Please wait a minute...
Journal of Arid Land  2025, Vol. 17 Issue (11): 1497-1517    DOI: 10.1007/s40333-025-0032-8    
Research article     
Spatial and temporal pattern of human activity intensity and its driving mechanism in the Turpan- Hami Basin, China from 1990 to 2020
SHI Qingqing1, YIN Benfeng2, HUANG Jixia1,3, YIN Yuanyuan4,5,*(), YANG Ao2, ZHANG Yuanming2
1State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China
2State Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
3Academy of Plateau Science and Sustainability, People's Government of Qinghai Province & Beijing Normal University, Xining 810008, China
4Beijing Union University, Beijing 100011, China
5Institute of Science and Technology Education, Beijing Union University, Beijing 100011, China
Download: HTML     PDF(1779KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

The Turpan-Hami (Tuha) Basin of China, a critical region on the Silk Road Economic Belt and a major national energy base, occupies a significant position in energy security and in the major industrial clusters in Xinjiang Uygur Autonomous Region, China. Understanding spatial and temporal evolution of human activities in this area is essential for harmonizing ecological protection with energy development, safeguarding the ecological security of the Silk Road Economic Belt, and promoting the sustainable development of the area. However, despite rapid socioeconomic advances, the trajectories of human activity intensity and the principal driving mechanisms over the past three decades remain inadequately understood. To address these gaps, this study constructed a land use dataset for the Tuha Basin from 1990 to 2020, utilizing Google Earth Engine (GEE) and random forest classification algorithm. We assessed the intensity of human activities and their spatial autocorrelation patterns and further identified key drivers influencing spatial and temporal variations using the Geodetector model. Our findings indicated that the intensity of human activities in the Tuha Basin has exhibited a "first decline and then recovery" trend over the past 30 a, accompanied by significant spatial clustering. In recent years, the aggregation of hot spots has diminished, while clustering of cold spots has intensified, suggesting a dispersion of human activity centers. Nevertheless, urban areas in the Hami and Turpan cities, along with their surrounding areas, continued to serve as core areas of human activities. Topographic features (slope gradient and aspect) and their interactions with economic variables emerged as dominant determinants shaping the spatial patterns and temporal dynamics of human activity intensity. This result provides critical insights into fostering sustainable regional development and ecological conservation in the Tuha Basin and offers valuable methodological and empirical references for studies on land use dynamics and human activity intensity in similar arid areas.



Key wordsTurpan-Hami Basin      land use change      Google Earth Engine      human activity intensity      interaction     
Received: 14 May 2025      Published: 30 November 2025
Corresponding Authors: *YIN Yuanyuan (sftyuanyuan@buu.edu.cn)
Cite this article:

SHI Qingqing, YIN Benfeng, HUANG Jixia, YIN Yuanyuan, YANG Ao, ZHANG Yuanming. Spatial and temporal pattern of human activity intensity and its driving mechanism in the Turpan- Hami Basin, China from 1990 to 2020. Journal of Arid Land, 2025, 17(11): 1497-1517.

URL:

http://jal.xjegi.com/10.1007/s40333-025-0032-8     OR     http://jal.xjegi.com/Y2025/V17/I11/1497

Fig. 1 Distribution of sampling points and land use types in the Turpan-Hami (Tuha) Basin, China. DEM, digital elevation model.
Dataset Resolution Year Source
Landsat imagery 30.00 m 1990-2020 Google Earth Engine
(https://code.earthengine.google.com/)
Field collected samples - 2023 Field collection
Digital elevation model (DEM) 30.00 m 2015 European Space Agency (ESA)
(https://panda.copernicus.eu/panda0)
Climate data Temperature (TMP) 1000.00 m 1990-2020 National Earth System Science Data Center
(https://www.geodata.cn/data)
Precipitation (PRE) 1000.00 m 1990-2020 National Earth System Science Data Center
(https://www.geodata.cn/data/)
Socio-economic
data
Gross domestic
product (GDP)
County level 1990-2020 Xinjiang Statistical Yearbook
(https://eco.gwxll.com/datashoping)
Total agricultural
output (TAO)
County level 1990-2020
Population (POP) 1000.00 m 1990-2020 Resource and Environmental Science Data Platform
(http://www.resdc.cn)
Table 1 Dataset used in this study
Fig. 2 Research flowchart of the study. GEE, Google Earth Engine; Cli, climate; Ter, terrain; Eco, economic data; CLCD, China Land Cover Dataset. GLC_FCS30D is the first global fine land cover dynamic product at a 30.00-m resolution. The abbreviation are the same in the following figures and tables.
