0.23
Water body to woodland 0.05 0.05 0.00 0.06 0.08 0.41
Water body to grassland 45.63 232.58 130.06 78.25 6.03 93.41
Water body to wetland 0.05 0.66 10.28 0.18 0.25 0.35
Water body to water body 1323.25 1047.25 640.63 273.92 250.52 349.89
Water body to construction land 0.00 0.00 0.00 1.05 0.01 1.24
Water body to unused land 532.84 340.75 401.85 289.53 164.89 16.90
Construction land to cropland 7.01 9.93 3.20 19.99 24.99 89.87
Construction land to orchard 3.46 15.15 3.46 37.26 11.59 34.21
Construction land to woodland 3.02 1.46 0.60 1.02 0.01 1.15
Construction land to grassland 3.56 5.54 0.53 18.42 6.76 48.62
Construction land to wetland 0.02 0.17 1.51 0.07 0.01 0.38
Construction land to water body 0.00 0.00 0.01 0.02 0.11 0.60
Construction land to construction land 247.21 239.19 316.08 200.22 522.11 1604.39
Construction land to unused land 6.12 12.69 4.13 128.90 57.13 234.53
Unused land to cropland 14.66 126.83 95.51 225.06 83.37 62.05
Unused land to orchard 2.35 50.29 37.50 182.77 11.18 49.41
Unused land to woodland 10.36 14.37 40.09 99.26 10.14 34.64
Unused land to grassland 497.94 355.60 234.48 12,562.41 515.41 2328.14
Unused land to wetland 30.36 370.63 91.50 30.96 7.51 8.04
Unused land to water body 31.07 71.96 1.05 86.16 55.10 80.52
Unused land to construction land 15.98 38.01 58.72 271.32 1295.40 305.74
Unused land to unused land 181,728.90 181,538.49 181,592.80 169,179.04 173,228.86 171,350.03
Table S3 Land transitions between primary LULC types in different periods from 1900 to 2020
[1]   Alijani Z, Hosseinali F, Biswas A. 2020. Spatio-temporal evolution of agricultural land use change drivers: A case study from Chalous region, Iran. Journal of Environmental Management, 262: 110326, doi: 10.1016/j.jenvman.2020.110326.
[2]   Bi W X, Weng B S, Yuan Z, et al. 2018. Evolution characteristics of surface water quality due to climate change and LUCC under scenario simulations: A case study in the Luanhe River Basin. International Journal of Environmental Research and Public Health, 15(8): 1724, doi: 10.3390/ijerph15081724.
[3]   Chen C, He X Y, Liu Z S, et al. 2020a. Analysis of regional economic development based on land use and land cover change information derived from Landsat imagery. Scientific Reports, 10(1): 12721, doi: 10.1038/s41598-020-69716-2.
[4]   Chen H S, Li X, Hua W J. 2015a. Numerical simulation of the impact of land use/land cover change over China on regional climates during the last 20 years. Chinese Journal of Atmospheric Sciences, 39(2): 357-369. (in Chinese)
[5]   Chen J, Chen J, Liao A P, et al. 2015b. Global land cover mapping at 30m resolution: A POK-based operational approach. ISPRS Journal of Photogrammetry and Remote Sensing, 103: 7-27.
[6]   Chen J Q, John R, Yuan J, et al. 2022a. Sustainability challenges for the social-environmental systems across the Asian Drylands Belt. Environmental Research Letters, 17(2): 023001, doi: 10.1088/1748-9326/ac472f.
[7]   Chen L T, Cai H S, Zhang T, et al. 2022b. Land use multi-scenario simulation analysis of Rao River Basin based on Markov-FLUS model. Acta Ecologica Sinica, 42(10): 3947-3958. (in Chinese)
[8]   Chen X, Cun C, Bao A M, et al. 2020b. Spatial pattern and characteristics of land cover change in Xinjiang since past 40 years of the economic reform and opening up. Arid Land Geography, 43(1): 1-11. (in Chinese)
[9]   Chen Y M, Li X, Liu X P, et al. 2016. Capturing the varying effects of driving forces over time for the simulation of urban growth by using survival analysis and cellular automata. Landscape and Urban Planning, 152: 59-71.
