Please wait a minute...
Journal of Arid Land  2018, Vol. 10 Issue (1): 12-26    DOI: 10.1007/s40333-017-0109-0
Orginal Article     
Monitoring desertification processes in Mongolian Plateau using MODIS tasseled cap transformation and TGSI time series
Qingsheng LIU1,2,*(), Gaohuan LIU1, Chong HUANG1
1 State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
2 Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China
Download: HTML     PDF(987KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Most remote sensing studies assess the desertification using vegetation monitoring method. But it has the insufficient precision of vegetation monitoring for the limited vegetation cover of the desertification region. Therefore, it offers an alternative approach for the desertification research to assess sand dune and sandy land change using remote sensing in the desertification region. In this study, the indices derived from the well-known tasseled cap transformation (TCT), tasseled cap angle (TCA), disturbance index (DI), process indicator (PI), and topsoil grain size index (TGSI) were integrated to monitor and assess the desertification at the thirteen study sites including sand dunes and sandy lands distributed in the Mongolian Plateau (MP) from 2000 to 2015. A decision tree was used to classify the desertification on a regional scale. The average overall accuracy of 2000, 2005, 2010 and 2015 desertification classification was higher than 90%. Results from this study indicated that integration of the advantages of TCA, DI and TGSI could better assess the desertification. During the last 16 years, Badain Jaran Desert, Tengger Desert, and Ulan Buh Desert showed a relative stabilization. Otindag Sandy Land and the deserts of Khar Nuur, Ereen Nuur, Tsagan Nuur, Khongoryn Els, Hobq, and Mu Us showed a slow increasing of desertification, whereas Bayan Gobi, Horqin and Hulun Buir sandy lands showed a slow decreasing of desertification. Compared with the other 11 sites, the fine sand dunes occupied the majority of the Tengger Desert, and the coarse sandy land occupied the majority of the Horqin Sandy Land. Our findings on a three or four years’ periodical fluctuated changes in the desertification may possibly reflect changing precipitation and soil moisture in the MP. Further work to link the TCA, DI, TGSI, and PI values with the desertification characteristics is recommended to set the thresholds and improve the assessment accuracy with field investigation.



Key wordsdesertification      MODIS      desert      sand dune      sandy land      Mongolian Plateau     
Received: 05 April 2017      Published: 10 February 2018
Corresponding Authors:
Cite this article:

Qingsheng LIU, Gaohuan LIU, Chong HUANG. Monitoring desertification processes in Mongolian Plateau using MODIS tasseled cap transformation and TGSI time series. Journal of Arid Land, 2018, 10(1): 12-26.

URL:

http://jal.xjegi.com/10.1007/s40333-017-0109-0     OR     http://jal.xjegi.com/Y2018/V10/I1/12

[1] Albalawi E K, Kumar L.2013. Using remote sensing technology to detect, model and map desertification: A review. Journal of Food, Agriculture & Environment, 11(2): 791-797.
[2] Baumann M, Ozdogan M, Wolter P T, et al.2014. Landsat remote sensing of forest windfall disturbance. Remote Sensing of Environment, 143: 171-179.
[3] Bremborg P.1996. Desertification mapping of Horqin Sandy Land, Inner Mongolia, by means of remote sensing. MSc Thesis. Sweden: Lund University.
[4] Ci L J, Wu B.1997. Climatic type division and the potential extent determination of desertification in China. Journal of Desert Research, 17(2): 107-111. (in Chinese)
[5] Collado A D, Chuvieco E, Camarasa A.2002. Satellite remote sensing analysis to monitor desertification processes in the crop-rangeland boundary of Argentina. Journal of Arid Environments, 52(1): 121-133.
[6] Cui L L, Fan W Y, Shi J, et al. 2006. Assessment of aeolian desertification in Korqin sand, China. In: Proceedings of SPIE Volume 6298, Remote Sensing and Modeling of Ecosystems for Sustainability III. San Diego, California, USA: SPIE, 62981L.
[7] Czerwinski C J, King D J, Mitchell S W.2014. Mapping forest growth and decline in a temperate mixed forest using temporal trend analysis of Landsat imagery, 1987-2010. Remote Sensing of Environment, 141: 188-200.
[8] Dorjsuren M, Liou Y A, Cheng C H.2016. Time series MODIS and in situ data analysis for Mongolia Drought. Remote Sensing, 8(6): 509.
[9] Duan H C, Wang T, Xue X, et al.2014. Dynamics of Aeolian desertification and its driving forces in the Horqin Sandy Land, Northern China. Environmental Monitoring and Assessment, 186(10): 6083-6096.