Fig. S1 Land use types of CLCD (a) and GLC-FCS30D (b) in 2020. CLCD, China Land Cover Dataset. GLC_FCS30D is the first global fine land cover dynamic product at a 30.00-m resolution.
CLCD_class Reclassification CLCD_class Reclassification
Cropland Farmland Sonw/Ice Water body
Forest land Forest land Barren land Desert
Shrubland Forest land Impervious Urban land
Grassland Forest land Wetland Water body
Water body Water body
Table S1 China Land Cover Dataset (CLCD) reclassification rules
GLC-FCS30_class Reclassification GLC-FCS30_class Reclassification
Rainfed cropland Farmland Lichens and mosses Desert
Herbaceous cover cropland Forest land Sparse vegetation (fc≤15.00%) Forest land
Tree or shrub cover (Orchard) cropland Forest land Sparse shrubland (fc≤15.00%) Forest land
Irrigated cropland Farmland Sparse herbaceous (fc≤15.00%) Forest land
Open evergreen broadleaved forest Forest land Swamp Water body
Closed evergreen broadleaved forest Forest land Marsh Water body
Open deciduous broadleaved forest (15.00%<fc<40.00%) Forest land Flooded flat Water body
Closed deciduous broadleaved forest (fc≥40.00%) Forest land Saline Desert
Open evergreen needle-leaved forest (15.00%<fc<40.00%) Forest land Mangrove Forest land
Closed evergreen needle-leaved forest (fc≥40.00%) Forest land Salt marsh Desert
Open deciduous needle-leaved forest (15.00%<fc<40.00%) Forest land Tidal flat Water body
Closed deciduous needle-leaved forest (fc≥40.00%) Forest land Impervious surfaces Urban land
Open mixed leaf forest (broadleaved and needle-leaved) Forest land Bare area Desert
Closed mixed leaf forest (broadleaved and needle-leaved) Forest land Consolidated bare areas Urban land
Shrubland Forest land Unconsolidated bare areas Desert
Evergreen shrubland Forest land Water body Water body
Deciduous shrubland Forest land Permanent ice and snow Water body
Grassland Forest land
Table S2 GLC-FCS30D reclassification rules
Type of interaction Basis of judgment
Nonlinear weakening q(X1X2)<min(q(X1), q(X2))
Single-factor nonlinear attenuation min(q(X1), q(X1))<q(X1X2)<max(q(X1), q(X2))
Two-factor enhancement q(X1X2)<max(q(X1), q(X2))
Independent q(X1X2)=q(X1)+q(X2)
Nonlinear enhancement q(X1X2)>q(X1)+q(X2)
Table 2 Type of interaction
Year Overall accuracy K Year Overall accuracy K
1990 0.73 0.64 2010 0.86 0.81
1995 0.77 0.69 2015 0.86 0.81
2000 0.76 0.65 2020 0.92 0.89
2005 0.81 0.74
Table 3 Accuracy of land use classification
Land use type 1990 1995 2000 2005 2010 2015 2020
(%)
Forest land 1.74 1.62 0.87 1.64 0.99 0.79 1.20
Water body 0.14 0.14 0.76 0.41 0.07 0.55 0.25
Desert 87.38 89.00 90.84 89.71 92.31 90.53 91.42
Urban land 3.29 2.24 2.15 2.34 2.37 3.12 3.24
Farmland 3.33 4.58 1.89 2.01 1.73 2.04 2.34
Bare land 4.12 2.43 3.47 3.90 2.53 2.97 1.55
