Please wait a minute...
Journal of Arid Land  2024, Vol. 16 Issue (11): 1604-1632    DOI: 10.1007/s40333-024-0110-3    
Research article     
A novel framework of ecological risk management for urban development in ecologically fragile regions: A case study of Turpan City, China
LI Haocheng1, LI Junfeng1,2,*(), QU Wenying1,2, WANG Wenhuai1,2, Muhammad Arsalan FARID1, CAO Zhiheng1, MA Chengxiao1, FENG Xueting1
1College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi 832000, China
2Key Laboratory of Cold and Arid Regions Eco-Hydraulic Engineering of Xinjiang Production & Construction Corps, Shihezi 832000, China
Download: HTML     PDF(3254KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Assessing and managing ecological risks in ecologically fragile areas remain challenging at present. To get to know the ecological risk situation in Turpan City, China, this study constructed an ecological risk evaluation system to obtain the ecological risk level (ERL) and ecological risk index (ERI) based on the multi-objective linear programming-patch generation land use simulation (MOP-PLUS) model, analyzed the changes in land use and ecological risk in Turpan City from 2000 to 2020, and predicted the land use and ecological risk in 2030 under four different scenarios (business as usual (BAU), rapid economic development (RED), ecological protection priority (EPP), and eco-economic equilibrium, (EEB)). The results showed that the conversion of land use from 2000 to 2030 was mainly between unused land and the other land use types. The ERL of unused land was the highest among all the land use types. The ecological risk increased sharply from 2000 to 2010 and then decreased from 2010 to 2020. According to the value of ERI, we divided the ecological risk into seven levels by natural breakpoint method; the higher the level, the higher the ecological risk. For the four scenarios in 2030, under the EPP scenario, the area at VII level was zero, while the area at VII level reached the largest under the RED scenario. Comparing with 2020, the areas at I and II levels increased under the BAU, EPP, and EEB scenarios, while decreased under the RED scenario. The spatial distributions of ecological risk of BAU and EEB scenarios were similar, but the areas at I and II levels were larger and the areas at V and VI levels were smaller under the EEB scenario than under the BAU scenario. Therefore, the EEB scenario was the optimal development route for Turpan City. In addition, the results of spatial autocorrelation showed that the large area of unused land was the main reason affecting the spatial pattern of ecological risk under different scenarios. According to Geodetector, the dominant driving factors of ecological risk were gross domestic product rating (GDPR), soil type, population, temperature, and distance from riverbed (DFRD). The interaction between driving factor pairs amplified their influence on ecological risk. This research would help explore the low ecological risk development path for urban construction in the future.



Key wordsmulti-scenario      ecological risk assessment      multi-objective linear programming-patch generation land use simulation (MOP-PLUS) model      Geodetector      future construction      land use change     
Received: 22 May 2024      Published: 30 November 2024
Corresponding Authors: *LI Junfeng (E-mail: ljfshz@126.com)
Cite this article:

LI Haocheng, LI Junfeng, QU Wenying, WANG Wenhuai, Muhammad Arsalan FARID, CAO Zhiheng, MA Chengxiao, FENG Xueting. A novel framework of ecological risk management for urban development in ecologically fragile regions: A case study of Turpan City, China. Journal of Arid Land, 2024, 16(11): 1604-1632.

URL:

http://jal.xjegi.com/10.1007/s40333-024-0110-3     OR     http://jal.xjegi.com/Y2024/V16/I11/1604

Fig. 1 Terrain and elevation of Turpan City
Data type Indicator Period Resolution (m) Data source
Land use Land use type 2000-2020 30 https://www.resdc.cn
Topographic factor Digital elevation model (DEM) 2000-2020 30 https://www.gscloud.cn
Slope 2000-2020 30 https://www.gscloud.cn
Soil type 2000-2020 30 https://www.resdc.cn
Climatic factor Temperature 2000-2020 30 https://www.resdc.cn
Precipitation 2000-2020 30 https://www.resdc.cn
Socio-economic factor Population 2000-2020 30 https://www.resdc.cn
Gross domestic product rating (GDPR) 2000-2020 30 https://www.resdc.cn
Distance from government (DFG) 2000-2020 30 https://www.openstreetmap.org
Distance from primary road (DFPR) 2000-2020 30 https://www.openstreetmap.org
Distance from secondary road (DFSR) 2000-2020 30 https://www.openstreetmap.org
Distance from tertiary road (DFTR) 2000-2020 30 https://www.openstreetmap.org
Distance from riverbed (DFRD) 2000-2020 30 https://www.openstreetmap.org
Distance from reservoir (DFR) 2000-2020 30 https://www.xjsedata.cn
Distance from driven well (DFDW) 2000-2020 30 https://www.xjsedata.cn
Table 1 Indicators and their data sources
Evaluation category Indicator Hierarchical analysis weight Entropy method weight Combined weight
Urban expansion pressure UEI 0.3688 0.0939 0.2841
LUCI 0.1288 0.2048 0.2066
Production pressure PCL 0.0362 0.0759 0.0226
PEL 0.1085 0.1612 0.1437
Landscape ecological risk SHDI 0.0907 0.2170 0.1617
LDI 0.1814 0.0953 0.1421
Ecological degradation pressure EC 0.0543 0.0537 0.0240
ESV 0.0232 0.0503 0.0096
PEC 0.0147 0.0478 0.0058
Table 2 Weight of each indicator used for ecological risk assessment
Fig. 2 Land use transition in Turpan City from 2000 to 2020. (a), spatial distribution of land use transition from 2000 to 2010; (b), spatial distribution of land use transition from 2010 to 2020; (c), diagram of land use transition from 2000 to 2020. In Figure 2c, the width of colored block represents the area of the corresponding land use type; the curve represents the transition between two land use types; the width of curve represents the transition area between two land use types, and the wider the curve, the larger the transition area.
