Please wait a minute...
Journal of Arid Land  2025, Vol. 17 Issue (11): 1590-1603    DOI: 10.1007/s40333-025-0059-x    
Research article     
Determining groundwater-dependent ecological thresholds in the oasis-desert ecotone by exploring the linkage between plant communities and groundwater depth
CHANG Jingjing1,2, ZENG Fanjiang1,3,4, TAO Hui1,2,4, WANG Shunke1,3,4, LIU Xin1,3,4, XUE Jie1,3,4,*()
1State Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
2Aksu National Station of Observation and Research for Oasis Agro-ecosystem, Aksu 843017, China
3Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Qira 848300, China
4University of Chinese Academy of Sciences, Beijing 100049, China
Download: HTML     PDF(1424KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

The diversity and discontinuity of plant communities in the oasis-desert ecotone are largely shaped by variations in groundwater depth, yet the relationships between spatial distribution patterns and ecological niches at a regional scale remain insufficiently understood. This study examined the oasis-desert ecotone in Qira County located in the Tarim Basin of China to investigate the spatial distribution of plant communities and groundwater depth as well as their relationships using an integrated approach that combined remote sensing techniques, field monitoring, and numerical modeling. The results showed that vegetation distribution exhibits marked spatial heterogeneity, with coverage ranked as follows: Tamarix ramosissima>Phragmites australis>Populus euphratica>Alhagi sparsifolia. Numerical simulations indicated that groundwater depths range from 2.00 to 65.00 m below the surface, with the system currently in equilibrium, sustaining an average annual recharge of 1.06×108 m3 and an average annual discharge of 1.01×108 m3. Groundwater depth strongly influences vegetation composition and structure: Phragmites australis dominates at average groundwater depth of 5.83 m, followed by Populus euphratica at average groundwater depth of 7.05 m. As groundwater depth increases, the community is initially predominated by Tamarix ramosissima (average groundwater depth of 8.35 m), then becomes a mixture of Tamarix ramosissima, Populus euphratica, and Karelinia caspia (average groundwater depth of 10.50 m), and finally transitions to Alhagi sparsifolia (average groundwater depth of 14.30 m). These findings highlight groundwater-dependent ecological thresholds that govern plant community composition and provide a scientific basis for biodiversity conservation, ecosystem stability, and vegetation restoration in the arid oasis-desert ecotone.



Key wordsoasis-desert ecotone      groundwater depth      vegetation community      Tamarix ramosissima      groundwater numerical model      Tarim Basin     
Received: 28 May 2025      Published: 30 November 2025
Corresponding Authors: *XUE Jie (E-mail: xuejie11@ms.xjb.ac.cn)
Cite this article:

CHANG Jingjing, ZENG Fanjiang, TAO Hui, WANG Shunke, LIU Xin, XUE Jie. Determining groundwater-dependent ecological thresholds in the oasis-desert ecotone by exploring the linkage between plant communities and groundwater depth. Journal of Arid Land, 2025, 17(11): 1590-1603.

URL:

http://jal.xjegi.com/10.1007/s40333-025-0059-x     OR     http://jal.xjegi.com/Y2025/V17/I11/1590

Fig. 1 Overview of the study area (Qira oasis-desert ecotone) and geographical locations of the groundwater monitoring wells
Fig. 2 Distribution of main vegetation communities in the Qira oasis-desert ecotone based on GF-1 satellite images. Pe, Populus euphratica; Tr, Tamarix ramosissima; As, Alhagi sparsifolia; Pa, Phragmites australis; Tr-As-Kc, Tamarix ramosissima-Alhagi sparsifolia-Karelinia caspia; Tr-Pa, Tamarix ramosissima-Phragmites australis.