Table 4 Proportion of each land use type in the Tuha Basin from 1990 to 2020
Fig. 3 Trajectories of land use and cover change convention in the Tuha Basin from 1990 to 2020
Land use type Forest land Water body Desert Urban land Farmland Bare land Total Decreased area
(km2)
Forest land 2883.39 461.06 2511.42 201.26 302.38 329.61 6689.12 3805.73
Water body 11.06 190.20 186.55 74.98 6.61 62.60 531.99 341.79
Desert 1496.47 228.31 323,253.32 5391.70 2564.63 2355.99 335,290.42 12,037.10
Urban land 22.92 7.72 7277.30 3079.01 1688.84 551.99 12,627.78 9548.76
Farmland 131.23 7.99 5908.02 1357.64 4154.52 1230.30 12,789.70 8635.18
Bare land 76.14 51.17 11,650.20 2315.47 277.85 1429.70 15,800.52 14,370.83
Total 4621.20 946.46 350,786.80 12,420.06 8994.82 5960.19 383,729.53 -
Increased area 1737.81 756.26 27,533.48 9341.04 7305.99 4530.49 - -
Table 5 Transfer matrix of land use type in the Tuha Basin from 1990 to 2020
Fig. 4 Changes in urban land equivalent percentage and human activity intensity from 1990 to 2020 (a), and county-level human activity intensity in the Tuha Basin (b). TH-HAILS, Tuha Basin-Human activity intensity of land surface; GCX, SSX, TKXX, YZX, BLHSKZZX, and YWX are Gaochang District, Shanshan County, Toksun County, Yizhou District, Barkol Kazak Autonomous County, and Yiwu County, respectively. The data of China-HAILS were obtained from the study of Tan et al. (2024).
Fig. 5 Spatial distribution of HAILS at the township scale in the Tuha Basin from 1990 to 2020. (a), 1990; (b), 1995; (c), 2000; (d), 2005; (e), 2010; (f), 2015; (g), 2020.
Year Category Low Relatively low Moderate Relatively high High
1990 Numbers 31 31 23 10 8
Average intensity (%) 2.96 8.76 20.82 36.82 55.57
1995 Numbers 29 32 24 2 6
Average intensity (%) 2.36 9.48 21.37 34.39 54.99
2000 Numbers 30 23 26 9 5
Average intensity (%) 1.96 8.66 22.95 34.85 58.99
2005 Numbers 36 15 23 13 6
Average intensity (%) 2.34 10.18 22.81 35.83 58.62
2010 Numbers 36 18 20 13 6
Average intensity (%) 2.09 8.86 23.5 36.92 67.06
2015 Numbers 24 23 23 16 7
Average intensity (%) 1.89 8.46 21.99 37.67 57.36
2020 Numbers 28 22 18 13 12
Average intensity (%) 2.73 7.89 22.32 38.13 60.07
Table S3 Human activity intensity classification in the Turpan-Hami (Tuha) Basin from 1990 to 2020
Index 1990 1995 2000 2005 2010 2015 2020
Moran's I 0.52 0.49 0.46 0.68 0.56 0.56 0.91
Z score 10.72 10.14 9.43 13.90 11.50 11.40 18.48
P value 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Table S4 Spatial autocorrelation of human activity intensity in the Tuha Basin
Fig. 6 Spatial distribution of hotspot analysis on human activity intensity at the township scale in the Tuha Basin from 1990 to 2020. (a), 1990; (b), 1995; (c), 2000; (d), 2005; (e), 2010; (f), 2015; (g), 2020.
