Please wait a minute...
Journal of Arid Land  2025, Vol. 17 Issue (3): 394-410    DOI: 10.1007/s40333-025-0096-5     CSTR: 32276.14.JAL.02500965
Research article     
Assessment of plant diversity in the Surkhan-Sherabad Region, Uzbekistan by grid mapping
Inom JURAMURODOV1, Rustam URALOV2, Dilmurod MAKHMUDJANOV1, LU Chunfang3, Feruz AKBAROV1, Sardor PULATOV1, Bakhtiyor KARIMOV1, Orzimat TURGINOV1, Komiljon TOJIBAEV1,*()
1Flora of Uzbekistan Laboratory, Institute of Botany of the Academy of Sciences of the Republic of Uzbekistan, Tashkent 100125, Uzbekistan
2National University of Uzbekistan named after Mirzo Ulugbek, Tashkent 100174, Uzbekistan
3Xinjiang Plants Resource Chemistry Key Laboratory, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
Download: HTML     PDF(497KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

In floristic research, the grid mapping method is a crucial and highly effective tool for investigating the flora of specific regions. This methodology aids in the collection of comprehensive data, thereby promoting a thorough understanding of regional plant diversity. This paper presents findings from a grid mapping study conducted in the Surkhan-Sherabad botanical-geographic region (SShBGR), acknowledged as one of the major floristic areas in southwestern Uzbekistan. Using an expansive dataset of 14,317 records comprised of herbarium specimens and field diary entries collected from 1897 to 2023, we evaluated the stages and seasonal dynamics of data accumulation, species richness (SR), and collection density (CD) within 5 km×5 km grid cells. We further examined the taxonomic and life form composition of the region's flora. Our analysis revealed that the grid mapping phase (2021-2023) produced a significantly greater volume of specimens and taxonomic diversity compared with other periods (1897-1940, 1941-1993, and 1994-2020). Field research spanned 206 grid cells during 2021-2023, resulting in 11,883 samples, including 6469 herbarium specimens and 5414 field records. Overall, fieldwork covered 251 of the 253 grid cells within the SShBGR. Notably, the highest species diversity was documented in the B198 grid cell, recording 160 species. In terms of collection density, the E198 grid cell produced 475 samples. Overall, we identified 1053 species distributed across 439 genera and 78 families in the SShBGR. The flora of this region aligned significantly with the dominant families commonly found in the Holarctic, highlighting vital ecological connections. Among our findings, the Asteraceae family was the most polymorphic, with 147 species, followed by the continually stable and diverse Poaceae, Fabaceae, Brassicaceae, and Amaranthaceae. Besides, our analysis revealed a predominance of therophyte life forms, which constituted 52% (552 species) of the total flora. The findings underscore the necessity for continual data collection efforts to further enhance our understanding of the biodiversity in the SShBGR. The results of this study demonstrated that the application of grid-based mapping in floristic studies proves to be an effective tool for assessing biodiversity and identifying key taxonomic groups.



Key wordsgrid mapping      species richness      collection density      taxonomy      dominant species      life form      therophyte      Central Asia     
Received: 16 October 2024      Published: 31 March 2025
Corresponding Authors: *Komiljon TOJIBAEV (E-mail: ktojibaev@mail.ru)
Cite this article:

Inom JURAMURODOV, Rustam URALOV, Dilmurod MAKHMUDJANOV, LU Chunfang, Feruz AKBAROV, Sardor PULATOV, Bakhtiyor KARIMOV, Orzimat TURGINOV, Komiljon TOJIBAEV. Assessment of plant diversity in the Surkhan-Sherabad Region, Uzbekistan by grid mapping. Journal of Arid Land, 2025, 17(3): 394-410.

URL:

http://jal.xjegi.com/10.1007/s40333-025-0096-5     OR     http://jal.xjegi.com/Y2025/V17/I3/394

Fig. 1 Grid system established in the Surkhan-Sherabad botanical-geographic region (SShBGR). BGR, botanical-geographic region.
