Please wait a minute...
Journal of Arid Land  2024, Vol. 16 Issue (2): 195-219    DOI: 10.1007/s40333-024-0053-8
Research article     
A CMIP6-based assessment of regional climate change in the Chinese Tianshan Mountains
LIU Xinyu1,2,3, LI Xuemei1,2,3,*(), ZHANG Zhengrong1,2,3, ZHAO Kaixin1,2,3, LI Lanhai4,5
1Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China
2National-Local Joint Engineering Research Center of Technologies and Applications for National Geographic State Monitoring, Lanzhou 730070, China
3Gansu Provincial Engineering Laboratory for National Geographic State Monitoring, Lanzhou 730070, China
4State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
5Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi 830011, China
Download: HTML     PDF(4854KB)
Export: BibTeX | EndNote (RIS)      


Climate warming profoundly affects hydrological changes, agricultural production, and human society. Arid and semi-arid areas of China are currently displaying a marked trend of warming and wetting. The Chinese Tianshan Mountains (CTM) have a high climate sensitivity, rendering the region particularly vulnerable to the effects of climate warming. In this study, we used monthly average temperature and monthly precipitation data from the CN05.1 gridded dataset (1961-2014) and 24 global climate models (GCMs) of the Coupled Model Intercomparison Project Phase 6 (CMIP6) to assess the applicability of the CMIP6 GCMs in the CTM at the regional scale. Based on this, we conducted a systematic review of the interannual trends, dry-wet transitions (based on the standardized precipitation index (SPI)), and spatial distribution patterns of climate change in the CTM during 1961-2014. We further projected future temperature and precipitation changes over three terms (near-term (2021-2040), mid-term (2041-2060), and long-term (2081-2100)) relative to the historical period (1961-2014) under four shared socio-economic pathway (SSP) scenarios (i.e., SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5). It was found that the CTM had experienced significant warming and wetting from 1961 to 2014, and will also experience warming in the future (2021-2100). Substantial warming in 1997 was captured by both the CN05.1 derived from interpolating meteorological station data and the multi-model ensemble (MME) from the CMIP6 GCMs. The MME simulation results indicated an apparent wetting in 2008, which occurred later than the wetting observed from the CN05.1 in 1989. The GCMs generally underestimated spring temperature and overestimated both winter temperature and spring precipitation in the CTM. Warming and wetting are more rapid in the northern part of the CTM. By the end of the 21st century, all the four SSP scenarios project warmer and wetter conditions in the CTM with multiple dry-wet transitions. However, the rise in precipitation fails to counterbalance the drought induced by escalating temperature in the future, so the nature of the drought in the CTM will not change at all. Additionally, the projected summer precipitation shows negative correlation with the radiative forcing. This study holds practical implications for the awareness of climate change and subsequent research in the CTM.

Key wordsclimate change      Coupled Model Intercomparison Project Phase 6 (CMIP6)      global climate models (GCMs)      shared socio-economic pathway (SSP) scenarios      standardized precipitation index (SPI)      Chinese Tianshan Mountains     
Received: 31 August 2023      Published: 29 February 2024
Corresponding Authors: *LI Xuemei (E-mail:
Cite this article:

LIU Xinyu, LI Xuemei, ZHANG Zhengrong, ZHAO Kaixin, LI Lanhai. A CMIP6-based assessment of regional climate change in the Chinese Tianshan Mountains. Journal of Arid Land, 2024, 16(2): 195-219.