[10] Eckert S, Hüsler F, Liniger H, et al.2015. Trend analysis of MODIS NDVI time series for detecting land degradation and regeneration in Mongolia. Journal of Arid Environments, 113: 16-28.
[11] Elhadi E M, Zomrawi N, Hu G D.2009. Landscape change and sandy desertification monitoring and assessment. American Journal of Environmental Sciences, 5(5): 633-638.
[12] El-Magd I A, Hassan O, Arafat S.2013. Quantification of sand dune movements in the south western part of Egypt, using remotely sensed data and GIS. Journal of Geographic Information System, 5(5): 498-508.
[13] Fang J Y, Bai Y F, Wu J G.2015. Towards a better understanding of landscape patterns and ecosystem processes of the Mongolian Plateau. Landscape Ecology, 30(9): 1573-1578.
[14] Gómez C, White J C, Wulder M A.2011. Characterizing the state and processes of change in a dynamic forest environment using hierarchical spatio-temporal segmentation. Remote Sensing of Environment, 115(7): 1665-1679.
[15] Guo J, Wang T, Xue X, et al.2010. Monitoring Aeolian desertification process in Hulun Buir grassland during 1975-2006, Northern China. Environmental Monitoring and Assessment, 166(1-4): 563-571.
[16] Hereher M E.2010. Sand movement patterns in the Western Desert of Egypt: an environmental concern. Environmental Earth Sciences, 59(5): 1119-1127.
[17] Hermas E, Leprince S, El-Magd I A.2012. Retrieving sand dune movements using sub-pixel correlation of multi-temporal optical remote sensing imagery, northwest Sinai Peninsula, Egypt. Remote Sensing of Environment, 121: 51-60.
[18] Hu Y M, Jiang Y, Chang Y, et al.2002. The dynamic monitoring of Horqin sand land using remote sensing. Chinese Geographical Science, 12(3): 238-243.
[19] Huang L.2017. Spatial distribution of Agriophyllum squarrosum Moq. (Chenopodiaceae) in the straw checkerboards at a revegetated land of the Tengger Desert, northern China. Journal of Arid Land, 9(2): 176-187.
[20] Huang S, Siegert F.2006. Land cover classification optimized to detect areas at risk of desertification in North China based on SPOT VEGETATION imagery. Journal of Arid Environments, 67(2): 308-327.
[21] Hugenholtz C H, Levin N, Barchyn T E, et al.2012. Remote sensing and spatial analysis of Aeolian sand dunes: A review and outlook. Earth-Science Reviews, 111(1-4): 319-334.
[22] Javzandulam T, Tateishi R, Sanjaa T.2005. Analysis of vegetation indices for monitoring vegetation degradation in semi-arid and arid areas of Mongolia. International Journal of Environmental Studies, 62(2): 215-225.
[23] Jin S M, Sader S A.2005. Comparison of time series tasseled cap wetness and the normalized difference moisture index in detecting forest disturbances. Remote Sensing of Environment, 94(3): 364-372.
[24] John R, Chen J Q, Lu N, et al.2008. Predicting plant diversity based on remote sensing products in the semi-arid region of Inner Mongolia. Remote Sensing of Environment, 112(5): 2018-2032.
[25] Karnieli A, Qin Z H, Wu B, et al.2014. Spatio-temporal dynamics of land-use and land-cover in the Mu Us Sandy Land, China, using the change vector analysis technique. Remote Sensing, 6(10): 9316-9339.
[26] Kawamura K, Akiyama T.2010. Simultaneous monitoring of livestock distribution and desertification. Global Environmental Research, 14: 29-36.
[27] Lam D K, Remmel T K, Drezner T D.2010. Tracking desertification in California using remote sensing: a sand dune encroachment approach. Remote Sensing, 3(1), 1-13.
[28] Lamchin M, Lee J Y, Lee W K, et al.2016. Assessment of land cover change and desertification using remote sensing technology in a local region of Mongolia. Advances in Space Research, 57(1): 64-77.
[29] Li E J.2011. Comparison of characteristics of deposits of Badain Jaran Desert and Tengger Desert. PhD Dissertation. Xi’an: Shaanxi Normal University. (in Chinese)
[30] Liu Q S, Liu G H, Huang C, et al.2016. Comparison of tasselled cap components of images from Landsat 5 Thematic Mapper and Landsat 7 Enhanced Thematic Mapper Plus. Journal of Spatial Science, 61(2): 351-365.
[31] Lobser S E, Cohen W B.2007. MODIS tasselled cap: land cover characteristics expressed through transformed MODIS data. International Journal of Remote Sensing, 28(22): 5079-5101.