Fig. 3 Variation in observed groundwater depth across the Qira oasis and desert in recent years
Fig. 4 Zones with stable and unstable groundwater depth in the Qira oasis
Fig. 5 Hydrogeological groundwater monitoring in different plant community areas of the oasis-desert ecotone. (a), As (Alhagi sparsifolia); (b), Tr (Tamarix ramosissima); (c), Pe (Populus euphratica); (d), Tr-As-Kc (Tamarix ramosissima-Alhagi sparsifolia-Karelinia caspia); (e), Kc (Karelinia caspia); (f), Tr-Pa (Tamarix ramosissima-Phragmites australis); (g), Pa (Phragmites australis); (h), Tr-As (Tamarix ramosissima-Alhagi sparsifolia).
Fig. 6 Groundwater recharge and discharge in the oasis irrigation area. CSR, CLR, IRR, and LI refer to variables of groundwater recharge including channel seepage recharge, canal leakage recharge, irrigation reinfiltration recharge, and lateral inflow, respectively. PWE, AE, FE, and LO stand for phreatic water evaporation, artificial exploitation, farm evapotranspiration, and lateral outflow, respectively.
Fig. 7 Relationship between groundwater depth and main plant communities in the oasis-desert ecotone. Tr-Pa, Tamarix ramosissima-Phragmites australis; Pa, Phragmites australis; Pe, Populus euphratica; Tr, Tamarix ramosissima; Tr-As-Kc, Tamarix ramosissima-Alhagi sparsifolia-Karelinia caspia; As, Alhagi sparsifolia.
[1]   Aili A, Xu H L, Xu Q, et al. 2023. Aeolian dust movement and deposition under local atmospheric circulation in a desert-oasis transition zone of the northeastern Taklimakan desert. Ecological Indicators, 157: 111289, doi: 10.1016/j.ecolind.2023.111289.
[2]   Ainiwaer M, Ding J L, Kasim N. 2020. Deep learning-based rapid recognition of oasis-desert ecotone plant communities using UAV low-altitude remote-sensing data. Environmental Earth Sciences, 79(10): 216, doi: 10.1007/s12665-020-08965-w.
[3]   Brito J C, Pleguezuelos J M. 2020. Desert biodiversity—world's hot spots/globally outstanding biodiverse deserts. Encyclopedia of the World's Biomes, 2-5: 10-22.
[4]   Bruelheide H, Jandt U, Gries D, et al. 2003. Vegetation changes in a river oasis on the southern rim of the Taklamakan Desert in China between 1956 and 2000. Phytocoenologia, 33(4): 801-818.
[5]   Bruelheide H, Vonlanthen B, Jandt U, et al. 2010. Life on the edge-to which degree does phreatic water sustain vegetation in the periphery of the Taklamakan Desert? Applied Vegetation Science, 13(1): 56-71.
doi: 10.1111/avsc.2010.13.issue-1
[6]   Buerkert A, Nagieb M, Siebert S, et al. 2005. Nutrient cycling and field-based partial nutrient balances in two mountain oases of Oman. Field Crops Research, 94(2-3): 149-164.
doi: 10.1016/j.fcr.2004.12.003
[7]   Buerkert A, De Langhe E, Al Khanjari S. 2009. Ecology and morphological traits of an ancient Musa acuminata cultivar from a mountain oasis of Oman. Genetic Resources and Crop Evolution, 56(5): 609-614.
doi: 10.1007/s10722-009-9442-2
[8]   Chang J J, Gong L, Zeng F J, et al. 2022. Using hydro-climate elasticity estimator and geographical detector method to quantify the individual and interactive impacts on NDVI in oasis-desert ecotone. Stochastic Environmental Research and Risk Assessment, 36: 3131-3148.
doi: 10.1007/s00477-022-02184-4
[9]   Faure H, Walter R C, Grant D R. 2002. The coastal oasis: ice age springs on emerged continental shelves. Global and Planetary Change, 33(1-2): 47-56.
doi: 10.1016/S0921-8181(02)00060-7
[10]   Gao F, Lv K X, Jiang Q O, et al. 2025. How did the regional water-heat distribution in oasis area vary with the different spatial patterns and structures of shelterbelt system—A case study in Ulan Buh desert oasis. Agricultural and Forest Meteorology, 362: 110345, doi: 10.1016/j.agrformet.2024.110345.