URL:     OR

Fig. 1 Overview of the Chinese Tianshan Mountains (CTM) based on the digital elevation model (DEM) derived from the 90 m resolution Shuttle Radar Topography Mission (SRTM) dataset. The DEM data were downloaded from the Geospatial Data Cloud (
No. Model name Institution/Country (or region) Spatial resolution (longitude×latitude)
1 ACCESS-CM2 CSIRO/Australia 1.875°×1.250°
2 ACCESS-ESM1-5 CSIRO/Australia 1.875°×1.250°
3 AWI-CM-1-1-MR AWI/Germany 0.974°×0.974°
4 BCC-CSM2-MR BCC/China 1.125°×1.125°
5 CanESM5 CCCma/Canada 2.813°×2.813°
6 CAS-ESM2-0 CAS/China 1.406°×1.406°
7 CESM2-FV2 NCAR/America 2.500°×1.875°
8 CESM2-WACCM NCAR/America 2.500°×1.875°
9 CMCC-CM2-SR5 CMCC/Italy 1.250°×0.974°
10 EC-Earth3 EC-Earth-Consortium/EU 0.703°×0.703°
11 EC-Earth3-Veg EC-Earth-Consortium/EU 0.703°×0.703°
12 FGOALS-f3-L CAS/China 1.250°×1.000°
13 FGOALS-g3 CAS/China 2.000°×2.250°
14 GFDL-ESM4 GFDL/America 1.250°×1.000°
15 INM-CM4-8 INM/Russia 2.000°×1.500°
16 INM-CM5-0 INM/Russia 2.000°×1.500°
17 IPSL-CM6A-LR IPSL/France 2.500°×1.259°
18 KACE-1-0-G NIMS/Korea 1.875°×1.250°
19 MIROC6 MIROC/Japan 1.406°×1.406°
20 MPI-ESM1-2-HR MPI-M/Germany 0.974°×0.974°
21 NESM3 NUIST/China 1.875°×1.875°
22 NorESM2-MM NCC/Norway 1.250°×0.974°
23 SAM0-UNICON SUN/Korea 1.250°×0.974°
24 TaiESM1 RCEC/China 1.250°×0.974°
Table 1 Basic details of the 24 global climate models (GCMs) from the Coupled Model Intercomparison Project Phase 6 (CMIP6)
SPI interval Category SPI interval Category
SPI≤ -2.0 Extreme drought 1.0≤SPI<1.5 Moderate wet
-2.0<SPI≤ -1.5 Severe drought 1.5≤SPI<2.0 Severe wet
-1.5<SPI≤ -1.0 Moderate drought SPI≥2.0 Extreme wet
-1.0<SPI<1.0 Normal
Table 2 Climatic moisture categories based on the standardized precipitation index (SPI)
Fig. 2 Scatter plot of the relationship of the correlation coefficients between monthly average temperature and monthly precipitation after bias correlation for the 24 global climate models (GCMs) and multi-model ensemble (MME)
Model name Monthly average temperature Monthly precipitation Comprehensive ranking
INM-CM5-0 0.9968 1.026×10-5 0.9935 1.837×10-4 1
EC-Earth3-Veg 0.9968 2.628×10-5 0.9655 3.563×10-5 2
INM-CM4-8 0.9929 7.841×10-8 0.9683 6.751×10-6 3
ACCESS-ESM1-5 0.9999 5.232×10-5 0.9484 8.840×10-7 4
EC-Earth3 0.9973 4.450×10-5 0.9734 2.936×10-4 5
KACE-1-0-G 0.9967 3.122×10-5 0.9661 5.676×10-5 6
NorESM2-MM 0.9943 1.227×10-5 0.9584 1.255×10-6 7
CAS-ESM2-0 0.9953 3.563×10-5 0.9612 3.996×10-6 8
CMCC-CM2-SR5 0.9970 1.923×10-5 0.9539 1.168×10-4 9
MPI-ESM1-2-HR 0.9969 3.956×10-5 0.9585 8.615×10-5 10
AWI-CM-1-1-MR 0.9954 1.768×10-5 0.9768 2.617×10-3 11
CESM2-FV2 0.9959 1.046×10-4 0.9697 2.322×10-4 12
CanESM5 0.9913 3.599×10-7 0.9671 4.993×10-4 13
FGOALS-f3-L 0.9966 7.778×10-5 0.9435 3.122×10-5 14
FGOALS-g3 0.9948 8.615×10-5 0.9649 3.589×10-5 15
ACCESS-CM2 0.9948 2.267×10-4 0.9997 1.341×10-3 16
IPSL-CM6A-LR 0.9968 3.167×10-5 0.9270 3.250×10-3 17
BCC-CSM2-MR 0.9950 7.256×10-5 0.9617 2.016×10-3 18
NESM3 0.9918 6.686×10-5 0.9664 5.694×10-4 19
CESM2-WACCM 0.9954 1.382×10-4 0.9578 4.406×10-4 20
GFDL-ESM4 0.9937 6.719×10-5 0.9468 1.458×10-4 21
MIROC6 0.9929 1.316×10-4 0.9563 7.188×10-5 22
TaiESM1 0.9934 2.310×10-4 0.9414 3.235×10-5 23
SAM0-UNICON 0.9926 1.680×10-4 0.9393 4.123×10-3 24
Table 3 Quantitative evaluation results of monthly average temperature and monthly precipitation simulations after bias correlation from the 24 GCMs
Fig. 3 Temporal variations in annual average temperature (a) and annual precipitation (b) from the MME and CN05.1 during 1961-2014
Fig. 4 Increase rates of temperature and precipitation simulated from the 24 GCMs, CN05.1, and MME during 1961-2014
Fig. 5 Portrait diagrams showing the intra-annual distribution of the cumulative departure (CD) values of temperature and precipitation between the GCMs and CN05.1 during 1961-2014 at different time scales