Factor POP PRE TMP DEM SLP ASP GDP TAO
q-value 0.21 0.11 0.22 0.27 0.48 0.38 0.05 0.22
Table 6 The q-value of each detected factor on the intensity of human activities in the Tuha Basin from 1990 to 2020
Fig. 7 Interaction detection results of human activity intensity influencing factors in the Tuha Basin
Dataset Land use type Forest land Water body Desert Urban land Farmland
(km2)
Tuha
Basin
Forest land 2883.39 461.06 2841.03 201.26 302.38
Water body 11.06 190.20 249.14 74.98 6.61
Desert 1572.61 279.48 338,689.21 7707.16 2842.48
Urban land 22.92 7.72 7829.28 3079.01 1688.84
Farmland 131.23 7.99 7138.33 1357.64 4154.52
CLCD Forest land 581.45 0.00 0.49 0.00 0.00
Water body 0.56 598.90 175.97 0.27 0.50
Desert 224.76 142.88 375,936.00 424.23 1937.93
Urban land 0.00 0.28 0.02 158.26 0.01
Farmland 0.51 2.27 671.60 155.22 2638.29
GLC_FCS30D Forest land 1181.80 10.35 91.32 1.03 21.25
Water body 2.31 810.76 93.13 3.17 2.06
Desert 914.83 280.71 370,351.02 547.38 2100.14
Urban land 0.69 0.02 29.35 325.91 38.93
Farmland 71.35 41.46 2031.12 131.30 4643.51
Table 7 Transfer matrix of land use for three datasets in the Tuha Basin from 1990 to 2020
[1]   Alam A, BiBi K, Khatwani M K. 2024. Xinjiang a gateway to China belt and road initiative and regional connectivity. Journal of Pakistan-China Studies (JPCS), 5(1): 38-51.
[2]   Bloom D E, Canning D, Malaney P N. 2000. Population Dynamics and Economic Growth in Asia. New York: Population Council.
[3]   Chen M X, Zhang H, Liu W D, et al. 2014. The global pattern of urbanization and economic growth: Evidence from the last three decades. PLoS ONE, 9(8): e103799, doi: 10.1371/journal.pone.0103799.
[4]   Chen Y Y, Zhang L, Yan M, et al. 2024. Spatiotemporal evolution and future simulation of land use/land cover in the Turpan-Hami Basin, China. Journal of Arid Land, 16(10): 1303-1326.
doi: 10.1007/s40333-024-0086-z
[5]   Cheng Y, Liu H, Chen D M, et al. 2022. Human activity intensity and its spatial-temporal evolution in China's border areas. Land, 11(7): 1089-1107.
doi: 10.3390/land11071089
[6]   Deng B S, Halik W, Zhang Y P, et al. 2015. Suitable scale and stability analysis of Turpan Oasis. Arid Zone Research, 32(4): 797-803. (in Chinese)
[7]   Dou X Y, Guo H D, Zhang L, et al. 2023. Dynamic landscapes and the influence of human activities in the Yellow River Delta wetland region. Science of the Total Environment, 899: 166239, doi: 10.1016/j.scitotenv.2023.166239.
[8]   Ellis E C, Ramankutty N. 2008. Putting people in the map: Anthropogenic biomes of the world. Frontiers in Ecology and the Environment, 6(8): 439-447.
doi: 10.1890/070062
[9]   Eswaran H, Lal R, Reich P F. 2001. Land degradation: An overview. In: Proceedings of the 2nd International Conference on Land Degradation and Desertification. Khon Kaen, Thailand.
[10]   Fan J, Sun W, Zhou K, et al. 2012. Major function oriented zone: New method of spatial regulation for reshaping regional development pattern in China. Chinese Geographical Science, 22(2): 196-209.
doi: 10.1007/s11769-012-0528-y
[11]   Fatemi M, Rezaei-Moghaddam K, Karami E, et al. 2021. An integrated approach of Ecological Footprint (EF) and Analytical Hierarchy Process (AHP) in human ecology: A base for planning toward sustainability. PLoS ONE, 16(4): 0250167, doi: 10.1371/journal.pone.0250167.
[12]   Fu P D, Rich P M. 2002. A geometric solar radiation model with applications in agriculture and forestry. Computers and Electronics in Agriculture, 37(1): 25-35.
doi: 10.1016/S0168-1699(02)00115-1
[13]   Gao Y, Bai L Y, Zhou K F, et al. 2024. Study on the coupling coordination degree and driving mechanism of "Production-Living-Ecological" space in ecologically fragile areas: A case study of the Turpan-Hami Basin. Sustainability, 16(20): 9054, doi: 10.3390/su16209054.