Fig. 2 Distribution of species richness (SR) and collection density (CD) for data collected from the grid system in the SShBGR across different periods. (a), SR during 1897-1940; (b), CD during 1897-1940; (c), SR during 1941-1993; (d), CD during 1941-1993; (e), SR during 1994-2020; (f), CD during 1994-2020; (g), SR during 2021-2023; (h), CD during 2021-2023.
Fig. 3 Monthly dynamics of plant data collection from the SShBGR from 1897 to 2023
Fig. 4 Visualization of all species occurrence records collected from the SShBGR from 1897 to 2023. (a), SR during 1897-2023; (b), CD during 1897-2023.
Period Number of families Number of genera Number of species Number of records
Period A (1897-1940) 54 244 428 1265
Period B (1941-1993) 49 181 299 800
Period C (1994-2020) 38 105 139 362
Period D (2021-2023) 65 367 803 11,883
Table 1 Number of plant families, genera, species, and records collected from the SShBGR across different periods
Period Rank Family Number of genera Number of species Number of records
Period A (1897-1940) 1 Poaceae 35 48 190
2 Asteraceae 25 45 137
3 Fabaceae 13 42 148
4 Brassicaceae 22 34 68
5 Amaranthaceae 20 31 107
6 Lamiaceae 13 18 37
7 Apiaceae 11 18 52
8 Boraginaceae 11 18 33
9 Cyperaceae 7 18 44
10 Plantaginaceae 6 12 31
Period B (1941-1993) 1 Poaceae 28 40 114
2 Asteraceae 18 33 77
3 Fabaceae 12 32 79
4 Amaranthaceae 16 24 98
5 Cyperaceae 5 13 42
6 Lamiaceae 10 12 28
7 Brassicaceae 10 11 14
8 Apiaceae 9 11 20
9 Plantaginaceae 3 7 10
10 Boraginaceae 6 6 10
Period C (1994-2020) 1 Asteraceae 15 18 38
2 Brassicaceae 11 12 46
3 Poaceae 9 10 26
4 Fabaceae 5 10 29
5 Liliaceae 3 10 21
6 Amaranthaceae 8 9 31
7 Lamiaceae 8 8 13
8 Caryophyllaceae 5 7 16
9 Ranunculaceae 3 5 14
10 Plantaginaceae 2 3 5
Period D (2021-2023) 1 Asteraceae 50 122 1567
2 Poaceae 48 93 1847
3 Fabaceae 19 73 1049
4 Amaranthaceae 32 71 1025
5 Brassicaceae 40 68 1432
6 Caryophyllaceae 16 32 210
7 Boraginaceae 14 29 396
8 Apiaceae 23 28 181
9 Polygonaceae 6 26 492
10 Ranunculaceae 8 25 112
Table 2 List of top-ten polymorphic families in the Surkhan-Sherabad botanical-geographic region (SShBGR) in each period
No. Family Number of genera Number of species Number of life forms Number of records
T H Cr Ch P
1 Asteraceae 58 147 85 48 1 13 - 1819
2 Poaceae 53 109 65 43 1 - - 2178
3 Fabaceae 20 96 44 38 - 11 3 1305
4 Brassicaceae 45 80 73 7 - - - 1561
5 Amaranthaceae 33 79 59 - - 13 7 1261
6 Lamiaceae 20 42 10 21 - 10 1 352
7 Caryophyllaceae 17 40 29 11 - - - 251
8 Apiaceae 29 39 16 11 12 - - 255
9 Boraginaceae 16 39 27 12 - - - 439
10 Polygonaceae 7 28 9 6 - - 13 567
11 Ranunculaceae 8 28 15 12 - - 1 158
12 Cyperaceae 9 26 9 17 - - - 306
13 Plantaginaceae 7 25 14 11 - - - 502
14 Liliaceae 3 18 - - 18 - - 67
15 Euphorbiaceae 2 14 13 1 - - - 127
16 Rubiaceae 6 14 9 3 - 2 - 76
17 Convolvulaceae 4 13 3 7 - 3 - 340
18 Tamaricaceae 3 13 - - - 2 11 333
19 Amaryllidaceae 1 12 - - 12 - - 59
20 Caprifoliaceae 4 12 10 2 - - - 64
21 Malvaceae 5 12 6 6 - - - 225
22 Rosaceae 7 10 - 5 - - 5 31