Fig. 3 Proportion of the contribution of each driving factor to land use transition from 2000 to 2020. (a), cultivated land; (b), forest land; (c), grassland; (d), water body; (e), construction land; (f), unused land. DEM, digital elevation model; GDPR, gross domestic product rating; DFG, distance from government; DFRD, distance from riverbed; DFR, distance from reservoir; DFDW, distance from driven well; DFPR, distance from primary road; DFSR, distance from secondary road; DFTR, distance from tertiary road.
Fig. 4 Spatial distribution of land use types under different scenarios in 2030. (a), business as usual (BAU) scenario; (b), rapid economic development (RED) scenario; (c), ecological protection priority (EPP) scenario; (d), eco-economic equilibrium (EEB) scenario.
Land use type BAU scenario RED scenario EPP scenario EEB scenario
Area
(km2)
Percentage (%) Area
(km2)
Percentage (%) Area (km2) Percentage (%) Area (km2) Percentage (%)
Cultivated land 1266.12 -2.89 1303.75 0.00 1309.07 0.41 1468.54 12.64
Forest land 76.42 -5.49 76.42 -5.49 271.32 235.54 82.98 2.62
Grassland 10,559.59 0.06 10,553.03 0.00 10,553.03 0.00 10,553.03 0.00
Water body 66.43 10.39 60.18 0.00 93.99 56.18 73.43 22.02
Construction land 530.74 30.79 639.84 57.67 405.81 0.00 455.25 12.18
Unused land 56,698.28 -0.17 56,564.37 -0.40 56,564.37 -0.40 56,564.37 -0.40
Table 3 Area and change percentage of each land use type under different scenarios in 2030
Land use type ERL
2000 2010 2020 2030
BAU scenario RED scenario EPP scenario EEB scenario
Cultivated land 0.1443 0.1822 0.1802 0.1749 0.1852 0.1704 0.1779
Forest land 0.1147 0.1441 0.1423 0.1373 0.1471 0.1356 0.1380
Grassland 0.1982 0.2428 0.2421 0.2378 0.2472 0.2324 0.2364
Water body 0.1107 0.1432 0.1418 0.1369 0.1466 0.1323 0.1376
Construction land 0.1160 0.1505 0.1543 0.1538 0.1669 0.1443 0.1507
Unused land 0.3208 0.3524 0.3509 0.3461 0.3558 0.3412 0.3467
Table 4 Value of ecological risk level (ERL) of each land use type in Turpan City in 2000, 2010, 2020, and 2030 under four scenarios
Level of ERI Proportion of area (%)
2000 2010 2020 2030
BAU scenario RED scenario EPP scenario EEB scenario
I 8.46 1.28 1.50 1.73 1.39 1.95 1.78
II 4.62 8.85 8.75 9.14 8.13 9.69 9.47
III 3.56 4.62 4.79 5.02 4.62 4.96 4.73
IV 4.68 3.79 4.12 4.63 4.29 5.29 4.73
V 78.67 5.01 5.01 5.18 5.52 6.02 5.07
VI 0.00 5.01 5.52 10.14 4.46 72.09 8.74
VII 0.00 71.44 70.31 64.16 71.59 0.00 65.48
Table 5 Proportion of area at each level of ecological risk index (ERI) in Turpan City in 2000, 2010, 2020, and 2030 under four scenarios
Fig. 5 Spatial distribution of ecological risk in Turpan City. (a), 2000; (b), 2010; (c), 2020; (d), BAU scenario in 2030; (e), RED scenario in 2030; (f), EPP scenario in 2030; (g), EEB scenario in 2030. ERI, ecological risk index.
Level of ERI Proportion of area (%)
2000 2010 2020 2030
BAU scenario RED scenario EPP scenario EEB scenario
I 15.14 12.43 13.51 15.76 13.04 17.93 16.22
II 15.68 15.14 14.59 15.22 13.59 14.67 16.22
III 14.05 11.35 12.43 11.96 13.04 13.04 11.35
IV 12.43 6.49 7.57 8.15 8.70 10.87 9.73
V 42.70 13.51 12.43 14.13 14.67 11.96 11.89
VI 0.00 11.35 13.51 18.48 5.98 31.52 17.84
VII 0.00 29.73 25.95 16.30 30.98 0.00 16.76
Table 6 Proportion of area at each level of ERI in the goal region of Turpan City in 2000, 2010, 2020, and 2030 under four scenarios
Fig. 6 Spatial distribution of ecological risk in the goal region of Turpan City. (a), the location of the goal region of Turpan City; (b), 2000; (b), 2010; (c), 2020; (d), BAU scenario in 2030; (e), RED scenario in 2030; (f), EPP scenario in 2030; (g), EEB scenario in 2030.