[14]   Hou Y F, Chen Y N, Li Z, et al. 2023. Changes in land use pattern and structure under the rapid urbanization of the Tarim River Basin. Land, 12(3): 693-710.
doi: 10.3390/land12030693
[15]   Intergovernmental Panel on Climate Change (IPCC). 2023. Climate Change 2021-The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (1st ed.). Cambridge: Cambridge University Press.
[16]   Jiang Z J, Lin B Q. 2012. China's energy demand and its characteristics in the industrialization and urbanization process. Energy Policy, 49: 608-615.
doi: 10.1016/j.enpol.2012.07.002
[17]   Karalas K, Tsagkatakis G, Zervakis M, et al. 2016. Land classification using remotely sensed data: Going multilabel. IEEE Transactions on Geoscience and Remote Sensing, 54(6): 3548-3563.
doi: 10.1109/TGRS.2016.2520203
[18]   Li B F, Gui D W, Xue D P, et al. 2022. Analysis of the expansion characteristics and carrying capacity of oasis farmland in Northwestern China in recent 40 years. Agronomy, 12(10): 2448, doi: 10.3390/agronomy12102448.
[19]   Li S C, Wu J S, Gong J, et al. 2018. Human footprint in Tibet: Assessing the spatial layout and effectiveness of nature reserves. Science of the Total Environment, 621: 18-29.
doi: 10.1016/j.scitotenv.2017.11.216
[20]   Li S N, Zhu C M, Deng X D. 2024. Exploring the urban-rural gradient effects of construction land expansion processes on land use function trade-off/synergy in rapidly urbanizing areas. Land Degradation & Development, 35(1): 46-61.
doi: 10.1002/ldr.v35.1
[21]   Liang S J. 2020. Achievements and Potential of petroleum exploration in Tuha Oil and Gas Province. Xinjiang Petroleum Geology, 41(6): 631-641. (in Chinese)
[22]   Liu H C, Fan J, Zhou K, et al. 2023. Assessing the dynamics of human activity intensity and its natural and socioeconomic determinants in Qinghai-Tibet Plateau. Geography and Sustainability, 4(4): 294-304.
doi: 10.1016/j.geosus.2023.05.003
[23]   Liu X B, Wang Y K, Li M. 2021. Theory, method and technological application of territorial spatial development suitability evaluation. Journal of Geo-information Science, 23(12): 2097-2110. (in Chinese).
[24]   Liu Y B, Chen Y N. 2006. Impact of population growth and land-use change on water resources and ecosystems of the arid Tarim River Basin in Western China. International Journal of Sustainable Development & World Ecology, 13(4): 295-305.
[25]   Ma R. 2015. The evolution of ethnic relations in China's urbanization process. Northwest Journal of Ethnology, 1: 19-34. (in Chinese)
[26]   Mendelsohn R, Dinar A. 2009. Land use and climate change interactions. Annual Review of Resource Economics, 1: 309-332.
doi: 10.1146/resource.2009.1.issue-1
[27]   Moran P A P. 1948. The interpretation of statistical maps. Journal of the Royal Statistical Society B, 37: 243-251.
[28]   Moran P A P. 1950. Notes on continuous stochastic phenomena. Biometrika, 37: 17-33.
pmid: 15420245
[29]   Mu H W, Li X C, Wen Y N, et al. 2022. A global record of annual terrestrial Human Footprint dataset from 2000 to 2018. Scientific Data, 9(1): 176-184.
doi: 10.1038/s41597-022-01284-8 pmid: 35440581
[30]   Olofsson P, Foody G M, Herold M, et al. 2014. Good practices for estimating area and assessing accuracy of land change. Remote Sensing of Environment, 148: 42-57.
doi: 10.1016/j.rse.2014.02.015
[31]   Ord J K, Getis A. 1955. Local spatial autocorrelation statistics: Distribution issues and an application. Geographical Analysis, 27(4): 286-306.
doi: 10.1111/gean.1995.27.issue-4
[32]   Riazi I. 2024. Urban-rural linkages: Improving regional development through enhanced connectivity. Kashf Journal of Multidisciplinary Research, 1(04): 19-26.
doi: 10.71146/kjmr159
[33]   Sanderson E W, Jaiteh M, Levy M A, et al. 2002. The human footprint and the last of the wild. BioScience, 52(10): 891-904.
doi: 10.1641/0006-3568(2002)052[0891:THFATL]2.0.CO;2
[34]   Shao W, Li L, Yan M, et al. 2024. Thirty years' spatio-temporal evolution of desertification degrees and driving factors in Turpan-Hami Basin, Xinjiang, China. Ecological Indicators, 166: 112484, doi: 10.1016/j.ecolind.2024.112484.
