Please wait a minute...
Journal of Arid Land  2017, Vol. 9 Issue (3): 319-330    DOI: 10.1007/s40333-017-0014-6
Orginal Article     
A remote sensing-based agricultural drought indicator and its implementation over a semi-arid region, Jordan
HAZAYMEH Khaled1,2, K HASSAN Quazi1,*
1 Department of Geomatics Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
2 Department of Geography, Faculty of Arts, Yarmouk University, Irbid 21163, Jordan
Download: HTML     PDF(463KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

The objective of the study was to develop a remote sensing (i.e., Landsat-8 and MODIS)-based agricultural drought indicator (ADI) at 30-m spatial resolution and 8-day temporal resolution and also to evaluate its performance over a heterogeneous agriculture dominant semi-arid region in Jordan. Firstly, we used principal component analysis (PCA) to evaluate the correlations among six commonly used remote sensing-derived agricultural drought related variables. The variables included normalized difference water index (NDWI), normalized difference vegetation index (NDVI), visible and shortwave drought index (VSDI), normalized multiband drought index (NMDI), moisture stress index (MSI), and land surface temperature (LST). Secondly, we integrated the relatively less correlated variables (that were found to be NDWI, VSDI, and LST) to generate four agricultural drought categories/conditions (i.e., wet, mild drought, moderate drought, and severe drought). Finally, we evaluated the ADI maps against a set of 8-day ground-based standardized precipitation index values (i.e., SPI-1, SPI-2, …, SPI-8) by use of confusion matrices and observed the best results for SPI-4 (i.e., overall accuracy and Kappa-values were 83% and 76%, respectively) and SPI-5 (i.e., overall accuracy and Kappa-values were 85% and 78%, respectively). The results demonstrated that the method would be valuable for monitoring agricultural drought conditions in semi-arid regions at both a reasonably high spatial resolution (i.e., 30-m) and a short time period (i.e., 8-day).



Key wordsspatio-temporal image fusion model (STI-FM)      land surface temperature (LST)      surface reflectance      standardized precipitation index (SPI)      Landsat-8      MODIS     
Received: 02 July 2016      Published: 10 May 2017
Corresponding Authors:
Cite this article:

HAZAYMEH Khaled, K HASSAN Quazi. A remote sensing-based agricultural drought indicator and its implementation over a semi-arid region, Jordan. Journal of Arid Land, 2017, 9(3): 319-330.

URL:

http://jal.xjegi.com/10.1007/s40333-017-0014-6     OR     http://jal.xjegi.com/Y2017/V9/I3/319

[1] AghaKouchak A, Farahmand A, Melton F S, et al.2015. Remote sensing of drought: progress, challenges and opportunities. Reviews of Geophysics, 53(2): 452-480.
[2] Akbar T A, Hassan Q K, Achari G.2011. A methodology for clustering lakes in Alberta on the basis of water quality parameters. Clean-Soil, Air, Water, 39(10): 916-924.
[3] Akther M S, Hassan Q K.2011a. Remote sensing based estimates of surface wetness conditions and growing degree days over northern Alberta, Canada. Boreal Environment Research, 16(5): 407-416.
[4] Akther M S, Hassan Q K.2011b. Remote sensing-based assessment of fire danger conditions over boreal forest. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 4(4): 992-999.
[5] Al-Qinna M I, Hammouri N A, Obeidat M M, et al.2010. Drought analysis in Jordan under current and future climates. Climatic Change, 106(3): 421-440.
[6] Anderson M C, Hain C, Wardlow B, et al.2011. Evaluation of drought indices based on thermal remote sensing of evapotranspiration over the Continental United States. Journal of Climate, 24(8): 2025-2044.
[7] Anjum S A, Xie X, Wang L, et al.2011. Morphological, physiological and biochemical responses of plants to drought stress. African Journal of Agricultural Research, 6(9): 2026-2032.
[8] Benmecheta A, Abdellaoui A, Hamou A.2013. A comparative study of land surface temperature retrieval methods from remote sensing data. Canadian Journal of Remote Sensing, 39(1): 59-73.
[9] Boken V K, Cracknell A P, Heathcote R L.2005. Monitoring and Predicting Agricultural Drought: A Global Study. New York: Oxford University Press, 472.
[10] Brown J F, Wardlow B D, Tadesse T, et al.2013. The vegetation drought response index (VegDRI): a new integrated approach for monitoring drought stress in vegetation. GIScience & Remote Sensing, 45(1): 16-46.