23 Papaveraceae 5 9 9 - - - - 295
24 Geraniaceae 2 9 8 1 - - - 266
25 Solanaceae 4 9 5 - - 1 3 113
26 Zygophyllaceae 2 7 2 2 - 3 - 233
27 Iridaceae 1 6 - - 6 - - 55
28 Juncaceae 1 6 - 6 - - - 15
29 Rutaceae 1 6 - 6 - - - 74
30 Typhaceae 1 6 - - 6 - - 74
31 Asparagaceae 4 5 - - 5 - - 12
32 Ephedraceae 1 5 - - - - 5 38
33 Lythraceae 3 5 4 1 - - - 22
34 Orobanchaceae 2 5 - 5 - - - 19
35 Salicaceae 2 5 - - - - 5 39
36 Scrophulariaceae 2 5 2 3 - - - 39
37 Plumbaginaceae 2 3 2 1 - - - 32
38 Apocynaceae 2 3 - 3 - - - 71
39 Araceae 2 3 - - 3 - - 41
40 Asphodelaceae 1 3 - - 3 - - 4
41 Cleomaceae 1 3 3 - - - - 6
42 Frankeniaceae 1 3 1 - - 2 - 10
43 Onagraceae 2 3 1 2 - - - 6
44 Orchidaceae 3 3 - - 3 - - 6
45 Primulaceae 1 3 3 - - - - 34
46 Crassulaceae 1 1 1 - - - - 1
47 Cynomoriaceae 1 2 2 - - - - 5
48 Equisetaceae 1 2 - - 2 - - 34
49 Gentianaceae 2 2 1 1 - - - 22
50 Moraceae 1 2 - - - - 2 23
51 Nitrariaceae 2 2 1 1 - - - 90
52 Phyllanthaceae 1 2 - - - 2 - 4
53 Potamogetonaceae 1 2 - 2 - - - 4
54 Resedaceae 1 2 2 - - - - 5
55 Thymelaeaceae 2 2 2 - - - - 15
56 Anacardiaceae 1 1 - - - - 1 3
57 Balsaminaceae 1 1 1 - - - - 4
58 Berberidaceae 1 1 - 1 - - - 2
59 Capparaceae 1 1 - 1 - - - 47
60 Colchicaceae 1 1 - - 1 - - 47
61 Datiscaceae 1 1 - 1 - - - 1
62 Elaeagnaceae 1 1 - - - - 1 38
63 Elatinaceae 1 1 1 - - - - 2
64 Eriocaulaceae 1 1 1 - - - - 1
65 Hypericaceae 1 1 - 1 - - - 4
66 Ixioliriaceae 1 1 - - 1 - - 50
67 Linaceae 1 1 - 1 - - - 4
68 Mazaceae 1 1 - 1 - - - 30
69 Oleaceae 1 1 - - - - 1 1
70 Oxalidaceae 1 1 1 - - - - 20
71 Portulacaceae 1 1 1 - - - - 53
72 Pteridaceae 1 1 - 1 - - - 1
73 Sapindaceae 1 1 - - - - 1 2
74 Sphenocleaceae 1 1 1 - - - - 5
75 Ulmaceae 1 1 - - - - 1 7
76 Urticaceae 1 1 1 - - - - 1
77 Verbenaceae 1 1 - 1 - - - 10
78 Vitaceae 1 1 1 - - - 1 1
Total 439 1053 552 303 74 62 62 14,317
Table 3 Taxonomic and life forms of 14,317 records collected from the SShBGR from 1897 to 2023
Fig. 5 Number and proportion of life form of the flora in the SShBGR
[1]   Abduraimov A S. 2022. Flora of Torkopchigai botanical-geographic region. PhD Dissertation. Tashkent: Institute of Botany, Academy of Sciences of the Republic of Uzbekistan, 22-28. (in Uzbek)
[2]   Achilova N T. 2021. Flora of the Surkhan-sherabad botanical-geografic region. PhD Dissertation. Karshi: Karshi State University, 3-26. (in Uzbek)
[3]   Adylov T A. 1983. Conspectus Florae Asiae Mediae. Vol. 7. Tashkent: Science Publishers, Academy of Sciences of the Uzbek Soviet Socialist Republic. (in Russian)
[4]   Adylov T A. 1987. Conspectus Florae Asiae Mediae. Vol. 9. Tashkent: Science Publishers, Academy of Sciences of the Uzbek Soviet Socialist Republic. (in Russian)
[5]   Adylov T A, Zuckerwanik T I. 1993. Conspectus Florae Asiae Mediae. Vol. 10. Tashkent: Science Publishers. (in Russian)
[6]   Bhargava A, Srivastava S. 2020. Response of Amaranthus sp. to salinity stress:A review. In: Hirich A, Choukr-Allah R, Ragab R. Ragab R. Emerging Research in Alternative Crops. Cham: Springer, 245-263.