[35]   Stehman S V, Wickham J. 2020. A guide for evaluating and reporting map data quality: Affirming Shao et al. ''Overselling overall map accuracy misinforms about research reliability''. Landscape Ecology, 35: 1263-1267.
doi: 10.1007/s10980-020-01029-1 pmid: 33746360
[36]   Tan L Y, Guo G C, Li S C. 2022. The Sanjiangyuan Nature Reserve is partially effective in mitigating human pressures. Land, 11(1): 43-57.
doi: 10.3390/land11010043
[37]   Tan Y M, Liu W H, Huang W J, et al. 2024. Analysis of the changes in the intensity of human activities in Chinese in the past 40 years and their driving forces. Geographical Science Research, 13(4): 700-711. (in Chinese)
doi: 10.12677/gser.2024.134067
[38]   Telbisz T, Bottlik Z, Mari L, et al. 2014. The impact of topography on social factors: A case study of Montenegro. Journal of Mountain Science, 11(1): 131-141.
doi: 10.1007/s11629-012-2623-z
[39]   Venter O, Sanderson E W, Magrach A, et al. 2016. Global terrestrial human footprint maps for 1993 and 2009. Scientific Data, 3: 160067, doi: 10.1038/sdata.2016.67.
[40]   Wang J F, Xu C D. 2017. Geodetector: Principle and prospective. Acta Geographica Sinica, 72(1): 116-134. (in Chinese)
doi: 10.11821/dlxb201701010
[41]   Wang S, Fu B J, Zhao W W, et al. 2018. Structure, function, and dynamic mechanisms of coupled human-natural systems. Current Opinion in Environmental Sustainability, 33: 87-91.
doi: 10.1016/j.cosust.2018.05.002
[42]   Wang Y, Xia T T, Shataer R, et al. 2021. Analysis of characteristics and driving factors of land-use changes in the Tarim River Basin from 1990 to 2018. Sustainability, 13(18): 10263, doi: 10.3390/su131810263.
[43]   Wang Y, Shataer R, Zhang Z C, et al. 2022. Evaluation and analysis of influencing factors of ecosystem service value change in Xinjiang under different land use types. Water, 14(9): 1424, doi: 10.3390/w14091424.
[44]   Wu J W, Xiao J Y, Hou J M, et al. 2023. Development potential assessment for wind and photovoltaic power energy resources in the main Desert-Gobi-wilderness areas of China. Energies, 16(12): 4559, doi: 10.3390/en16124559.
[45]   Xu H Q. 2006. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing, 27(14): 3025-3033.
doi: 10.1080/01431160600589179
[46]   Xu W, Rao S, Wang X L, et al. 2025. Characteristics of middle Jurassic overpressure and tight gas accumulation in Shengbei sub-sag, Tuha Basin, Xinjiang. Geology in China, 52(2): 650-664. (in Chinese)
[47]   Xu X R, Xu Y. 2017. Spatiotemporal variation analysis of human activity intensity in the Loess Plateau region. Geographical Research, 36(4): 661-672. (in Chinese)
[48]   Xu Y, Xu X R, Tang Q. 2016. Human activity intensity of land surface: Concept, methods and application in China. Journal of Geographical Sciences, 26(9): 1349-1361.
doi: 10.1007/s11442-016-1331-y
[49]   Xue X, Liao J, Hsing Y T, et al. 2015. Policies, land use, and water resource management in an arid oasis ecosystem. Environmental Management, 55(5): 1036-1051.