Fig. 7 Moran's I index scatterplot of ERI in Turpan City. (a), 2000; (b), 2010; (c), 2020; (d), BAU scenario in 2030; (e), RED scenario in 2030; (f), EPP scenario in 2030; (g), EEB scenario in 2030.
Fig. 8 Spatial distribution of ecological risk cluster in Turpan City. (a), 2000; (b), 2010; (c), 2020; (d), BAU scenario in 2030; (e), RED scenario in 2030; (f), EPP scenario in 2030; (g), EEB scenario in 2030.
Driving factor 2010 2020
Goal region Whole region Goal region Whole region
q P q P q P q P
GDPR 0.543* 0.000 0.416* 0.000 0.505* 0.000 0.706* 0.000
Population 0.251* 0.000 0.426* 0.000 0.482* 0.000 0.643* 0.000
Precipitation 0.334* 0.000 0.388* 0.000 0.366* 0.000 0.380* 0.000
DFR 0.007 0.956 0.224* 0.000 0.006 0.964 0.273* 0.000
Temperature 0.322* 0.000 0.472* 0.000 0.269* 0.000 0.448* 0.000
DFSR 0.012 0.701 0.151* 0.000 0.014 0.652 0.154* 0.000
DFRD 0.020 0.324 0.218* 0.000 0.024 0.264 0.226* 0.000
Slope 0.018 0.924 0.010 0.024 0.017 0.941 0.011 0.011
DFTR 0.449* 0.000 0.047* 0.000 0.444* 0.000 0.049* 0.000
Soil type 0.388* 0.000 0.536* 0.000 0.385* 0.000 0.535* 0.000
DFPR 0.011 0.620 0.124* 0.000 0.001 0.740 0.128* 0.000
DFG 0.011 0.620 0.124* 0.000 0.014 0.548 0.131* 0.000
DFDW 0.133* 0.000 0.051* 0.000 0.145* 0.000 0.114* 0.000
Table 7 Explanatory power (q) and significance (P) of each driving factor of ecological risk for the goal region and the whole region of Turpan City in 2010 and 2020
Fig. 9 Explanatory power of each driving factor of ecological risk for the goal region and the whole region of Turpan City in 2010 and 2020
Fig. 10 Interactions between driving factor pairs of ecological risk in Turpan City in 2010 and 2020. (a), goal region in 2010; (b), whole region in 2010; (c), goal region in 2020; (d), whole region in 2020.
Fig. 11 Interaction patterns between driving factor pairs of ecological risk in Turpan City in 2010 and 2020. (a), goal region in 2010; (b), whole region in 2010; (c), goal region in 2020; (d), whole region in 2020.
[1]   Ahmad F, Draz M U, Su L J, et al. 2018. Tourism and environmental pollution: Evidence from the One Belt One Road provinces of western China. Sustainability, 10(10): 3520, doi: 10.3390/su10103520.
[2]   Allen K J, Verdon-Kidd D C, Sippo J Z, et al. 2021. Compound climate extremes driving recent sub-continental tree mortality in northern Australia have no precedent in recent centuries. Scientific Reports, 11(1): 18337, doi: 10.1038/s41598-021-97762-x.
[3]   Alvarez I, Diaz-Poso A, Lorenzo M N, et al. 2024. Heat index historical trends and projections due to climate change in the Mediterranean Basin based on CMIP6. Atmospheric Research, 308(1): 107512, doi: 10.1016/j.atmosres.2024.107512.
[4]   Chen G Z, Li X, Liu X P, et al. 2020. Global projections of future urban land expansion under shared socioeconomic pathways. Nature Communications, 11(1): 537, doi: 10.1038/s41467-020-14386-x.
[5]   Chen J. 2007. Rapid urbanization in China: A real challenge to soil protection and food security. Catena, 69(1): 1-15.
[6]   Chen J, Zhang L W, Zhao S, et al. 2023. Assessing land-use conflict potential and its correlation with LULC based on the perspective of multi-functionality and landscape complexity: The case of Chengdu, China. Land, 12(4): 742, doi: 10.3390/land12040742.
[7]   Cheng X, Zhang Y, Yang G, et al. 2023. Landscape ecological risk assessment and influencing factor analysis of basins in suburban areas of large cities-A case study of the Fuchunjiang River Basin, China. Frontiers in Ecology and Evolution, 11: 1184273, doi: 10.3389/fevo.2023.1184273.
[8]   Choudhary P, Subhash V G, Khade M, et al. 2021. Empowering blue economy: From underrated ecosystem to sustainable industry. Journal of Environmental Management, 291: 112697, doi: 10.1016/j.jenvman.2021.112697.
[9]   Corwin D L, Scudiero E, Zaccaria D. 2022. Modified ECa - ECe protocols for mapping soil salinity under micro-irrigation. Agricultural Water Management, 269: 107640, doi: 10.1016/j.agwat.2022.107640.