[7]   Bondarenko O N, Nabiev M M. 1972. Conspectus Florae Asiae Mediae. Vol. 3. Tashkent: Science Publishers, Academy of Sciences of the Uzbek Soviet Socialist Republic. (in Russian)
[8]   Esanov H K. 2023. Flora of southwestern Kyzylkum. PhD Dissertation. Tashkent: Institute of Botany, Academy of Sciences of the Republic of Uzbekistan, 60-65. (in Uzbek)
[9]   Gelaro R, McCarty W, Suárez M J, et al. 2017. The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). Journal of Climate, 30(14): 5419-5454.
[10]   Gholami M, Khosravi A R, Sheikhakbari-Mehr R, et al. 2023. Study of flora, life form and chorology of plants in Qom Province, Iran. Taxonomy and Biosystematics, 15(57): 65-90.
[11]   Haq S M, Khoja A A, Lone F A, et al. 2023. Floristic composition, life history traits and phytogeographic distribution of forest vegetation in the western Himalaya. Frontiers in Forests and Global Change, 6: 1169085, doi: 10.3389/ffgc.2023.1169085.
[12]   Ibragimov A. 2009. Flora of the Surkhan Reserve (Kuhitang Ridge). PhD Dissertation. Tashkent: Institute of Botany, Academy of Sciences of the Republic of Uzbekistan, 12-18. (in Uzbek)
[13]   Jayakumar S, Kim S S, Heo J. 2011. Floristic inventory and diversity assessment-a critical review. Proceedings of the International Academy of Ecology and Environmental Sciences, 1(3-4): 151-168.
[14]   Jogan N, Küzmič F, Šilc U. 2022. Urban structure and environment impact plant species richness and floristic composition in a Central European city. Urban Ecosystems, 25: 149-163.
[15]   Juramurodov I J, Tojibaev K Sh, Sennikov A B, et al. 2024. The genus Hedysarum (Fabaceae; Hedysareae) in Uzbekistan. Plant Diversity of Central Asia, 3(1): 1-90.
[16]   Kamelin R V, Kovalevskaya S S, Nabiev M M. 1981. Conspectus Florae Asiae Mediae. Vol. 6. Tashkent: Science Publishers, Academy of Sciences of the Uzbek Soviet Socialist Republic. (in Russian)
[17]   Khokhryakov A P. 2000. Taxonomic spectra and their role in comparative floristics. Botanicheskii Zhurnal, 85(5): 1-11.