[11] Brown L, Chen J M, Leblanc S G, et al.2000. A shortwave infrared modification to the simple ratio for LAI retrieval in boreal forests: an image and model analysis. Remote Sensing of Environment, 71(1): 16-25.
[12] Brown M E.2008. Derived agricultural and climate monitoring products. In: Brown M E, ed. Famine Early Warning Systems and Remote Sensing Data. Berlin: Springer-Verlag, 83-96.
[13] Chakraborty A, Sehgal V K.2010. Assessment of agricultural drought using MODIS derived normalized difference water index. Journal of Agricultural Physics, 10: 28-36.
[14] Chowdhury E H, Hassan Q K.2013. Use of remote sensing-derived variables in developing a forest fire danger forecasting system. Natural Hazards, 67(2): 321-334.
[15] Chowdhury E H, Hassan Q K.2015. Development of a new daily-scale forest fire danger forecasting system using remote sensing data. Remote Sensing, 7(3): 2431-2448.
[16] FAO/WFP. 1999. FAO/WFP Crop and Food Supply Assessment Mission to the Kingdom of Jordan. Rome: FAO. [2015-12-16]. .
[17] Gao B C.1996. NDWI-a normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, 58(3): 257-266.
[18] Ghulam A, Li Z L, Qin Q M, et al.2008. Estimating crop water stress with ETM+ NIR and SWIR data. Agricultural and Forest Meteorology, 148(11): 1679-1695.
[19] Gu Y, Hunt E, Wardlow B, et al.2008. Evaluation of MODIS NDVI and NDWI for vegetation drought monitoring using Oklahoma Mesonet soil moisture data. Geophysical Research Letters, 35(22): L22401, doi: 10.1029/2008GL035772.
[20] Hao Z C, AghaKouchak A, Nakhjiri N, et al.2014. Global integrated drought monitoring and prediction system. Scientific Data, 1: 140001.
[21] Hao Z H, AghaKouchak A.2013. Multivariate standardized drought index: a parametric multi-index model. Advances in Water Resources, 57: 12-18.
[22] Hazaymeh K, Hassan Q K.2015a. Fusion of MODIS and Landsat-8 surface temperature images: a new approach. PLoS One, 10(3): e0117755.
[23] Hazaymeh K, Hassan Q K.2015b. Spatiotemporal image-fusion model for enhancing the temporal resolution of Landsat-8 surface reflectance images using MODIS images. Journal of Applied Remote Sensing, 9(1): 096095.
[24] Hazaymeh K, Hassan Q K.2016. Remote sensing of agricultural drought monitoring: a state of art review. Aims Environmental Science, 3(4): 604-630.
[25] Hunt E R Jr, Rock B N.1989. Detection of changes in leaf water content using near-and middle-infrared reflectances. Remote Sensing of Environment, 30(1): 43-54.
[26] Jackson R D, Idso S B, Reginato R J, et al.1981. Canopy temperature as a crop water stress indicator. Water Resources Research, 17(4): 1133-1138.
[27] Jang J D, Viau A A, Anctil F.2006. Thermal-water stress index from satellite images. International Journal of Remote Sensing, 27(8): 1619-1639.
[28] Jensen J R.2005. Introductory Digital Image Processing: A Remote Sensing Perspective (3rd ed.). New Jersey: Prentice Hall, 526.
[29] JMWI (Jordanian Ministry of Water and Irrigation). 2014. [2015-12-16]. .1)aspx?ID=196.(in Arabic)
[30] Kogan F.2002. World droughts in the new millennium from AVHRR-based vegetation health indices. EOS, Transactions American Geophysical Union, 83(48): 557-563.
[31] Lambin E F, Ehrlich D.1996. The surface temperature-vegetation index space for land cover and land-cover change analysis. International Journal of Remote Sensing, 17(3): 463-487.
[32] Li J, Heap A D.2014. Spatial interpolation methods applied in the environmental sciences: a review. Environmental Modelling & Software, 53: 173-189.
[33] Lloyd-Hughes B, Saunders M A.2002. A drought climatology for Europe. International Journal of Climatology, 22(13): 1571-1592.
[34] Logan K E, Brunsell N A, Jones A R, et al.2010. Assessing spatiotemporal variability of drought in the U.S. central plains. Journal of Arid Environments, 74(2): 247-255.
[35] McKee T B, Doesken N J, Kleist J. 1993. The relationship of drought frequency and duration to time scales. In: Proceedings of the 8th Conference on Applied Climatology. Anaheim,California: Conference on Applied Climatology, 179-184.