doi: 10.1007/s00267-015-0451-y pmid: 25740224
[50]   Yang J, Huang X. 2021. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth System Science Data, 13(8): 3907-3925.
doi: 10.5194/essd-13-3907-2021
[51]   Yang K Z. 2021. China’s western development strategy for modernization drive. China Economist, 16(3): 62-83. (in Chinese)
[52]   Yang R J, Meng W, Shu J M, et al. 2017. Ecological civilization construction for the saline industry in the Qaidam Basin. Chinese Journal of Engineering Science, 19(4): 48-53.
doi: 10.15302/J-SSCAE-2017.04.008
[53]   Yang Y T, Xu H, Wang J W, et al. 2021a. Integrating climate change factor into strategic environmental assessment in China. Environmental Impact Assessment Review, 89: 106585, doi: 10.1016/j.eiar.2021.106585.
[54]   Yang Y Y, Bao W K, Wang Y S, et al. 2021b. Measurement of urban-rural integration level and its spatial differentiation in China in the new century. Habitat International, 117: 102420, doi: 10.1016/j.habitatint.2021.102420.
[55]   Yerkenhazi A, Mamat K, Abulizi A, et al. 2025. Identification of production-living-ecological spatial conflicts and multi-scenario simulations in extreme arid areas. Land, 14(5): 1002, doi: 10.3390/land14051002.
[56]   Zha X Z M, Jia S F. 2024. Development-ecological protection conflicts and coordination at West Taijinel Salt Lake. Water, 16(15): 2139, doi: 10.3390/w16152139.
[57]   Zha Y, Gao J Q, Ni S. 2003. Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. International Journal of Remote Sensing, 24(3): 583-594.
doi: 10.1080/01431160304987
[58]   Zhang T, Sun Y X, Guan M, et al. 2022a. Human activity intensity in China under multi-factor interactions: Spatiotemporal characteristics and influencing factors. Sustainability, 14(5): 3113, doi: 10.3390/su14053113.
[59]   Zhang W, Zhou L, Zhang Y, et al. 2022b. Impacts of ecological migration on land use and vegetation restoration in arid zones. Land, 11(6): 891, doi: 10.3390/land11060891.
[60]   Zhang X, Zhao T T, Xu H, et al. 2024. GLC_FCS30D: The first global 30 m land-cover dynamics monitoring product with a fine classification system for the period from 1985 to 2022 generated using dense-time-series Landsat imagery and the continuous change-detection method. Earth System Science Data, 16(3): 1353-1381.
doi: 10.5194/essd-16-1353-2024
[61]   Zhao G, B Zheng J H, Wang L, et al. 2023. Study on planting suitability and planting structure optimization of fruit trees in Xinjiang. In: The 11th International Conference on Agro-Geoinformatics. New York: International Society of Agromatics, 1-6.
[62]   Zhi D M, Li J Z, Chen X, et al. 2023. New fields, new types and resource potentials of oil-gas exploration in Tuha Basin. Acta Petrolei Sinica, 44(12): 2122-2140. (in Chinese)
[63]   Zhu G F, Qiu D D, Zhang Z X, et al. 2021. Land-use changes lead to a decrease in carbon storage in arid region, China. Ecological Indicators, 127: 107770, doi: 10.1016/j.ecolind.2021.107770.
[1] Komeh ZINAT, Hamzeh SAEID, Memarian HADI, Attarchi SARA, LU Linlin, Naboureh AMIN, Alavipanah KAZEM SEYED. Impact of urban sprawl on land surface temperature in the Mashhad City, Iran: A deep learning and cloud- based remote sensing analysis[J]. Journal of Arid Land, 2025, 17(3): 285-303.
[2] GUO Bing, XU Mei, ZHANG Rui, LUO Wei. A new monitoring index for ecological vulnerability and its application in the Yellow River Basin, China from 2000 to 2022[J]. Journal of Arid Land, 2024, 16(9): 1163-1182.
[3] SUN Chao, BAI Xuelian, WANG Xinping, ZHAO Wenzhi, WEI Lemin. Response of vegetation variation to climate change and human activities in the Shiyang River Basin of China during 2001-2022[J]. Journal of Arid Land, 2024, 16(8): 1044-1061.