[11]   Guezoul O, Chenchouni H, Sekour M, et al. 2013. An avifaunal survey of mesic manmade ecosystems ''Oases'' in Algerian hot-hyperarid lands. Saudi Journal of Biological Sciences, 20(1): 37-43.
doi: 10.1016/j.sjbs.2012.10.001 pmid: 23961217
[12]   Han W Q, Guan J Y, Zheng J H, et al. 2023. Probabilistic assessment of drought stress vulnerability in grasslands of Xinjiang, China. Frontiers in Plant Science, 14: 1143863, doi: 10.3389/fpls.2023.1143863.
[13]   Hotan Prefecture Water Resources Bureau. 2010- 2020. Water Resources Bulletin of Hotan Prefecture. Hotan: Hotan Prefecture Water Resources Bureau. (in Chinese)
[14]   Li W, Shen Y, Wang G H, et al. 2024. Plant species diversity and functional diversity relations in the degradation process of desert steppe in an arid area of northwest China. Journal of Environmental Management, 365: 121534, doi: 10.1016/j.jenvman.2024.121534.
[15]   Li X Y, Lin L S, Zhang X M, et al. 2010. Influence of groundwater depth on species composition and community structure in the transition zone of Cele oasis. Journal of Arid Land, 2(4): 235-242.
doi: 10.3724/SP.J.1227.2010.00235
[16]   Liu Y, Xue J, Gui D W, et al. 2018. Agricultural oasis expansion and its impact on oasis landscape patterns in the southern margin of Tarim basin, Northwest China. Sustainability, 10(6): 1957, doi: 10.3390/su10061957.
[17]   Liu Y. 2019. Combined utilization research of surface water and groundwater in oasis irrigation district of southern margin of Tarim Basin—a case study of Cele oasis. PhD Dissertation. Urumqi: Xinjiang University. (in Chinese)
[18]   Luedeling E, Buerkert A. 2008. Typology of oases in northern Oman based on Landsat and SRTM imagery and geological survey data. Remote Sensing of Environment, 112(3): 1181-1195.
doi: 10.1016/j.rse.2007.08.007
[19]   Luo G P, Chen X, Zhou K F, et al. 2003. Temporal and spatial variation and stability of the oasis in the Sangong river watershed, Xinjiang, China. Science in China Series D-Earth Sciences, 46(1): 62-73.
doi: 10.1360/03yd9006
[20]   Ma M G, Wang X M, Cheng G D. 2003. Study on the oasis corridor landscape in the arid regions based on RS and GIS methods—application of Jinta Oasis, China. Journal of Environmental Sciences, 15(2): 193-198.
[21]   Ma Q L, Wang J H, Li X R, et al. 2009. Long-term changes of Tamarix-vegetation in the oasis-desert ecotone and its driving factors: implication for dryland management. Environmental Earth Sciences, 59: 765-774.
doi: 10.1007/s12665-009-0072-y
[22]   Ma T, Wang J W, Liu Y, et al. 2019. A Mixed Integer Linear Programming Method for Optimizing Layout of Irrigated Pumping Well in Oasis. Water, 11(6): 1185. doi:10.3390/w11061185.
[23]   Mao D L, Lei J Q, Zeng F J, et al. 2014. Characteristics of wind erosion and deposition in oasis-desert ecotone in southern margin of Tarim Basin, China. Chinese Geographical Science, 24: 658-673.
doi: 10.1007/s11769-014-0725-y
[24]   Mao D L, Lei J Q, Zhao Y, et al. 2016. Effects of variability in landscape types on the microclimate across a desert-oasis region on the southern margins of the Tarim Basin, China. Arid Land Research and Management, 30(1): 89-104.
doi: 10.1080/15324982.2015.1055851
[25]   Meng B, Gui D W, Zeng F J, et al. 2016. Spatio-temporal variability of oasis groundwater in southern rim of Tarim basin and monitoring sites optimization—a case study in Cele oasis. Bulletin of Soil and Water Conservation, 36(2): 209-215. (in Chinese)
[26]   Moat J, Orellana-Garcia A, Tovar C, et al. 2021. Seeing through the clouds-Mapping desert fog oasis ecosystems using 20 years of MODIS imagery over Peru and Chile. International Journal of Applied Earth Observation and Geoinformation, 103(1-4): 102468, doi: 10.1016/j.jag.2021.102468.