[32] Lozano F J, Suárez-Seoane S, de Luis E.2007. Assessment of several spectral indices derived from multi-temporal Landsat data for fire occurrence probability modelling. Remote Sensing of Environment, 107(4): 533-544.
[33] Masek J G, Huang C Q, Wolfe R, et al.2008. North American forest disturbance mapped from a decadal Landsat record. Remote Sensing of Environment, 112(6): 2914-2926.
[34] Powell S L, Cohen W B, Healey S P, et al.2010. Quantification of live aboveground forest biomass dynamics with Landsat time-series and field inventory data: A comparison of empirical modeling approaches. Remote Sensing of Environment, 114(5): 1053-1068.
[35] Shafie H, Hosseini S M, Amiri I.2012. RS-based assessment of vegetation cover changes in Sistan Plain. International Journal of Forest, Soil and Erosion, 2(2): 97-100.
[36] Sternberg T, Tsolmon R, Middleton N, et al.2011. Tracking desertification on the Mongolian steppe through NDVI and field-survey data. International Journal of Digital Earth, 4(1): 50-64.
[37] Sternberg T.2012. Piospheres and pastoralists: vegetation and degradation in steppe grasslands. Human Ecology, 40(6): 811-820.
[38] Sternberg T, Rueff H, Middleton N.2015. Contraction of the Gobi Desert, 2000-2012. Remote Sensing, 7(2): 1346-1358.
[39] UNCCD. 2016a. Is desertification a global problem?[2016-12-08]. .
[40] UNCCD. 2016b. Combating desertification in Asia.[2016-12-08]. .
[41] Vova O, Kappas M, Renchin T, et al. 2015. Land degradation assessment in Gobi-Altai province. In: Proceeding of the Trans-Disciplinary Research Conference: Building Resilience of Mongolian Rangelands. Ulaanbaatar, Mongolia. .
[42] Wang X M, Cheng H, Li H, et al.2017. Key driving forces of desertification in the Mu Us Desert, China. Scientific Reports, 7: 3933, doi: 10. 1038/s41598-017-04363-8.
[43] Wu B, Ci L J.2002. Landscape change and desertification development in the Mu Us Sandland, Northern China. Journal of Arid Environments, 503: 429-444.
[44] Xiao J, Shen Y, Tateishi R, et al.2006. Development of topsoil grain size index for monitoring desertification in arid land using remote sensing. International Journal of Remote Sensing, 27(12): 2411-2422.
[45] Xu D Y, Kang X W, Qiu D S, et al.2009. Quantitative assessment of desertification using Landsat data on a regional scale - A case study in the Ordos Plateau, China. Sensors, 9(3): 1738-1753.
[46] Yang X, Zhang K, Jia B, et al.2005. Desertification assessment in China: An overview. Journal of Arid Environments, 63(2): 517-531.
[47] Yang X P, Rost K T, Lehmkuhl F, et al.2004. The evolution of dry lands in northern China and in the Republic of Mongolia since the last glacial maximum. Quaternary International, 118-119: 69-85.
[48] Yao Z Y, Wang T, Han Z W, et al.2007. Migration of sand dunes on the northern Alxa Plateau, Inner Mongolia, China. Journal of Arid Environments, 70(1): 80-93.
[49] Yu H N, Lee J Y, Lee W K, et al.2013. Feasibility of vegetation temperature condition index for monitoring desertification in Bulgan, Mongolia. Korean Journal of Remote Sensing, 29(6): 621-629.
[50] Yu X N, Huang Y M, Li E G, et al.2017. Effects of vegetation types on soil water dynamics during vegetation restoration in the Mu Us Sandy Land, northwestern China. Journal of Arid Land, 9(2): 188-199.
[51] Zha Y, Gao J.1997. Characteristics of desertification and its rehabilitation in China. Journal of Arid Environments, 37(3): 419-432.
[52] Zhang G L, Dong J W, Xiao X M, et al.2012. Effectiveness of ecological restoration projects in Horqin Sandy Land, China based on SPOT-VGT NDVI data. Ecological Engineering, 38(1): 20-29.
[53] Zhang Y Z, Chen Z Y, Zhu B Q, et al.2008. Land desertification monitoring and assessment in Yulin of Northwest China using remote sensing and geographic information systems (GIS). Environmental Monitoring and Assessment, 147(1-3): 327-337.
[54] Zhao X, Hu H F, Shen H H, et al.2015. Satellite-indicated long-term vegetation changes and their drivers on the Mongolian Plateau. Landscape Ecology, 30(9): 1599-1611.