[10]   Dadashpoor H, Azizi P, Moghadasi M. 2019. Analyzing spatial patterns, driving forces and predicting future growth scenarios for supporting sustainable urban growth: Evidence from Tabriz metropolitan area, Iran. Sustainable Cities and Society, 47: 101502, doi: 10.1016/j.scs.2019.101502.
[11]   Deng X. 2019. Correlations between water quality and the structure and connectivity of the river network in the southern Jiangsu Plain, eastern China. Science of the Total Environment, 664: 583-594.
[12]   Deng Z T, Xie Z Q, Jiang F S, et al. 2024. Research on the coupling coordination of land use and eco-resilience based on entropy weight method: a case study on Dianchi Lake Basin. Landscape and Ecological Engineering, 20(2): 129-145.
[13]   Dhakal M P, Ali A, Khan M Z, et al. 2021. Agricultural water management challenges in the Hunza River Basin: Is a solar water pump an alternative option? Irrigation and Drainage, 70(4): 644-658.
[14]   Fan Q, Shi Y, Song X N, et al. 2022. Evolution analysis of the coupling coordination of microclimate and landscape ecological risk degree in the Xiahuayuan District in recent 20 years. Sustainability, 14(3): 1893, doi: 10.3390/su14031893.
[15]   Fan Z M. 2022. Simulation of land-cover change in Jing-Jin-Ji region under different scenarios of SSP-RCP. Journal of Geographical Sciences, 32(3): 421-440.
doi: 10.1007/s11442-022-1955-z
[16]   Farfán Gutiérrez M, Flamenco Sandoval A, Rodríguez Padilla C R, et al. 2020. Mapping the occurrence probability of forest fires for the state of Guanajuato: An anthropic approximation of ignition sources. Acta Universitaria, 30: e2953, doi: 10.15174.au.2020.2953. (in Spanish)
[17]   Felizola Diniz-Filho J A, Bini L M. 2012. Thirty-five years of spatial autocorrelation analysis in population genetics: an essay in honour of Robert Sokal (1926-2012). Biological Journal of the Linnean Society, 107(4): 721-736.
[18]   Folke C, Carpenter S R, Walker B, et al. 2010. Resilience thinking: integrating resilience, adaptability and transformability. Ecology and Society, 15(4): 20, doi: 10.5751/es-03610-150420.
[19]   Fu B J, Lu Y H. 2006. The progress and perspectives of landscape ecology in China. Progress in Physical Geography-Earth and Environment, 30(2): 232-244.
[20]   Gan L, Halik Ü, Shi L, et al. 2023. Multi-scenario dynamic prediction of ecological risk assessment in an arid area of Northwest China. Ecological Indicators, 154: 110727, doi: 10.1016/j.ecolind.2023.110727.
[21]   Gao L N, Tao F, Liu R R, et al. 2022. Multi-scenario simulation and ecological risk analysis of land use based on the PLUS model: A case study of Nanjing. Sustainable Cities and Society, 85: 104055, doi: 10.1016/j.scs.2022.104055.
[22]   Gao J, Gong J, Li Y, et al. 2024. Ecological network assessment in dynamic landscapes: Multi-scenario simulation and conservation priority analysis. Land Use Policy, 139: 107059, doi: 10.1016/j.landusepol.2024.107059.
[23]   Getis A, Ord J K. 1992. The analysis of spatial association by use of distance statistics, Perspectives on Spatial Data Analysis, 24(3): 189-206.
[24]   Getis A. 2007. Reflections on spatial autocorrelation. Regional Science and Urban Economics, 37(4): 491-496.
[25]   Guo P F, Wang H Y, Qin F, et al. 2023. Coupled MOP and PLUS-SA model research on land use scenario simulations in Zhengzhou metropolitan area, central China. Remote Sensing, 15(15): 3762, doi: 10.3390/rs15153762.
[26]   Guo Y N, Li R N, Yang Y Z, et al. 2022. Integrating future grassland degradation risk to improve the spatial targeting efficiency of payment for ecosystem services. Journal of Environmental Management, 317: 115490, doi: 10.1016/j.jenvman.2022.115490.
[27]   Guo Y N, Zhao S Q, Zhao X, et al. 2024. Evaluation of the spatiotemporal change of ecological quality under the context of urban expansion—A case study of typical urban agglomerations in China. Remote Sensing, 16(1): 45, doi: 10.3390/rs16010045.
[28]   Haberl H, Wackernagel M, Wrbka T. 2004. Land use and sustainability indicators. An introduction. Land Use Policy, 21(3): 193-198.
[29]   Hossen M F, Sultana N. 2024. Landscape transition-induced ecological risk modeling using GIS and remote sensing techniques: a case of Saint Martin Island, Bangladesh. Environmental Monitoring and Assessment, 196: 964, doi: 10.1007/s10661-024-13118-8.
[30]   Huang F, Wang G H, Yang Y Y, et al. 2014. Overexploitation status of groundwater and induced geological hazards in China. Natural Hazards, 73(2): 727-741.
[31]   Huang L, Wang D R, He C L. 2022. Ecological security assessment and ecological pattern optimization for Lhasa City (Tibet) based on the minimum cumulative resistance model. Environmental Science and Pollution Research, 29(55): 83437-83451.