[27]   Mu G J, He J X, Lei J Q, et al. 2013. A discussion on the transitional zone from oasis to sandy desert: a case study at Cele oasis. Arid Land Geography, 36(2): 195-202. (in Chinese)
[28]   Pan G Y, Gui J, Yue J, et al. 2014. Change of the oasis-desert ecotone and its causes in Qira County during the period of 2001-2010. Arid Zone Research, 31(1): 169-175. (in Chinese)
[29]   Pan J P, Zhang K C, An Z S, et al. 2024. Near-surface wind field characteristics of the desert-oasis transition zone in Dunhuang, China. Journal of Arid Land, 16(5): 654-667.
doi: 10.1007/s40333-024-0056-5
[30]   Peng L, Wan Y B, Li H, et al. 2024. Influence of surface water and groundwater gradient on spatial distribution of typical vegetation in the hinterland of Taklamakan desert. Science of the Total Environment, 953: 176060, doi: 10.1016/j.scitotenv.2024.176060.
[31]   Rittner M, Vermeesch P, Carter A, et al. 2016. The provenance of Taklamakan desert sand. Earth and Planetary Science Letters, 437: 127-137.
doi: 10.1016/j.epsl.2015.12.036
[32]   Soliman S S M, Abouleish M, Abou-Hashem M M M, et al. 2019. Lipophilic metabolites and anatomical acclimatization of Cleome amblyocarpa in the drought and extra-water areas of the arid desert of UAE. Plants, 8(5): 132, doi: 10.3390/plants8050132.
[33]   Song W, Zhang Y. 2015. Expansion of agricultural oasis in the Heihe River Basin of China: Patterns, reasons and policy implications. Physics and Chemistry of the Earth, Parts A/B/C, 89-90: 46-55.
doi: 10.1016/j.pce.2015.08.006
[34]   Su Y Z, Zhao W Z, Su P X, et al. 2007. Ecological effects of desertification control and desertified land reclamation in an oasis-desert ecotone in an arid region: A case study in Hexi Corridor, Northwest China. Ecological Engineering, 29(2): 117-124.
doi: 10.1016/j.ecoleng.2005.10.015
[35]   Tariq A, Graciano C, Sardans J, et al. 2022. Decade-long unsustainable vegetation management practices increase macronutrient losses from the plant-soil system in the Taklamakan Desert. Ecological Indicators, 145: 109653, doi: 10.1016/j.ecolind.2022.109653.
[36]   Tydecks L, Hernández-Agüero J A, Böhning-Gaese K, et al. 2023. Oases in the Sahara Desert-linking biological and cultural diversity. PLoS ONE, 18(8): e0290304, doi: 10.1371/journal.pone.0290304.
[37]   Wei X P, Pan X Y, Zhao C M, et al. 2008. Response of three dominant shrubs to soil water and groundwater along the oasis-desert ecotone in Northwest China. Russian Journal of Ecology, 39: 475-482.
doi: 10.1134/S1067413608070035
[38]   Xie Y C, Gong J, Sun P, et al. 2014. Oasis dynamics change and its influence on landscape pattern on Jinta oasis in arid China from 1963a to 2010a: Integration of multi-source satellite images. International Journal of Applied Earth Observation and Geoinformation, 33: 181-191.