[10]   Deng M J, Ming B, Li Y, et al. 2022. Pathways towards a cleaner energy system for Xinjiang under carbon peak and carbon neutrality goals. Journal of Natural Resources, 37(5): 1107-1122. (in Chinese)
doi: 10.31497/zrzyxb.20220501
[11]   Dong X B, Liu M X. 2022. Relationships among LUCC, ecosystem services and human well-being. Journal of Beijing Normal University (Natural Science), 58(3): 465-475. (in Chinese)
[12]   Du H Y, Zhou C, Tang H Q, et al. 2021. Simulation and estimation of future precipitation changes in arid regions: A case study of Xinjiang, Northwest China. Climatic Change, 167: 43, doi: 10.1007/s10584-021-03192-z.
[13]   Du H Y, Li M C, Xu Y Y, et al. 2023. An ensemble learning approach for land use/land cover classification of arid regions for climate simulation: A case study of Xinjiang, northwest China. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 16: 2413-2426.
[14]   Gharbia S S, Alfatah S A, Gill L, et al. 2016. Land use scenarios and projections simulation using an integrated GIS cellular automata algorithms. Modeling Earth Systems and Environment, 2(3): 151, doi: 10.1007/s40808-016-0210-y.
[15]   Gómez C, White J C, Wulder M A. 2016. Optical remotely sensed time series data for land cover classification: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 116: 55-72.
[16]   Halmy M W A, Gessler P E. 2015. The application of ensemble techniques for land-cover classification in arid lands. International Journal of Remote Sensing, 36(22): 5613-5636.
[17]   He C Y, Zhang J X, Liu Z F, et al. 2022. Characteristics and progress of land use/cover change research during 1990-2018. Journal of Geographical Sciences, 32(3): 537-559. (in Chinese)
doi: 10.1007/s11442-022-1960-2
[18]   Hu S, Chen L Q, Li L, et al. 2020. Simulation of land use change and ecosystem service value dynamics under ecological constraints in Anhui Province, China. International Journal of Environmental Research and Public Health, 17(12): 4228, doi: 10.3390/ijerph17124228.
[19]   Karra K, Kontgis C, Statman-Weil Z, et al. 2021. Global land use/land cover with Sentinel 2 and deep learning. 2021 Institute of Electrical and Electronics Engineers (IEEE) International Geoscience and Remote Sensing Symposium (IGARSS). Brussels: IEEE, 4704-4707.
[20]   Kou Y F, Chen S M, Zhou K F, et al. 2024. Spatiotemporal patterns and coupling coordination analysis of multiscale social-economic-ecological effects in ecologically vulnerable areas based on multi-source data: A case study of the Tuha Region, Xinjiang Province. Land, 13(3): 282, doi: 10.3390/land13030282.
[21]   Kuang W H, Zhang S W, Du G M, et al. 2022. Remotely sensed mapping and analysis of spatio-temporal patterns of land use change across China in 2015-2020. Acta Geographics Sinica, 77(5): 1056-1071. (in Chinese)
[22]   Li C J, Fu B J, Wang S, et al. 2021. Drivers and impacts of changes in China's drylands. Nature Reviews Earth & Environment, 2(12): 858-873.
[23]   Li X, Zhang J C, Gao H S, et al. 2024. Spatiotemporal variation characteristics of ecosystem carbon storage in Henan Province and future multi-scenario simulation prediction. Land, 13(2): 185, doi: 10.3390/land13020185.
[24]   Liu J Y, Zhang Z X, Xu X L, et al. 2010. Spatial patterns and driving forces of land use change in China during the early 21st century. Journal of Geographical Sciences, 20(4): 483-494. (in Chinese)
[25]   Liu S, Xu Z L, Guo Y C, et al. 2023. Consistency analysis of multi-source remote sensing land cover products in arid regions—A case study of Xinjiang. Land, 12(12): 2178, doi: 10.3390/land12122178.
[26]   Liu X P, Liang X, Li X, et al. 2017. A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects. Landscape and Urban Planning, 168: 94-116.
[27]   Luo J C, Hu X D, Wu T J, et al. 2021. Research on intelligent calculation model and method of precision land use/cover change information driven by high-resolution remote sensing. National Remote Sensing Bulletin, 25(7): 1351-1373. (in Chinese)
[28]   Luo K S, Zhang X J. 2022. Increasing urban flood risk in China over recent 40 years induced by LUCC. Landscape and Urban Planning, 219: 104317, doi: 10.1016/j.landurbplan.2021.104317.