[32]   Huang X, Huang X J, Liu M M, et al. 2020. Spatial-temporal dynamics and driving forces of land development intensity in the western China from 2000 to 2015. Chinese Geographical Science, 30(1): 16-29.
[33]   Huo J G, Shi Z Q, Zhu W Q, et al. 2022. A multi-scenario simulation and optimization of land use with a Markov-Flus coupling Model: A case study in Xiong'an New Area, China. Sustainability, 14(4): 2425, doi: 10.3390/su14042425.
[34]   Inogwabini B I. 2020. The changing water cycle: Freshwater in the Congo. Wiley Interdisciplinary Reviews-Water, 7(2): e1410, doi: 10.1002/wat2.1410.
[35]   Inostroza L, Baur R, Csaplovics E. 2013. Urban sprawl and fragmentation in Latin America: A dynamic quantification and characterization of spatial patterns. Journal of Environmental Management, 115: 87-97.
doi: 10.1016/j.jenvman.2012.11.007 pmid: 23246769
[36]   John F, Toth R, Frank K, et al. 2019. Ecological vulnerability through insurance? Potential unintended consequences of livestock drought insurance. Ecological Economics, 157: 357-368.
[37]   Karimian H, Zou W M, Chen Y L, et al. 2022. Landscape ecological risk assessment and driving factor analysis in Dongjiang River watershed. Chemosphere, 307: 135835, doi: 10.1016/j.chemosphere.2022.135835.
[38]   Ke S, Pan H, Jin B W. 2023. Identification of priority areas for ecological restoration based on human disturbance and ecological security patterns: A case study of Fuzhou City, China. Sustainability, 15(3): 2842, doi: 10.3390/su15032842.
[39]   Landis W G. 2003. Twenty years before and hence; ecological risk assessment at multiple scales with multiple stressors and multiple endpoints. Human and Ecological Risk Assessment, 9(5): 1317-1326.
[40]   Larsen L G, Eppinga M B, Passalacqua P, et al. 2016. Appropriate complexity landscape modeling. Earth-Science Reviews, 160: 111-130.
[41]   Lee J H, Jeong S H, Kim H J, et al. 2022. Comparative study of long-term displacement measurement methods-Focusing on a pre-stressed concrete bridge under construction. Measurement, 201: 111691, doi: 10.1016/j.measurement.2022.111691.
[42]   Li C, Zhang J, Philbin S P, et al. 2022a. Evaluating the impact of highway construction projects on landscape ecological risks in high altitude plateaus. Scientific Reports, 12(1): 5170, doi: 10.1038/s41598-022-08788-8.
[43]   Li J S, Li W H, Li B, et al. 2022b. Construction land expansion of resource-based cities in China: spatiotemporal characteristics and driving factors. International Journal of Environmental Research and Public Health, 19(23): 16109, doi: 10.3390/ijerph192316109.
[44]   Li W, Liu Y J, Yang Z F. 2012. Preliminary strategic environmental assessment of the great western development strategy: Safeguarding ecological security for a new western China. Environmental Management, 49(2): 483-501.
doi: 10.1007/s00267-011-9794-1 pmid: 22190169
[45]   Li W J, Kang J W, Wang Y. 2023. Spatiotemporal changes and driving forces of ecological security in the Chengdu-Chongqing urban agglomeration, China: Quantification using health-services-risk framework. Journal of Cleaner Production, 389: 136135, doi: 10.1016/j.jclepro.2023.136135.
[46]   Li X, Chen Y M, Liu X P, et al. 2017. Experiences and issues of using cellular automata for assisting urban and regional planning in China. International Journal of Geographical Information Science, 31(8): 1606-1629.
[47]   Li Z, Jiang W, Wang W, et al. 2020. Ecological risk assessment of the wetlands in Beijing-Tianjin-Hebei urban agglomeration. Ecological Indicators, 117: 106677, doi: 10.1016/j.ecolind.2020.106677
[48]   Li Z, Jiang W G, Peng K F, et al. 2024. Comparative analysis of land use change prediction models for land and fine wetland types: Taking the wetland cities Changshu and Haikou as examples. Landscape and Urban Planning, 243: 104975, doi: 10.1016/j.landurbplan.2023.104975.
[49]   Liang T, Yang F, Huang D, et al. 2022. Land-use transformation and landscape ecological risk assessment in the Three Gorges Reservoir region based on the "production-living-ecological space" perspective. Land, 11(8): 1234, doi: 10.3390/land11081234.
[50]   Lima L S, Coe M T, Soares Filho B S, et al. 2014. Feedbacks between deforestation, climate, and hydrology in the southwestern Amazon: implications for the provision of ecosystem services. Landscape Ecology, 29(2): 261-274.
[51]   Lin X, Wang Z. 2023. Landscape ecological risk assessment and its driving factors of multi-mountainous city. Ecological Indicators, 146: 109823, doi: 10.1016/j.ecolind.2022.109823.
[52]   Lin Z Q, Peng S Y. 2022. Comparison of multimodel simulations of land use and land cover change considering integrated constraints-A case study of the Fuxian Lake Basin. Ecological Indicators, 142: 109254, doi: 10.1016/j.ecolind.2022.109254.