Fig. 6 Temporal variations of standardized precipitation index (SPI) based on the CN05.1 (a1, b1, c1, and d1) and MME (a2, b2, c2, and, d2) during 1961-2014 at the 3-, 12-, 24-, and 60-month time scales. CN05.1_SP13, CN05.1_SPI12, CN05.1_SPI24, and CN05.1_SPI60 denote the SPI values at the 3-, 12-, 24-, and 60-month time scales, respectively, based on the CN05.1. MME_SPI3, MME_SPI12, MME_SPI24, and MME_SPI60 denote the SPI values at the 3-, 12-, 24-, and 60-month time scales, respectively, based on the MME. The SPI with values between -1.0 (the red dotted line) and 1.0 (the blue dotted line) indicates that the dry and wet conditions are normal in the region.
Fig. 7 Spatial distribution of the rates of change in annual average temperature (a1 and b1) and annual precipitation (a2 and b2) based on the CN05.1 and MME during 1961-2014. The dotted areas indicate that the change trends of temperature and precipitation are significant at the P<0.05 level, and the lined areas indicate that the change trends are significant at the P<0.01 level.
Fig. 8 Temporal variations in annual average temperature (a) and annual precipitation (b) during 2021-2100 under the SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios compared to the values from the CN05.1 in the historical period (1961-2014). The colored shaded areas indicate the range of simulated fluctuations for the individual models under a given scenario, and the solid lines indicate the simulated mean value after averaging over multiple models under a given scenario. SSP, shared socio-economic pathway.
Rate of change SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP5-8.5
Annual average temperature (°C/10a) 0.091** 0.283** 0.553** 0.726**
Annual precipitation (mm/10a) 0.681* 2.429** 3.897** 4.929**
Table 4 Rates of change in annual average temperature and annual precipitation during 2021-2100 under the SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios
Fig. 9 Magnitude of increasing of monthly average temperature (a) and monthly precipitation (b) during 2021-2100 under the SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios relative to the historical period
Fig. 10 Violin plot showing the trends and distribution of annual average temperature (a) and annual precipitation (b) in near-term (2021-2040), mid-term (2041-2060), and long-term (2081-2100) under the SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios. The violin shape indicates the distributional characteristics of annual average temperature and annual precipitation, with the width representing the degree of concentration. Black dots indicate the data points of annual average temperature and annual precipitation in different years. Box boundaries indicate the 25th and 75th percentiles across years, and whiskers below and above the box indicate the 10th and 90th percentiles, respectively. The horizontal line within each box indicates the median of data points.
Fig. 11 Spatial distribution of the rate of change in annual average temperature increase (warming) in near-term (2021-2040), mid-term (2041-2060), and long-term (2081-2100) under the SSP1-2.6 (a1-a3), SSP2-4.5 (b1-b3), SSP3-7.0 (c1-c3), and SSP5-8.5 (d1-d3) scenarios. SSP1-2.6_Near, SSP2-4.5_Near, SSP3-7.0_Near, and SSP5-8.5_Near mean SSPs in near-term; SSP1-2.6_Mid, SSP2-4.5_Mid, SSP3-7.0_Mid, and SSP5-8.5_Mid mean SSPs in mid-term; SSP1-2.6_Long, SSP2-4.5_Long, SSP3-7.0_Long, and SSP5-8.5_Long mean SSPs in long-term. The dotted areas indicate that the change trends of temperature are significant at the P<0.05 level, and the lined areas indicate that the change trends are significant at the P<0.01 level.