[29]   Olofsson P, Giles M F, Stehman S V, et al. 2013. Making better use of accuracy data in land change studies: Estimating accuracy and area and quantifying uncertainty using stratified estimation. Remote Sensing of Environment, 129(12): 122-131.
[30]   Özşahin E, Eroğlu I. 2019. Soil erosion risk assessment due to land use/cover changes (LUCC) in Bulgaria from 1990 to 2015. Alinteri Journal of Agriculture Science, 34(1): 1-8.
[31]   Ren Q, He C Y, Huang Q X, et al. 2022. Impacts of urban expansion on natural habitats in global drylands. Nature Sustainability, 5(10): 869-878.
[32]   Schirpke U, Tscholl S, Tasser E. 2020. Spatio-temporal changes in ecosystem service values: Effects of land-use changes from past to future (860-2100). Journal of Environmental Management, 272: 111068, doi: 10.1016/j.jenvman.2020.111068.
[33]   Shan X M, Yin J, Wang J. 2022. Risk assessment of shanghai extreme flooding under the land use change scenario. Natural Hazards, 110(2): 1039-1060.
[34]   Toops W S. 2015. The ecology of Xinjiang: a focus on water. In: Frederick Starr S. Xinjiang. New York: Routledge, 264-275.
[35]   Wang H, Liu Y X, Wang Y J, et al. 2023. Land cover change in global drylands: A review. Science of the Total Environment, 863(1): 160943, doi: 10.1016/j.scitotenv.2022.160943.
[36]   Wang K B, Deng L, Shangguan Z P, et al. 2021. Sustainability of eco-environment in semi-arid regions: Lessons from the Chinese Loess Plateau. Environmental Science & Policy, 125: 126-134.
[37]   Wang Y J, Wu S F. 2003. Environment change over the Aydingkol Lake Region in the Turpan Basin, Xinjiang. Journal of Glaciology and Geocryology, 25(2): 229-231. (in Chinese)
[38]   Xu C G, McDowell N G, Fisher R A, et al. 2019. Increasing impacts of extreme droughts on vegetation productivity under climate change. Nature Climate Change, 9(12): 948-953.
[39]   Xu X L, Liu J Y, Zhang S W, et al. 2018. China's Multi-Period Land Use Land Cover Remote Sensing Monitoring Dataset (CNLUCC). Beijing: Data Registration and Publishing System of the Resource and Environmental Science Data Center of the Chinese Academy of Sciences.
[40]   Yan J F, Chen X. 2003. Analysis and stimulation method discussion on LUCC of arid region based on GIS. Arid Land Geography, 26(2): 185-191. (in Chinese)
[41]   Yang J, Huang X. 2021. 30 m annual land cover and its dynamics in China from 1990 to 2019. Earth System Science Data Discussions, 13(8): 2907-2925.
[42]   Yang M, Zhang G L, Hou Y P. 2011. Advances and prospects of the driving force of regional land use change researches. Geography and Geo-Information Science, 27(1): 95-100. (in Chinese)
[43]   Yimuranjiang A, Zhang Y F, Zibibula S. 2021. A study on change of land use pattern in Hami City during 2000-2020 based on GlobeLand30. Bulletin of Soil and Water Conservation, 41(1): 182-189, 196. (in Chinese)
[44]   Yu L, Du Z R, Dong R M, et al. 2022. FROM-GLC Plus: Toward near real-time and multi-resolution land cover mapping. GIScience & Remote Sensing, 59(1): 1026-1047.
[45]   Zanaga D, van de Kerchove R, de Keersmaecker W, et al. 2021. ESA WorldCover 10 m 2020 v100. Zenodo.[2024-03-28]. https://doi.org/10.5281/zenodo.5571936.
[46]   Zhang X, Liu L Y, Chen X D, et al. 2021. GLC_FCS30: Global land-cover product with fine classification system at 30 m using time-series Landsat imagery. Earth System Science Data, 13(6): 2753-2776.
doi: 10.5194/essd-13-2753-2021
[47]   Zhou Q M, Li B, Kurban A. 2008. Trajectory analysis of land cover change in arid environment of China. International Journal of Remote Sensing, 29(4): 1093-1107.
[1] XU Wenjie, DING Jianli, BAO Qingling, WANG Jinjie, XU Kun. Improving the accuracy of precipitation estimates in a typical inland arid area of China using a dynamic Bayesian model averaging approach[J]. Journal of Arid Land, 2024, 16(3): 331-354.