[53]   Liu C, Xu Y Q, Lu X H, et al. 2021. Trade-offs and driving forces of land use functions in ecologically fragile areas of northern Hebei Province: Spatiotemporal analysis. Land Use Policy, 104: 105387, doi: 10.1016/j.landusepol.2021.105387.
[54]   Liu J, Xu Q, Yi J, et al. 2022. Analysis of the heterogeneity of urban expansion landscape patterns and driving factors based on a combined multi-order adjacency index and Geodetector model. Ecological Indicators, 136: 108655, doi: 10.1016/j.ecolind.2022.108655.
[55]   Liu Q, Wang G, Gui D, et al. 2024. Precise ecological restoration under water diversions-groundwater-ecosystem interactions in drylands. Journal of Hydrology, 628: 130601, doi: 10.1016/j.jhydrol.2023.130601.
[56]   Liu X, Wang S, Huo Z, et al. 2015. Optimizing layout of pumping well in irrigation district for groundwater sustainable use in Northwest China. Hydrological Processes, 29(19): 4188-4198.
[57]   Luo Q L, Zhang X L, Li Z G, et al. 2018. The effects of China's ecological control line policy on ecosystem services: The case of Wuhan City. Ecological Indicators, 93: 292-301
[58]   Ma C, Li M C, Wang H W, et al. 2024. Zoning management framework for comprehensive land consolidation in oasis rural in arid area: Case study of the Ugan-Kuqa River Delta Oasis in Xinjiang, China. Land Degradation & Development, 35(3): 1124-1141.
[59]   Mei Z X, Wu H, Li S Y. 2018. Simulating land-use changes by incorporating spatial autocorrelation and self-organization in CLUE-S modeling: a case study in Zengcheng District, Guangzhou, China. Frontiers of Earth Science, 12(2): 299-310.
doi: 10.1007/s11707-017-0639-y
[60]   Montejano Escamilla J, Caudillo Cos C, Silvan Cardenas J. 2016. Contesting Mexico City's alleged polycentric condition through a centrality-mixed land-use composite index. Urban Studies, 53(11): 2380-2396.
[61]   Ndayiragije J M, Li F, Nkunzimana A. 2022. Assessment of two drought indices to quantify and characterize drought incidents: A case study of the northern part of Burundi. Atmosphere, 13(11): 1882, doi: 10.3390/atmos13111882.
[62]   NDRC(National Development and Reform Commission of the People's Republic of China). 2015-2020. China Agricultural Product Cost-Benefit Compilation. Beijing: China's Statistical Press. (in Chinese)
[63]   Orme M, Cuthbert Z, Sindico F, et al. 2015. Good transboundary water governance in the 2015 Sustainable Development Goals: a legal perspective. Water International, 40(7): 969-983.
[64]   Pan N H, Guan Q Y, Wang Q Z, et al. 2021. Spatial differentiation and driving mechanisms in ecosystem service value of arid region: A case study in the middle and lower reaches of Shule River Basin, NW China. Journal of Cleaner Production, 319: 128718, doi: 10.1016/j.jclepro.2021.128718.
[65]   Patterson Z, Bierlaire M. 2010. Development of prototype UrbanSim models. Environment and Planning B-Planning & Design, 37(2): 344-366.
[66]   Pei H, Fang S F, Lin L, et al. 2015. Methods and applications for ecological vulnerability evaluation in a hyper-arid oasis: a case study of the Turpan Oasis, China. Environmental Earth Sciences, 74(2): 1449-1461.
[67]   Peng L, Chen T T, Wang Q, et al. 2020. Linking ecosystem services to land use decisions: Policy analyses, multi-scenarios, and integrated modelling. ISPRS International Journal of Geo-Information, 9(3): 154, doi: 10.3390/ijgi9030154.
[68]   Seitzinger S P, Harrison J A, Dumont E, et al. 2005. Sources and delivery of carbon, nitrogen, and phosphorus to the coastal zone: An overview of global nutrient export from watersheds (NEWS) models and their application. Global Biogeochemical Cycles, 19(4): 11, doi: 10.1029/2005gb002606.
[69]   Song Y Z, Wang J F, Ge Y, et al. 2020. An optimal parameters-based geographical detector model enhances geographic characteristics of explanatory variables for spatial heterogeneity analysis: Cases with different types of spatial data. Giscience & Remote Sensing, 57(5): 593-610.
[70]   Sonter L J, Barrett D J, Soares Filho B S. 2014. Offsetting the impacts of mining to achieve no net loss of native vegetation. Conservation Biology, 28(4): 1068-1076.
doi: 10.1111/cobi.12260 pmid: 24673499
[71]   Sorensen M T, Margolin J A. 1998. Ecological risk assessment guidance and procedural documents: An annotated compilation and evaluation of reference materials. Human and Ecological Risk Assessment, 4(5): 1085-1101.
[72]   Stan K, Sanchez-Azofeifa A. 2019. Deforestation and secondary growth in Costa Rica along the path of development. Regional Environmental Change, 19(2): 587-597.
[73]   Tang S, Zhang J X, Niu F Q. 2020. Spatial-temporal evolution characteristics and countermeasures of urban innovation space distribution: An empirical study based on data of Nanjing high-tech enterprises. Complexity, 2020: 2905482, doi: 10.1155/2020/2905482.