[18]   Kiselyova L L, Parakhina E A, Silaeva Zh G. 2017. Efficiency of grid mapping method for detecting new locations of rare plants (on the example of southeastern part of Orel Region). Proceedings of the International Conference ''InterCarto. InterGIS'', 23(2): 209-219. (in Russian)
[19]   Kljuykov E V, Tojibaev K Sh, Lyskov D F. 2018. The genus Elwendia Boiss. (Apiaceae) in the flora of Uzbekistan. Turczaninowia, 21(2): 210-220. (in Russian)
[20]   Kodirov U H. 2021. Flora of the Urgut botanic-geographic region. PhD Dissertation, Tashkent: Institute of Botany, Academy of Sciences of the Republic of Uzbekistan, 4-28. (in Russian)
[21]   Kovalevskaya S S. 1968. Conspectus Florae Asiae Mediae. Vol. 1. Tashkent: Science Publishers, Academy of Sciences of the Uzbek Soviet Socialist Republic. (in Russian)
[22]   Kovalevskaya S S. 1971. Conspectus Florae Asiae Mediae. Vol. 2. Tashkent: Science Publishers, Academy of Sciences of the Uzbek Soviet Socialist Republic. (in Russian)
[23]   Kudryashev S N. 1941. Flora of Uzbekistan. Vol. 1. (1st ed.). Tashkent: Uzbekistan Branch of the Academy of Sciences of the USSR (Union of Soviet Socialist Republics). (in Russian)
[24]   Lipsky V I. 1905. Flora of Central Asia, Russian Turkestan Khanates of Bukhara and Khiva. Part III. Botanical Collection from Central Asia. St. Peterburg: Herold, 342-840. (in Russian)
[25]   Ma S Y, Li W J, Tojibaev K Sh, et al. 2024. Regionwide and nationwide floristic richness reveal vascular plant diversity in Central Asia. Plants, 13(16): 2275, doi: 10.3390/plants13162275.
[26]   Makhmudjanov D, Juramurodov I, Kurbonalieva M, et al. 2022. Genus Eremurus (Asphodelaceae) in the flora of Uzbekistan. Plant Diversity of Central Asia, 2: 82-127.
[27]   Meerow A W, Snijman D A. 1998. Amaryllidaceae. In: Kubitzki K. Flowering Plants Monocotyledons: Lilianae (Except Orchidaceae). Heidelberg: Springer, 83-110.
[28]   Merkulovich N A. 1936. Vegetation of Shirabad and Baysun districts. Proceedings of the Uzbekistan State University, 3: 9-59. (in Russian)
[29]   Midolo G, Axmanová I, Divíšek J, et al. 2024. Diversity and distribution of Raunkiær's life forms in European vegetation. Journal of Vegetation Science, 35: e13229, doi: 10.1111/jvs.13229.
[30]   Muñoz-Sabater J, Dutra E, Agustí-Panareda A, et al. 2021. ERA5-Land: A state-of-the-art global reanalysis dataset for land applications. Earth System Science Data, 13(9): 4349-4383.
[31]   Nabiev M M. 1986. Conspectus Florae Asiae Mediae. Vol. 8. Tashkent: Science Publishers, Academy of Sciences of the Uzbek Soviet Socialist Republic. (in Russian)
[32]   Nakagoshi N, Hikasa M, Koarai M, et al. 1998. Grid map analysis and its application for detecting vegetation changes in Japan. Applied Vegetation Science, 1(2): 219-224.
[33]   Nevsky S A. 1937. Materials on the flora of Kugitangtau and its foothills. Flora and Taxonomy of Vascular Plants. Tashkent: Academy of Sciences of the Uzbek Soviet Socialist Republic, 199-346. (in Russian)
[34]   Noroozi J, Akhani H, Breckle S W. 2008. Biodiversity and phytogeography of the alpine flora of Iran. Biodiversity and Conservation, 17, 493-521.
[35]   Özçelik H, Özgökçe F, Ünal M, et al. 2012. The diversity centers and ecological characteristics of Rosa L. (Rosaceae) taxa in Türkiye. International Research Journal of Plant Science, 3(10): 230-237.
[36]   Pakhomova M G. 1974. Conspectus Florae Asiae Mediae. Vol. 4. Tashkent: Science Publishers, Academy of Sciences of the Uzbek Soviet Socialist Republic. (in Russian)
[37]   Pakhomova M G. 1976. Conspectus Florae Asiae Mediae. Vol. 5. Tashkent: Science Publishers, Academy of Sciences of the Uzbek Soviet Socialist Republic. (in Russian)
[38]   Panchen Z A, Doubt J, Kharouba H M, et al. 2019. Patterns and biases in an Arctic herbarium specimen collection: Implications for phenological research. Applications in Plant Sciences, 7(3): e01229, doi: 10.1002/aps3.1229.