doi: 10.1016/j.jag.2014.05.008
[39]   Xue J, Gui D W, Zhao Y, et al. 2016. A decision-making framework to model environmental flow requirements in oasis areas using Bayesian networks. Journal of Hydrology, 540: 1209-1222.
doi: 10.1016/j.jhydrol.2016.07.017
[40]   Xue J, Gui D W, Lei J Q, et al. 2018. Oasis microclimate effects under different weather events in arid or hyper arid regions: a case analysis in southern Taklimakan desert and implication for maintaining oasis sustainability. Theoretical and Applied Climatology, 137: 89-101.
doi: 10.1007/s00704-018-2567-5
[41]   Xue J, Gui D W, Lei J Q, et al. 2019. Oasification: an unable evasive process in fighting against desertification for the sustainable development of arid and semiarid regions of China. CATENA, 179: 197-209.
doi: 10.1016/j.catena.2019.03.029
[42]   Yan J F, Chen X, Luo G P, et al. 2006. Temporal and spatial variability response of groundwater level to land use/land cover change in oases of arid areas. Chinese Science Bulletin, 51: 51-59.
doi: 10.1007/s11434-006-8207-y
[43]   Yang R J, Xu S C, Gu B J, et al. 2024. Stabilizing unstable cropland towards win-win sustainable development goals. Environmental Impact Assessment Review, 105: 107395, doi: 10.1016/j.eiar.2023.107395.
[44]   Yin X Y, Liu W, Zhu M, et al. 2023. Compounding effects of human activities and climatic changes on coexistence of oasis-desert ecosystems: Prioritizing resilient decision-making for a riskier world. Research in Cold and Arid Regions, 15(5): 219-229.
doi: 10.1016/j.rcar.2023.12.002
[45]   Zhang K C, An Z S, Cai D W, et al. 2017. Key role of desert-oasis transitional area in avoiding oasis land degradation from aeolian desertification in Dunhuang, Northwest China. Land Degradation & Development, 28(1): 142-150.
doi: 10.1002/ldr.v28.1
[46]   Zhang X F, Zhang Y F, Qi J H, et al. 2020. Evaluation of the stability and suitable scale of an oasis irrigation district in Northwest China. Water, 12(10): 2837, doi: 10.3390/w12102837.
[47]   Zhang Y, Zhang K C, An Z S, et al. 2019. Quantification of driving factors on NDVI in oasis-desert ecotone using geographical detector method. Journal of Mountain Science, 16: 2615-2624.
doi: 10.1007/s11629-018-5361-7
[48]   Zhao C Y, Wang Y C. 2005. Study on spatial and temporal dynamic of soil water content in desert-oasis ecotone. Journal of Soil and Water Conservation, 19(1): 124-127. (in Chinese)
[49]   Zhao P, Qu J J, Xu X Y, et al. 2019. Desert vegetation distribution and species-environment relationships in an oasis-desert ecotone of northwestern China. Journal of Arid Land, 11: 461-476.
doi: 10.1007/s40333-019-0055-0
[50]   Zhao W Z, Chang X L. 2014. The effect of hydrologic process changes on NDVI in the desert-oasis ecotone of the Hexi Corridor. Science China Earth Sciences, 57: 3017-3117.
[51]   Zhou D Y, Wang X J, Shi M J. 2016. Human driving forces of oasis expansion in northwestern China during the last decade—A case study of the Heihe River Basin. Land Degradation & Development, 28(2): 412-420.
doi: 10.1002/ldr.v28.2
[52]   Zhou H, Zhao W Z, Zhang G F. 2017. Varying water utilization of Haloxylon ammodendron plantations in a desert‐oasis ecotone. Hydrological Processes, 31(4): 825-835.
doi: 10.1002/hyp.11060
[1] SUN Hui, ZHAO Yunge, GAO Liqian, XU Mingxiang. Reasonable grazing may balance the conflict between grassland utilization and soil conservation in the semi-arid hilly areas, China[J]. Journal of Arid Land, 2024, 16(8): 1130-1146.