[1] NAN Weige, DONG Zhibao, ZHOU Zhengchao, LI Qiang, CHEN Guoxiang. Ecological effect of the plantation of Sabina vulgaris in the Mu Us Sandy Land, China[J]. Journal of Arid Land, 2024, 16(1): 14-28.
[2] ZHAO Xuqin, LUO Min, MENG Fanhao, SA Chula, BAO Shanhu, BAO Yuhai. Spatiotemporal changes of gross primary productivity and its response to drought in the Mongolian Plateau under climate change[J]. Journal of Arid Land, 2024, 16(1): 46-70.
[3] MA Jinpeng, PANG Danbo, HE Wenqiang, ZHANG Yaqi, WU Mengyao, LI Xuebin, CHEN Lin. Response of soil respiration to short-term changes in precipitation and nitrogen addition in a desert steppe[J]. Journal of Arid Land, 2023, 15(9): 1084-1106.
[4] ZHAO Xiaohan, HAN Dianchen, LU Qi, LI Yunpeng, ZHANG Fangmin. Spatiotemporal variations in ecological quality of Otindag Sandy Land based on a new modified remote sensing ecological index[J]. Journal of Arid Land, 2023, 15(8): 920-939.
[5] Orhan DENGİZ, İnci DEMİRAĞ TURAN. Soil quality assessment for desertification based on multi-indicators with the best-worst method in a semi-arid ecosystem[J]. Journal of Arid Land, 2023, 15(7): 779-796.
[6] ZHAO Hongyan, YAN Changzhen, LI Sen, WANG Yahui. Remote sensing monitoring of the recent rapid increase in cultivation activities and its effects on desertification in the Mu Us Desert, China[J]. Journal of Arid Land, 2023, 15(7): 812-826.
[7] QIANG Yuquan, ZHANG Jinchun, XU Xianying, LIU Hujun, DUAN Xiaofeng. Stem sap flow of Haloxylon ammodendron at different ages and its response to physical factors in the Minqin oasis-desert transition zone, China[J]. Journal of Arid Land, 2023, 15(7): 842-857.
[8] ZHOU Chongpeng, GONG Lu, WU Xue, LUO Yan. Nutrient resorption and its influencing factors of typical desert plants in different habitats on the northern margin of the Tarim Basin, China[J]. Journal of Arid Land, 2023, 15(7): 858-870.
[9] M'hammed BOUALLALA, Souad NEFFAR, Lyès BRADAI, Haroun CHENCHOUNI. Do aeolian deposits and sand encroachment intensity shape patterns of vegetation diversity and plant functional traits in desert pavements?[J]. Journal of Arid Land, 2023, 15(6): 667-694.
[10] CHEN Yingying, LIN Yajun, ZHOU Xiaobing, ZHANG Jing, YANG Chunhong, ZHANG Yuanming. Effects of drought treatment on photosystem II activity in the ephemeral plant Erodium oxyrhinchum[J]. Journal of Arid Land, 2023, 15(6): 724-739.
[11] LI Hongfang, WANG Jian, LIU Hu, MIAO Henglu, LIU Jianfeng. Responses of vegetation yield to precipitation and reference evapotranspiration in a desert steppe in Inner Mongolia, China[J]. Journal of Arid Land, 2023, 15(4): 477-490.
[12] WANG Wang, CHEN Jiaqi, CHEN Jiansheng, WANG Tao, ZHAN Lucheng, ZHANG Yitong, MA Xiaohui. Contribution of groundwater to the formation of sand dunes in the Badain Jaran Desert, China[J]. Journal of Arid Land, 2023, 15(11): 1340-1354.
[13] ZHAO Mengqi, SU Huan, HUANG Yin, Rashidin ABDUGHENI, MA Jinbiao, GAO Jiangtao, GUO Fei, LI Li. Plant growth-promoting properties and anti-fungal activity of endophytic bacterial strains isolated from Thymus altaicus and Salvia deserta in arid lands[J]. Journal of Arid Land, 2023, 15(11): 1405-1420.
[14] Omobayo G ZOFFOUN, Chabi A M S DJAGOUN, Etotépé A SOGBOHOSSOU. Distribution patterns of fire regime in the Pendjari Biosphere Reserve, West Africa[J]. Journal of Arid Land, 2023, 15(10): 1160-1173.
[15] Alamusa , SU Yuhang, YIN Jiawang, ZHOU Quanlai, WANG Yongcui. Effect of sand-fixing vegetation on the hydrological regulation function of sand dunes and its practical significance[J]. Journal of Arid Land, 2023, 15(1): 52-62.