[39]   Popov M G. 1916. New and rare plants of Bukhara. Proceeding of the Penza Society of Natural Science Lovers, 3: 269-272. (in Russian)
[40]   Raunkiaer C. 1934. The Life Forms of Plants and Statistical Plant Geography. Oxford: Claredon Press, 4029.
[41]   Sengeløv A, Capuzzo G, Dalle S, et al. 2025. From plants to patterns: Constructing a comprehensive online strontium isoscape for Belgium (IsoBel) using high density grid mapping. Geoderma, 453: 117123, doi: 10.1016/j.geoderma.2024.117123.
[42]   Sennikov A N. 2016. Flora of Uzbekistan. Vol. 1 (2nd ed.). Tashkent: Navro'z Publishers. (in Russian)
[43]   Sennikov A N. 2017. Flora of Uzbekistan. Vol. 2 (2nd ed.). Tashkent: Ma'naviyat Publishers. (in Russian)
[44]   Sennikov A N. 2019. Flora of Uzbekistan. Vol. 3 (2nd ed.). Tashkent: Ma'naviyat Publishers. (in Russian)
[45]   Sennikov A N. 2022. Flora of Uzbekistan. Vol. 4 (2nd ed.). Tashkent: Fan Publishers. (in Russian)
[46]   Sennikov A N. 2023a. Flora of Uzbekistan. Vol. 5 (2nd ed.). Tashkent: Fan Publishers. (in Russian)
[47]   Sennikov A N. 2023b. Flora of Uzbekistan. Vol. 6 (2nd ed.). Tashkent: Ma'naviyat Publishers. (in Russian)
[48]   Sennikov A N, Khassanov F O, Ortikov E, et al. 2023. The genus Iris L. sl (Iridaceae) in the mountains of Central Asia biodiversity hotspot. Plant Diversity of Central Asia, 2(1): 1-104.
[49]   Seregin A P. 2013. Floristic grid mapping: Global experience and current trends. Bulletin of Tver State University, 32: 210-245.
[50]   Seregin A P. 2021. Flora of Vladimir Oblast, Russia: An Updated Grid Dataset (1867-2020). Version 1.5. [2024-09-28]. https://doi.org/10.15468/hoafrr accessed via GBIF.org on 2025-02-24.
[51]   Shaheen H, Aziz S, Nasar S, et al. 2023. Distribution patterns of alpine flora for long-term monitoring of global change along a wide elevational gradient in the western Himalayas. Global Ecology and Conservation, 48: e02702, doi: 10.1016/j.gecco.2023.e02702.
[52]   Shcherbakov A V, Kazakova M V, Lyubeznova N V, et al. 2021. A grid-based database on vascular plant distribution in the Meshchersky National Park, Ryazan Oblast, Russia. Biodiversity Data Journal, 9: e75892, doi: 10.3897/BDJ.9.e75892.
[53]   Souddi M, Chenchouni H, Bouallala M H. 2024. Thriving green havens in baking deserts: Plant diversity and species composition of urban plantations in the Sahara Desert. Journal of Arid Land, 16(9): 1270-1287.
doi: 10.1007/s40333-024-0083-2
[54]   Takhtajan A. 1986. Floristic Regions of the World. Berkeley: University of California Press, 20-28.
[55]   Terletskaya N V, Khapilina O N, Turzhanova A S, et al. 2023. Genetic polymorphism in the Amaranthaceae species in the context of stress tolerance. Plants, 12(19): 3470, doi: 10.3390/plants12193470.
[56]   Tojibaev K Sh, Beshko N Y. 2015. Reassessment of diversity and analysis of distribution in Tulipa (Liliaceae) in Uzbekistan. Nordic Journal of Botany, 33(3): 324-334.