[2] ZHANG Mingyu, CAO Yu, ZHANG Zhengyong, ZHANG Xueying, LIU Lin, CHEN Hongjin, GAO Yu, YU Fengchen, LIU Xinyi. Spatiotemporal variation of land surface temperature and its driving factors in Xinjiang, China[J]. Journal of Arid Land, 2024, 16(3): 373-395.
[3] WANG Yinping, JIANG Rengui, YANG Mingxiang, XIE Jiancang, ZHAO Yong, LI Fawen, LU Xixi. Spatiotemporal characteristics and driving mechanisms of land use/land cover (LULC) changes in the Jinghe River Basin, China[J]. Journal of Arid Land, 2024, 16(1): 91-109.
[4] YUAN Shuai, LIU Yongqiang, QIN Yan, ZHANG Kun. Spatiotemporal variation of surface albedo and its influencing factors in northern Xinjiang, China[J]. Journal of Arid Land, 2023, 15(11): 1315-1339.
[5] LI Feng, LI Yaoming, ZHOU Xuewen, YIN Zun, LIU Tie, XIN Qinchuan. Modeling and analyzing supply-demand relationships of water resources in Xinjiang from a perspective of ecosystem services[J]. Journal of Arid Land, 2022, 14(2): 115-138.
[6] WANG Jinjie, DING Jianli, GE Xiangyu, QIN Shaofeng, ZHANG Zhe. Assessment of ecological quality in Northwest China (2000-2020) using the Google Earth Engine platform: Climate factors and land use/land cover contribute to ecological quality[J]. Journal of Arid Land, 2022, 14(11): 1196-1211.
[7] JIA Hao, WANG Zhenhua, ZHANG Jinzhu, LI Wenhao, REN Zuoli, JIA Zhecheng, WANG Qin. Effects of biodegradable mulch on soil water and heat conditions, yield and quality of processing tomatoes by drip irrigation[J]. Journal of Arid Land, 2020, 12(5): 819-836.
[8] YANG Yuling, LI Minfei, MA Jingjing, CHENG Junhui, LIU Yunhua, JIA Hongtao, LI Ning, WU Hongqi, SUN Zongjiu, FAN Yanmin, SHENG Jiandong, JIANG Ping'an. Changes in the relationship between species richness and belowground biomass among grassland types and along environmental gradients in Xinjiang, Northwest China[J]. Journal of Arid Land, 2019, 11(6): 855-865.
[9] Tao WANG, Jianjun QU, Yuquan LING, Shengbo XIE, Jianhua XIAO. Wind tunnel test on the effect of metal net fences on sand flux in a Gobi Desert, China[J]. Journal of Arid Land, 2017, 9(6): 888-899.
[10] Jinling LYU, Hua LIU, Xihe WANG, OLAVE Rodrigo, Changyan TIAN, Xuejun LIU. Crop yields and soil organic carbon dynamics in a long-term fertilization experiment in an extremely arid region of northern Xinjiang, China[J]. Journal of Arid Land, 2017, 9(3): 345-354.
[11] XIA Yong, Paul HOLT, WANG Yaotian, GOU Jun, CAI Xinbin, WANG Chuanbo, DING Peng, LIN Xuanlong. Glaucous gull (Larus hyperboreus): a new bird record in Xinjiang, China[J]. Journal of Arid Land, 2016, 8(5): 815-818.
[12] WU Yanfeng, Batur BAKE, ZHANG Jusong, Hamid RASULOV. Spatio-temporal patterns of drought in North Xinjiang, China, 1961–2012 based on meteorological drought index[J]. Journal of Arid Land, 2015, 7(4): 527-543.
[13] YaoBin LIU, YuanMing ZHANG, Robert S NOWAK, Liliya DIMEYEVA. Diaspore characteristics and ecological adaptation of Bromus tectorum L. from different distribution regions [J]. Journal of Arid Land, 2013, 5(3): 310-323.
[14] Ke ZHANG, ChunJian LI, ZhongShao LI, FuHai ZHANG, ZhenYong ZHAO, ChangYan TIAN. Characteristics of mineral elements in shoots of three annual halophytes in a saline desert, Northern Xinjiang[J]. Journal of Arid Land, 2013, 5(2): 244-254.
[15] Ke ZHANG, ChangYan TIAN, ChunJian LI. Root growth and spatio-temporal distribution of three common annual halophytes in a saline desert, northern Xinjiang[J]. Journal of Arid Land, 2012, 4(3): 330-341.