[36] McVicar T R, Jupp D L B.1998. The current and potential operational uses of remote sensing to aid decisions on drought exceptional circumstances in Australia: a review. Agricultural Systems, 57(3): 399-468.
[37] Milton-Edwards B, Hinchcliffe P.2009. Jordan: A Hashemite Legacy (2nd ed.). New York: Routledge, 147.
[38] Palmer W C.1965. Meteorological Drought. Washington D.C.: U.S. Weather Bureau, Research Paper No. 45: 58.
[39] Palmer W C.1968. Keeping track of crop moisture conditions, nationwide: the new crop moisture index. Weatherwise, 21(4): 156-161.
[40] Ranjan R, Sahoo R N, Chopra U K, et al.2015. Assessment of water status in wheat (Triticum aestivum L.) using ground based hyperspectral reflectance. In: Proceedings of the National Academy of Sciences, India Section B: Biological Sciences . India:Springer, 1-12,doi: 10.1007/s40011-015-0618-6.
[41] Saba M, Al-Naber G.2010. Analysis of Jordan vegetation cover dynamics using MODIS/NDVI from 2000 to 2009. In: Proceedings of the International Conference of Food Security and Climate Change in Dry Areas.Amman: International Center for Agricultural Research in the Dry Areas (ICARDA).
[42] Samanta A, Ganguly S, Myneni R B.2011. MODIS enhanced vegetation index data do not show greening of amazon forests during the 2005 drought. New Phytologist, 189(1): 11-15, doi: 10.1111/j.1469-8137.2010.03516.x.
[43] Sandholt I, Rasmussen K, Andersen J.2002. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sensing of Environment, 79(2-3): 213-224.
[44] Sha Z Y, Zhong J L, Bai Y F, et al.2016. Spatio-temporal patterns of satellite-derived grassland vegetation phenology from 1998 to 2012 in Inner Mongolia, China. Journal of Arid Land, 8(3): 462-477.
[45] Shahabfar A, Ghulam A, Eitzinger J.2012. Drought monitoring in Iran using the perpendicular drought indices. International Journal of Applied Earth Observation and Geoinformation, 18: 119-127.
[46] Sims A P, Niyogi D D S, Raman S.2002. Adopting drought indices for estimating soil moisture: a North Carolina case study. Geophysical Research Letters, 29(8): 1183.
[47] Svoboda M, LeComte D, Hayes M, et al.2002. The drought monitor. Bulletin of the American Meteorological Society, 83: 1181-1190.
[48] Tucker C J, Choudhury B J.1987. Satellite remote sensing of drought conditions. Remote Sensing of Environment, 23(2): 243-251.
[49] USGS. 2013. Using the USGS Landsat 8 product. USA: USGS.[2015-12-16]. .
[50] van Wesemael B, Cammeraat E, Mulligan M, et al.2003. The impact of soil properties and topography on drought vulnerability of rainfed cropping systems in southern Spain. Agriculture, Ecosystems & Environment, 94(1): 1-15.
[51] Wang W, Huang D, Wang X G, et al.2011. Estimation of soil moisture using trapezoidal relationship between remotely sensed land surface temperature and vegetation index. Hydrology and Earth System Sciences, 15(5): 1699-1712.
[52] Wilhite D A, Svoboda M D, Hayes M J.2007. Understanding the complex impacts of drought: a key to enhancing drought mitigation and preparedness. Water Resources Management, 21(5): 763-774.
[53] Wu H, Wilhite D A.2004. An operational agricultural drought risk assessment model for Nebraska, USA. Natural Hazards, 33(1): 1-21.
[54] Wu H, Svoboda M D, Hayes M J, et al.2007. Appropriate application of the standardized precipitation index in arid locations and dry seasons. International Journal of Climatology, 27(1): 65-79.
[55] Wu J J, Zhou L, Liu M, et al.2013. Establishing and assessing the integrated surface drought index (ISDI) for agricultural drought monitoring in mid-eastern China. International Journal of Applied Earth Observation and Geoinformation, 23: 397-410.
[56] Zhang N, Hong Y, Qin Q M, et al.2013. VSDI: a visible and shortwave infrared drought index for monitoring soil and vegetation moisture based on optical remote sensing. International Journal of Remote Sensing, 34(13): 4585-4609.
[57] Zhou L, Lyu A.2016. Investigating natural drivers of vegetation coverage variation using MODIS imagery in Qinghai, China. Journal of Arid Land, 8(1): 109-124.