[57]   Tojibaev K Sh, Beshko N Y, Popov V A. 2016. Botanical-geographical regionalization of Uzbekistan. Botanicheskii Zhurnal, 101(10): 1105-1132.
[58]   Tojibaev K Sh, Karimov F, Oh B-U, et al. 2018. A checklist of the geophytes of Fergana Valley, Middle Asia-a monocotyledonous plant and biogeographical analysis. Journal of Asia-Pacific Biodiversity, 11(3): 431-441.
[59]   Tojibaev K Sh, Beshko N Y, Turginov O T, et al. 2020. An annotated checklist of the endemic Apiaceae of Uzbekistan. Phytotaxa, 455(2): 70-94.
[60]   Tojibaev K Sh, Khassanov F O, Turginov O T, et al. 2022. Endemic plant species richness of Surkhondaryo Province, Uzbekistаn. Plant Diversity of Central Asia, 1: 71-84.
[61]   Turginov O T. 2017. Flora of Baysun botanical-geographical region. PhD Dissertation. Tashkent: Institute of Botany of the Academy of Sciences of the Republic of Uzbekistan, 6-28. (in Uzbek)
[62]   Villaseñor J L, Meave J A. 2022. Floristics in Mexico today: Insights into a better understanding of biodiversity in a megadiverse country. Botanical Sciences, 100: 14-33.
[63]   Vollering J, Schuiteman A, de Vogel E, et al. 2016. Phytogeography of New Guinean orchids: Patterns of species richness and turnover. Journal of Biogeography, 43(1): 204-214.
[64]   Vvedensky A I. 1953. Flora of Uzbekistan. Vol. 2. Tashkent: Academy of Sciences of the Uzbek Soviet Socialist Republic. (in Russian)
[65]   Vvedensky A I. 1955. Flora of Uzbekistan. Vol. 3. Tashkent: Academy of Sciences of the Uzbek Soviet Socialist Republic. (in Russian)
[66]   Vvedensky A I. 1959. Flora of Uzbekistan. Vol. 4. Tashkent: Academy of Sciences of the Uzbek Soviet Socialist Republic. (in Russian)
[67]   Vvedensky A I. 1961. Flora of Uzbekistan. Vol. 5. Tashkent: Academy of Sciences of the Uzbek Soviet Socialist Republic. (in Russian)
[68]   Vvedensky A I. 1962. Flora of Uzbekistan. Vol. 6. Tashkent: Academy of Sciences of the Uzbek Soviet Socialist Republic. (in Russian)
[69]   Wagensommer R P. 2023. Floristic studies in the light of biodiversity knowledge and conservation. Plants, 12(16): 2973, doi: 10.3390/plants12162973.
[70]   Wangchuk K, Darabant A, Rai P B, et al. 2014. Species richness, diversity and density of understory vegetation along disturbance gradients in the Himalayan conifer forest. Journal of Mountain Science, 11: 1182-1191.
[71]   Yurtsev B A. 1987. Elementary Natural Floras and Basic Units of Comparative Floristics. Theoretical and Methodological Problems of Comparative Floristics. Leningrad: Nauka Press, 47-66. (in Russian)
[72]   Zou D T, Wang Q G, Luo A, et al. 2019. Species richness patterns and resource plant conservation assessments of Rosaceae in China. Chinese Journal of Plant Ecology, 43(1): 1-15. (in Chinese)
[1] CHEN Zhuo, SHAO Minghao, HU Zihao, GAO Xin, LEI Jiaqiang. Potential distribution of Haloxylon ammodendron in Central Asia under climate change[J]. Journal of Arid Land, 2024, 16(9): 1255-1269.
[2] ZHANG Jun, ZHANG Yuanming, ZHANG Qi. Host plant traits play a crucial role in shaping the composition of epiphytic microbiota in the arid desert, Northwest China[J]. Journal of Arid Land, 2024, 16(5): 699-724.