[4] LU Haitian, ZHAO Ruifeng, ZHAO Liu, LIU Jiaxin, LYU Binyang, YANG Xinyue. Impact of climate change and human activities on the spatiotemporal dynamics of surface water area in Gansu Province, China[J]. Journal of Arid Land, 2024, 16(6): 798-815.
[5] YE He, HONG Mei, XU Xuehui, LIANG Zhiwei, JIANG Na, TU Nare, WU Zhendan. Responses of plant diversity and soil microorganism diversity to nitrogen addition in the desert steppe, China[J]. Journal of Arid Land, 2024, 16(3): 447-459.
[6] LI Haocheng, LI Junfeng, QU Wenying, WANG Wenhuai, Muhammad Arsalan FARID, CAO Zhiheng, MA Chengxiao, FENG Xueting. A novel framework of ecological risk management for urban development in ecologically fragile regions: A case study of Turpan City, China[J]. Journal of Arid Land, 2024, 16(11): 1604-1632.
[7] LIANG Shen, WANG Shu, LIU Yabin, PANG Jinghao, ZHU Haili, LI Guorong, HU Xiasong. Mechanism underlying the uprooting of taproot-type shrub species in the loess area of northeastern Qinghai- Xizang Plateau, China[J]. Journal of Arid Land, 2024, 16(10): 1426-1443.
[8] LIN Yanmin, HU Zhirui, LI Wenhui, CHEN Haonan, WANG Fang, NAN Xiongxiong, YANG Xuelong, ZHANG Wenjun. Response of ecosystem carbon storage to land use change from 1985 to 2050 in the Ningxia Section of Yellow River Basin, China[J]. Journal of Arid Land, 2024, 16(1): 110-130.
[9] ZHANG Chaobo, LI Rong, JIANG Jing, YANG Qihong. Effects of loading rate on root pullout performance of two plants in the eastern Loess Plateau, China[J]. Journal of Arid Land, 2023, 15(9): 1129-1142.
[10] ZHANG Lihua, GAO Han, WANG Junfeng, ZHAO Ruifeng, WANG Mengmeng, HAO Lianyi, GUO Yafei, JIANG Xiaoyu, ZHONG Lingfei. Plant property regulates soil bacterial community structure under altered precipitation regimes in a semi-arid desert grassland, China[J]. Journal of Arid Land, 2023, 15(5): 602-619.
[11] LONG Yi, JIANG Fugen, DENG Muli, WANG Tianhong, SUN Hua. Spatial-temporal changes and driving factors of eco- environmental quality in the Three-North region of China[J]. Journal of Arid Land, 2023, 15(3): 231-252.
[12] YAO Kaixuan, Abudureheman HALIKE, CHEN Limei, WEI Qianqian. Spatiotemporal changes of eco-environmental quality based on remote sensing-based ecological index in the Hotan Oasis, Xinjiang[J]. Journal of Arid Land, 2022, 14(3): 262-283.
[13] CHEN Limei, Abudureheman HALIKE, YAO Kaixuan, WEI Qianqian. Spatiotemporal variation in vegetation net primary productivity and its relationship with meteorological factors in the Tarim River Basin of China from 2001 to 2020 based on the Google Earth Engine[J]. Journal of Arid Land, 2022, 14(12): 1377-1394.
[14] WANG Jinjie, DING Jianli, GE Xiangyu, QIN Shaofeng, ZHANG Zhe. Assessment of ecological quality in Northwest China (2000-2020) using the Google Earth Engine platform: Climate factors and land use/land cover contribute to ecological quality[J]. Journal of Arid Land, 2022, 14(11): 1196-1211.
[15] Samia S CORTéS, Juan I WHITWORTH-HULSE, Eduardo L PIOVANO, Diego E GURVICH, Patricio N MAGLIANO. Changes in rainfall partitioning caused by the replacement of native dry forests of Lithraea molleoides by exotic plantations of Pinus elliottii in the dry Chaco mountain forests, central Argentina[J]. Journal of Arid Land, 2020, 12(5): 717-729.