Fig. 12 Spatial distribution of the rate of change in annual precipitation in near-term (2021-2040), mid-term (2041-2060), and long-term (2081-2100) under the SSP1-2.6 (a1-a3), SSP2-4.5 (b1-b3), SSP3-7.0 (c1-c3), and SSP5-8.5 (d1-d3) scenarios. The red dotted areas indicate that the change trends of precipitation are significant at the P<0.05 level, and the lined areas indicate that the change trends are significant at the P<0.01 level.
Fig. 13 Temporal variations of the SPI values based on the MME during 2021-2100 at the 12- and 60-month time scales under the SSP1-2.6 (a1 and a2), SSP2-4.5 (b1 and b2), SSP3-7.0 (c1 and c2), and SSP5-8.5 (d1 and d2) scenarios. SSP1-2.6_SPI12, SSP2-4.5_SPI12, SSP3-7.0_SPI12, and SSP5-8.5_SPI12 denote the SPI values at the 12-month time scale under the SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios, respectively. SSP1-2.6_SPI60, SSP2-4.5_SPI60, SSP3-7.0_SPI60, and SSP5-8.5_SPI60 denote the SPI values at the 60-month time scale under the SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios, respectively. The SPI with values between -1.0 (the red dotted line) and 1.0 (the blue dotted line) indicates that the drought and wet conditions are normal in the region.
[1]   Aizizi Y, Kasimu A, Liang H W, et al. 2023. Evaluation of ecological quality status and changing trend in arid land based on the remote sensing ecological index: a case study in Xinjiang, China. Forests, 14(9): 1830, doi: 10.3390/f14091830.
[2]   Arora V K, Katavouta A, Williams R G, et al. 2020. Carbon-concentration and carbon-climate feedbacks in CMIP6 models and their comparison to CMIP5 models. Biogeosciences, 17(16): 4173-4222.
doi: 10.5194/bg-17-4173-2020
[3]   Charvet J, Liang S S, Laurent-Charvet S, et al. 2011. Palaeozoic tectonic evolution of the Tianshan belt, NW China. Science China Earth Sciences, 54(2): 166-184.
doi: 10.1007/s11430-010-4138-1
[4]   Chen F H, Xie T T, Yang Y J, et al. 2023. Discussion of the ''warming and wetting'' trend and its future variation in the drylands of Northwest China under global warming. Science China Earth Sciences, 66(6): 1241-1257.
doi: 10.1007/s11430-022-1098-x
[5]   Chen H P, Sun J Q, Lin W Q, et al. 2020. Comparison of CMIP6 and CMIP 5 models in simulating climate extremes. Science Bulletin, 65(17): 1415-1418.
doi: 10.1016/j.scib.2020.05.015
[6]   Chen X G, Li Y, Yao N, et al. 2022. Projected dry/wet regimes in China using SPEI under four SSP-RCPs based on statistically downscaled CMIP6 data. International Journal of Climatology, 42(16): 9357-9384.
doi: 10.1002/joc.v42.16
[7]   Chen Y L, Wang S S, Ren Z G, et al. 2019. Increased evapotranspiration from land cover changes intensified water crisis in an arid river basin in Northwest China. Journal of Hydrology, 574: 383-397.
doi: 10.1016/j.jhydrol.2019.04.045
[8]   Christensen J H, Krishna Kumar K, Aldrian E, et al. 2013. Climate phenomena and their relevance for future regional climate change. In: Stocker T F, Qin D, Plattner G K, et al. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 1217-1308.
[9]   Collins M, Chandler R E, Cox P M, et al. 2012. Quantifying future climate change. Nature Climate Change, 2(6): 403-409.
doi: 10.1038/nclimate1414
[10]   Deng H J, Chen Y N, Shi X, et al. 2014. Dynamics of temperature and precipitation extremes and their spatial variation in the arid region of Northwest China. Atmospheric Research, 138: 346-355.
doi: 10.1016/j.atmosres.2013.12.001
[11]   Dey P, Mishra A. 2017. Separating the impacts of climate change and human activities on streamflow: A review of methodologies and critical assumptions. Journal of Hydrology, 548: 278-290.
doi: 10.1016/j.jhydrol.2017.03.014
[12]   Dogan S, Berktay A, Singh V P. 2012. Comparison of multi-monthly rainfall-based drought severity indices, with application to semi-arid Konya closed basin, Turkey. Journal of Hydrology, 470-471: 255-268.
doi: 10.1016/j.jhydrol.2012.09.003
[13]   Du Y D, Wang J, Zhu D, et al. 2022. Comprehensive assessment of CMIP5 and CMIP 6 models in simulating and projecting precipitation over the global land. International Journal of Climatology, 42(13): 6859-6875.
doi: 10.1002/joc.v42.13
[14]   Ge S L, Jiang C, Wang J, et al. 2023. Analyzing temperature and precipitation extremes in China using multiple gridded datasets: A comparative evaluation. Weather and Climate Extremes, 42: 100614, doi: 10.1016/j.wace.2023.100614.