[58] Zhu G L, Ju W M, Chen J M, et al.2014. A novel moisture adjusted vegetation index (MAVI) to reduce background reflectance and topographical effects on LAI retrieval. PLoS ONE, 9(7): e102560.
[1] Omobayo G ZOFFOUN, Chabi A M S DJAGOUN, Etotépé A SOGBOHOSSOU. Distribution patterns of fire regime in the Pendjari Biosphere Reserve, West Africa[J]. Journal of Arid Land, 2023, 15(10): 1160-1173.
[2] Türkan BAYER ALTIN, Bekir N ALTIN. Response of hydrological drought to meteorological drought in the eastern Mediterranean Basin of Turkey[J]. Journal of Arid Land, 2021, 13(5): 470-486.
[3] Ayad M F AL-QURAISHI, Heman A GAZNAYEE, Mattia CRESPI. Drought trend analysis in a semi-arid area of Iraq based on Normalized Difference Vegetation Index, Normalized Difference Water Index and Standardized Precipitation Index[J]. Journal of Arid Land, 2021, 13(4): 413-430.
[4] CAO Huicong, YAN Dandan, JU Yuelin. Drought and flood characteristics in the farming- pastoral ecotone of northern China based on the Standardized Precipitation Index[J]. Journal of Arid Land, 2021, 13(12): 1244-1259.
[5] WANG Jie, LIU Dongwei, MA Jiali, CHENG Yingnan, WANG Lixin. Development of a large-scale remote sensing ecological index in arid areas and its application in the Aral Sea Basin[J]. Journal of Arid Land, 2021, 13(1): 40-55.
[6] Qingsheng LIU, Gaohuan LIU, Chong HUANG. Monitoring desertification processes in Mongolian Plateau using MODIS tasseled cap transformation and TGSI time series[J]. Journal of Arid Land, 2018, 10(1): 12-26.
[7] Jinping LIU, Wanchang ZHANG, Tie LIU. Monitoring recent changes in snow cover in Central Asia using improved MODIS snow-cover products[J]. Journal of Arid Land, 2017, 9(5): 763-777.
[8] GANTSETSEG Batdelger, ISHIZUKA Masahide, KUROSAKI Yasunori, MIKAMI Masao. Topographical and hydrological effects on meso-scale vegetation in desert steppe, Mongolia[J]. Journal of Arid Land, 2017, 9(1): 132-142.
[9] TIAN Zheng, WU Xiuqin, DAI Erfu, ZHAO Dongsheng. SOC storage and potential of grasslands from 2000 to 2012 in central and eastern Inner Mongolia, China[J]. Journal of Arid Land, 2016, 8(3): 364-374.
[10] ZHOU Lei, LYU Aifeng. Investigating natural drivers of vegetation coverage variation using MODIS imagery in Qinghai, China[J]. Journal of Arid Land, 2016, 8(1): 109-124.
[11] Sumiya VANDANDORJ, Batdelger GANTSETSEG, Bazartseren BOLDGIV. Spatial and temporal variability in vegetation cover of Mongolia and its implications[J]. Journal of Arid Land, 2015, 7(4): 450-461.
[12] Lei YANG, YunGang CAO, XiaoHua ZHU, ShengHe ZENG, GuoJiang YANG, JiangYong HE, XiuChun YANG. Land surface temperature retrieval for arid regions based on Landsat-8 TIRS data: a case study in Shihezi, Northwest China[J]. Journal of Arid Land, 2014, 6(6): 704-716.
[13] Carlos A AGUIRRE-SALADO, Eduardo J TREVI?O-GARZA, Oscar A AGUIRRE-CALDERóN, Javier JIMéNEZ-PéREZ, Marco A GONZáLEZ-TAGLE, José R VALDéZ-LAZALDE, Guillermo SáNCHEZ-DíAZ, Reija HAAPANEN, et al.. Mapping aboveground biomass by integrating geospatial and forest inventory data through a k-nearest neighbor strategy in North Central Mexico[J]. Journal of Arid Land, 2014, 6(1): 80-96.
[14] Fei XIAO, Feng LING, Yun DU, Qi FENG, Yi YAN, Hui CHEN. Evaluation of spatial-temporal dynamics in surface water temperature of Qinghai Lake from 2001 to 2010 by using MODIS data[J]. Journal of Arid Land, 2013, 5(4): 452-464.
[15] YanYun LUO, TingXi LIU, XiXi WANG, LiMin DUAN. Influences of landform as a confounding variable on SOM-NDVI association in semiarid Ordos Plateau[J]. Journal of Arid Land, 2012, 4(4): 450-456.