[74]   Tao Y, Li F, Crittenden J C, et al. 2016. Environmental impacts of China's urbanization from 2000 to 2010 and management implications. Environmental Management, 57(2): 498-507.
doi: 10.1007/s00267-015-0614-x pmid: 26404432
[75]   TMLCCC(Turpan Municipal Local Chronicles Compilation Committee). 2021. Turpan Yearbook 2020. Wujiaqu: Xinjiang Production and Construction Corps Press, 25-138. (in Chinese)
[76]   Tong X H, Feng Y J. 2020. A review of assessment methods for cellular automata models of land-use change and urban growth. International Journal of Geographical Information Science, 34(5): 866-898.
[77]   Tong Y J, Lei J, Zhang S B, et al. 2023. Analysis of the spatial and temporal variability and factors influencing the ecological resilience in the urban agglomeration on the northern slope of Tianshan Mountain. Sustainability, 15(6): 4828, doi: 10.3390/su15064828.
[78]   Turner M G. 2005. Landscape ecology: What is the state of the science? Annual Review of Ecology Evolution and Systematics, 36: 319-344.
[79]   Valcu M, Kempenaers B. 2010. Spatial autocorrelation: an overlooked concept in behavioral ecology. Behavioral Ecology, 21(5): 902-905.
pmid: 22476031
[80]   Wang J Y, Bretz M, Dewan M A A, et al. 2022a. Machine learning in modelling land-use and land cover-change (LULCC): Current status, challenges and prospects. Science of the Total Environment, 822(20): 153559, doi: 10.1016/j.scitotenv.2022.153559.
[81]   Wang N, Zhu P J, Zhou G H, et al. 2022b. Multi-scenario simulation of land use and landscape ecological risk response based on planning control. International Journal of Environmental Research and Public Health, 19(21): 14289, doi: 10.3390/ijerph192114289.
[82]   Wang Q X, Cao W, Huang L. 2023. Evolution characteristics of ecosystem functional stability and ecosystem functional zoning on the Qinghai-Tibet Plateau. Journal of Geographical Sciences, 33(11): 2193-2210.
doi: 10.1007/s11442-023-2172-0
[83]   Xia N, Hai W Y, Tang M Y, et al. 2023. Spatiotemporal evolution law and driving mechanism of production-living-ecological space from 2000 to 2020 in Xinjiang, China. Ecological Indicators, 154: 110807, doi: 10.1016/j.ecolind.2023.110807.
[84]   Xie G D, Zhang C X, Zhen L, et al. 2017. Dynamic changes in the value of China's ecosystem services. Ecosystem Services, 26: 146-154.
[85]   Xie H, Wen J, Chen Q, et al. 2021. Evaluating the landscape ecological risk based on GIS: A case study in the Poyang Lake region of China. Land Degradation & Development, 32(9): 2762-2774.
[86]   Xu W J, Song J X, Long Y Q, et al. 2023. Analysis and simulation of the driving mechanism and ecological effects of land cover change in the Weihe River Basin, China. Journal of Environmental Management, 344: 118320, doi: 10.1016/j.jenvman.2023.118320.
[87]   Yao J, Murray A T, Wang J, et al. 2019. Evaluation and development of sustainable urban land use plans through spatial optimization. Transactions in GIS, 23(4): 705-725.
[88]   Yang Q, Liu G, Li H, et al. 2024. Understanding ecological restoration potential: The role of water resources and slope gradient limits. Science of the Total Environment, 912: 169001, doi: 10.1016/j.scitotenv.2023.169001.
[89]   Ye S, Ren S, Song C, et al. 2024. Spatial pattern of cultivated land fragmentation in mainland China: Characteristics, dominant factors, and countermeasures. Land Use Policy, 139: 107070, doi: 10.1016/j.landusepol.2024.107070.
[90]   Yu J S, Zhou J, Zhao J, et al. 2023. Agroecological risk assessment based on coupling of water and land resources-A case of Heihe River Basin. Land, 12(4): 794, doi: 10.3390/land12040794.
[91]   Yuan W, Bai L, Gao X, et al. 2024. The ecological risks in arid zones from a production-living-ecological space perspective: A case study of the Tuha Region in Xinjiang, China. Remote Sensing, 16(17): 3224, doi: 10.3390/rs16173224.
[92]   Zeng J, Wu J H, Chen W X. 2024. Coupling analysis of land use change with landscape ecological risk in China: A multi-scenario simulation perspective. Journal of Cleaner Production, 435: 104975, doi: 10.1016/j.jclepro.2023.140518.
[93]   Zhao K F, Li J, Ma X P, et al. 2022. The effects of land-use and climatic changes on the hydrological environment in the Qinling Mountains of Shaanxi Province. Forests, 13(11): 1776, doi: 10.3390/f13111776.
[94]   Zhou W Q, Yu W J, Qian Y G, et al. 2022. Beyond city expansion: multi-scale environmental impacts of urban megaregion formation in China. National Science Review, 9(1): 107, doi: 10.1093/nsr/nwab107.
[95]   Zhou Y, Zhong Z, Cheng G. 2023. Cultivated land loss and construction land expansion in China: Evidence from national land surveys in 1996, 2009 and 2019. Land Use Policy, 125: 106496, doi: 10.1016/j.landusepol.2022.106496.