[3] BAO Anming, YU Tao, XU Wenqiang, LEI Jiaqiang, JIAPAER Guli, CHEN Xi, Tojibaev KOMILJON, Shomurodov KHABIBULLO, Xabibullaev B SAGIDULLAEVICH, Idirisov KAMALATDIN. Ecological problems and ecological restoration zoning of the Aral Sea[J]. Journal of Arid Land, 2024, 16(3): 315-330.
[4] WANG Min, CHEN Xi, CAO Liangzhong, KURBAN Alishir, SHI Haiyang, WU Nannan, EZIZ Anwar, YUAN Xiuliang, Philippe DE MAEYER. Correlation analysis between the Aral Sea shrinkage and the Amu Darya River[J]. Journal of Arid Land, 2023, 15(7): 757-778.
[5] LI Wen, MU Guijin, YE Changsheng, XU Lishuai, LI Gen. Aeolian activity in the southern Gurbantunggut Desert of China during the last 900 years[J]. Journal of Arid Land, 2023, 15(6): 649-666.
[6] YAN Xue, LI Lanhai. Spatiotemporal characteristics and influencing factors of ecosystem services in Central Asia[J]. Journal of Arid Land, 2023, 15(1): 1-19.
[7] YAO Linlin, ZHOU Hongfei, YAN Yingjie, LI Lanhai, SU Yuan. Projection of hydrothermal condition in Central Asia under four SSP-RCP scenarios[J]. Journal of Arid Land, 2022, 14(5): 521-536.
[8] SONG Yujia, LIU Xijun, XIAO Wenjiao, ZHANG Zhiguo, LIU Pengde, XIAO Yao, LI Rui, WANG Baohua, LIU Lei, HU Rongguo. Neoproterozoic I-type granites in the Central Tianshan Block (NW China): geochronology, geochemistry, and tectonic implications[J]. Journal of Arid Land, 2022, 14(1): 82-101.
[9] YIN Hanmin, Jiapaer GULI, JIANG Liangliang, YU Tao, Jeanine UMUHOZA, LI Xu. Monitoring fire regimes and assessing their driving factors in Central Asia[J]. Journal of Arid Land, 2021, 13(5): 500-515.
[10] LIU Pengde, LIU Xijun, XIAO Wenjiao, ZHANG Zhiguo, SONG Yujia, XIAO Yao, LIU Lei, HU Rongguo, WANG Baohua. Geochronology, geochemistry, and Sr-Nd isotopes of Early Carboniferous magmatism in southern West Junggar, northwestern China: Implications for Junggar oceanic plate subduction[J]. Journal of Arid Land, 2021, 13(11): 1163-1182.
[11] WANG Jie, LIU Dongwei, MA Jiali, CHENG Yingnan, WANG Lixin. Development of a large-scale remote sensing ecological index in arid areas and its application in the Aral Sea Basin[J]. Journal of Arid Land, 2021, 13(1): 40-55.
[12] Sanim BISSENBAYEVA, Jilili ABUDUWAILI, Assel SAPAROVA, Toqeer AHMED. Long-term variations in runoff of the Syr Darya River Basin under climate change and human activities[J]. Journal of Arid Land, 2021, 13(1): 56-70.
[13] Anlifeire ANNIWAER, SU Yangui, ZHOU Xiaobing, ZHANG Yuanming. Impacts of snow on seed germination are independent of seed traits and plant ecological characteristics in a temperate desert of Central Asia[J]. Journal of Arid Land, 2020, 12(5): 775-790.
[14] YANG Yuling, LI Minfei, MA Jingjing, CHENG Junhui, LIU Yunhua, JIA Hongtao, LI Ning, WU Hongqi, SUN Zongjiu, FAN Yanmin, SHENG Jiandong, JIANG Ping'an. Changes in the relationship between species richness and belowground biomass among grassland types and along environmental gradients in Xinjiang, Northwest China[J]. Journal of Arid Land, 2019, 11(6): 855-865.
[15] Lianlian FAN, Junxiang DING, Xuexi MA, Yaoming LI. Ecological biomass allocation strategies in plant species with different life forms in a cold desert, China[J]. Journal of Arid Land, 2019, 11(5): 729-739.