[2] ZUBAIDA Muyibul. Trade-offs and synergies between ecosystem services in Yutian County along the Keriya River Basin, Northwest China[J]. Journal of Arid Land, 2024, 16(7): 943-962.
[3] ZHANG Yu, ZHANG Mingjun, QU Deye, WANG Shengjie, Athanassios A ARGIRIOU, WANG Jiaxin, YANG Ye. Water use characteristics of different pioneer shrubs at different ages in western Chinese Loess Plateau: Evidence from δ2H offset correction[J]. Journal of Arid Land, 2022, 14(6): 653-672.
[4] YU Xiang, LEI Jiaqiang, GAO Xin. An over review of desertification in Xinjiang, Northwest China[J]. Journal of Arid Land, 2022, 14(11): 1181-1195.
[5] SUN Lingxiao, YU Yang, GAO Yuting, ZHANG Haiyan, YU Xiang, HE Jing, WANG Dagang, Ireneusz MALIK, Malgorzata WISTUBA, YU Ruide. Temporal and spatial variations of net primary productivity and its response to groundwater of a typical oasis in the Tarim Basin, China[J]. Journal of Arid Land, 2021, 13(11): 1142-1154.
[6] WANG Wanrui, CHEN Yaning, WANG Weihua, XIA Zhenhua, LI Xiaoyang, Patient M KAYUMBA. Hydrochemical characteristics and evolution of groundwater in the dried-up river oasis of the Tarim Basin, Central Asia[J]. Journal of Arid Land, 2021, 13(10): 977-994.
[7] Peng ZHAO, Jianjun QU, Xianying XU, Qiushi YU, Shengxiu JIANG, Heran ZHAO. Desert vegetationdistribution and species-environment relationshipsinan oasis-desert ecotone ofnorthwestern China[J]. Journal of Arid Land, 2019, 11(3): 461-476.
[8] Benman YANG, Ruoshui WANG, Huijie XIAO, Qiqi CAO, Tao LIU. Spatio-temporal variations of soil water content and salinity around individual Tamarix ramosissima in a semi-arid saline region of the upper Yellow River, Northwest China[J]. Journal of Arid Land, 2018, 10(1): 101-114.
[9] ZHANG Ke, SU Yongzhong, WANG Ting, LIU Tingna. Soil properties and herbaceous characteristics in an age sequence of Haloxylon ammodendron plantations in an oasis-desert ecotone of northwestern China[J]. Journal of Arid Land, 2016, 8(6): 960-973.
[10] FanJiang ZENG, Cong SONG, HaiFeng GUO, Bo LIU, WeiCheng LUO, DongWei GUI, Stefan. Responses of root growth of Alhagi sparsifolia Shap. (Fabaceae) to different simulated groundwater depths in the southern fringe of the Taklimakan Desert, China[J]. Journal of Arid Land, 2013, 5(2): 220-232.
[11] Yong ZHAO, HongJun LI, AnNing HUANG, Qing HE, Wen HUO, MinZhong WANG. Relationship between thermal anomalies in Tibetan Plateau and summer dust storm frequency over Tarim Basin, China[J]. Journal of Arid Land, 2013, 5(1): 25-31.
[12] HongJun LI, WeiYi MAO, Yong ZHAO, MinZhong WANG, Wen HUO. Trends and abrupt changes in surface vapor content over Tarim Basin during the last 50 years[J]. Journal of Arid Land, 2012, 4(3): 260-270.
[13] XiangYi LI, LiSha LIN, Qiang ZHAO, XiMing ZHANG, Frank M. THOMAS. Influence of groundwater depth on species composition and community structure in the transition zone of Cele oasis[J]. Journal of Arid Land, 2010, 2(4): 235-242.
[14] Yu YANG, XiaoLei ZHANG, Jun LEI, Wen DONG, WeiYao ZENG, Chao GAO. Spatial integration of oasis city group around the western margins of the Tarim Basin[J]. Journal of Arid Land, 2010, 2(3): 214-221.