[96]   Zhu Q, Cai Y. 2023. Integrating ecological risk, ecosystem health, and ecosystem services for assessing regional ecological security and its driving factors: Insights from a large river basin in China. Ecological Indicators, 155: 110954, doi: 10.1016/j.ecolind.2023.110954.
[1] GUO Bing, XU Mei, ZHANG Rui, LUO Wei. A new monitoring index for ecological vulnerability and its application in the Yellow River Basin, China from 2000 to 2022[J]. Journal of Arid Land, 2024, 16(9): 1163-1182.
[2] SUN Chao, BAI Xuelian, WANG Xinping, ZHAO Wenzhi, WEI Lemin. Response of vegetation variation to climate change and human activities in the Shiyang River Basin of China during 2001-2022[J]. Journal of Arid Land, 2024, 16(8): 1044-1061.
[3] CHEN Jiazhen, KASIMU Alimujiang, REHEMAN Rukeya, WEI Bohao, HAN Fuqiang, ZHANG Yan. Temporal and spatial variation and prediction of water yield and water conservation in the Bosten Lake Basin based on the PLUS-InVEST model[J]. Journal of Arid Land, 2024, 16(6): 852-875.
[4] ZHANG Mingyu, CAO Yu, ZHANG Zhengyong, ZHANG Xueying, LIU Lin, CHEN Hongjin, GAO Yu, YU Fengchen, LIU Xinyi. Spatiotemporal variation of land surface temperature and its driving factors in Xinjiang, China[J]. Journal of Arid Land, 2024, 16(3): 373-395.
[5] YUAN Ximin, SU Zhiwei, TIAN Fuchang, WANG Pengquan. Spatiotemporal evolution of water conservation function and its driving factors in the Huangshui River Basin, China[J]. Journal of Arid Land, 2024, 16(11): 1484-1504.
[6] WANG Yinping, JIANG Rengui, YANG Mingxiang, XIE Jiancang, ZHAO Yong, LI Fawen, LU Xixi. Spatiotemporal characteristics and driving mechanisms of land use/land cover (LULC) changes in the Jinghe River Basin, China[J]. Journal of Arid Land, 2024, 16(1): 91-109.
[7] LIN Yanmin, HU Zhirui, LI Wenhui, CHEN Haonan, WANG Fang, NAN Xiongxiong, YANG Xuelong, ZHANG Wenjun. Response of ecosystem carbon storage to land use change from 1985 to 2050 in the Ningxia Section of Yellow River Basin, China[J]. Journal of Arid Land, 2024, 16(1): 110-130.
[8] WU Jingyan, LUO Jungang, ZHANG Han, YU Mengjie. Driving forces behind the spatiotemporal heterogeneity of land-use and land-cover change: A case study of the Weihe River Basin, China[J]. Journal of Arid Land, 2023, 15(3): 253-273.
[9] YUAN Shuai, LIU Yongqiang, QIN Yan, ZHANG Kun. Spatiotemporal variation of surface albedo and its influencing factors in northern Xinjiang, China[J]. Journal of Arid Land, 2023, 15(11): 1315-1339.
[10] LIU Yifeng, GUO Bing, LU Miao, ZANG Wenqian, YU Tao, CHEN Donghua. Quantitative distinction of the relative actions of climate change and human activities on vegetation evolution in the Yellow River Basin of China during 1981-2019[J]. Journal of Arid Land, 2023, 15(1): 91-108.
[11] DONG Jianhong, ZHANG Zhibin, LIU Benteng, ZHANG Xinhong, ZHANG Wenbin, CHEN Long. Spatiotemporal variations and driving factors of habitat quality in the loess hilly area of the Yellow River Basin: A case study of Lanzhou City, China[J]. Journal of Arid Land, 2022, 14(6): 637-652.
[12] ZHANG Zhen, GU Zhengnan, Hu Kehong, XU Yangyang, ZHAO Jinbiao. Spatial variability between glacier mass balance and environmental factors in the High Mountain Asia[J]. Journal of Arid Land, 2022, 14(4): 441-454.
[13] FENG Jian, ZHAO Lingdi, ZHANG Yibo, SUN Lingxiao, YU Xiang, YU Yang. Can climate change influence agricultural GTFP in arid and semi-arid regions of Northwest China?[J]. Journal of Arid Land, 2020, 12(5): 837-853.
[14] Samia S CORTéS, Juan I WHITWORTH-HULSE, Eduardo L PIOVANO, Diego E GURVICH, Patricio N MAGLIANO. Changes in rainfall partitioning caused by the replacement of native dry forests of Lithraea molleoides by exotic plantations of Pinus elliottii in the dry Chaco mountain forests, central Argentina[J]. Journal of Arid Land, 2020, 12(5): 717-729.
[15] Yang YU, Yuanyue PI, Xiang YU, Zhijie TA, Lingxiao SUN, DISSE Markus, Fanjiang ZENG, Yaoming LI, Xi CHEN, Ruide YU. Climate change, water resources and sustainable development in the arid and semi-arid lands of Central Asia in the past 30 years[J]. Journal of Arid Land, 2019, 11(1): 1-14.