[15]   General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. 2017. Grades of Meteorological Drought (GB/T 20481-2017). Beijing: Standardization Administration of the People's Republic of China, (in Chinese)
[16]   Ghil M, Lucarini V. 2020. The physics of climate variability and climate change. Reviews of Modern Physics, 92(3): 035002, doi: 10.1103/RevModPhys.92.035002.
[17]   Greenwood M S. 2022. Geometry and the cause of the seasons: the changing hours of daylight and elevation angle of the sun at noon. The Physics Teacher, 60(8): 694-698.
doi: 10.1119/5.0038965
[18]   Hawkins E, Sutton R. 2011. The potential to narrow uncertainty in projections of regional precipitation change. Climate Dynamics, 37(1): 407-418.
doi: 10.1007/s00382-010-0810-6
[19]   Hu Y Y, Xu Y, Li J, et al. 2021. Evaluation on the performance of CMIP 6 global climate models with different horizontal resolution in simulating the precipitation over China. Climate Change Research, 17(6): 730-743. (in Chinese)
[20]   Javadinejad S, Dara R, Jafary F. 2020. Climate change scenarios and effects on snow-melt runoff. Civil Engineering Journal, 6(9): 1715-1725.
doi: 10.28991/cej-2020-03091577
[21]   Jiang D, Hu D, Tian Z P, et al. 2020. Differences between CMIP6 and CMIP 5 models in simulating climate over China and the East Asian monsoon. Advances in Atmospheric Sciences, 37(10): 1102-1118.
doi: 10.1007/s00376-020-2034-y
[22]   Jiang D B, Tian Z P, Lang X M. 2016. Reliability of climate models for China through the IPCC Third to Fifth Assessment Reports. International Journal of Climatology, 36(3): 1114-1133.
doi: 10.1002/joc.2016.36.issue-3
[23]   Jiang L W, O'Neill B C. 2017. Global urbanization projections for the Shared Socioeconomic Pathways. Global Environmental Change, 42: 193-199.
doi: 10.1016/j.gloenvcha.2015.03.008
[24]   Jiang T L, Su X L, Singh V P, et al. 2022. Spatio-temporal pattern of ecological droughts and their impacts on health of vegetation in Northwestern China. Journal of Environmental Management, 305: 114356, doi: 10.1016/j.jenvman.2021.114356.
[25]   Kc S, Lutz W. 2017. The human core of the shared socioeconomic pathways: Population scenarios by age, sex and level of education for all countries to 2100. Global Environmental Change, 42: 181-192.
doi: 10.1016/j.gloenvcha.2014.06.004
[26]   Kendall M G, Stuart A. 1979. The Advanced Theory of Statistics (2nd ed.). London: Charles Griffin and Co., Ltd.
[27]   Kharin V V, Zwiers F W, Zhang X B, et al. 2013. Changes in temperature and precipitation extremes in the CMIP5 ensemble. Climate Change, 119: 345-357.
[28]   Kim W Y, Jang M, Ko Y G, et al. 2018. Long-term trend assessment in environmental radioactivity around nuclear facilities in Daedeok site. 17-18 May, 2018. Transactions of the Korean Nuclear Society Spring Meeting. Jeju, Korea.
[29]   Kim Y H, Min S K, Zhang X, et al. 2020. Evaluation of the CMIP 6 multi-model ensemble for climate extreme indices. Weather and Climate Extremes, 29: 100269, doi: 10.1016/j.wace.2020.100269.
[30]   Knutti R. 2008. Should we believe model predictions of future climate change? Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 366(1885): 4647-4664.
[31]   Kundzewicz Z W, Krysanova V, Benestad R E, et al. 2018. Uncertainty in climate change impacts on water resources. Environmental Science & Policy, 79: 1-8.
[32]   Lafon T, Dadson S, Buys G, et al. 2013. Bias correction of daily precipitation simulated by a regional climate model: A comparison of methods. International Journal of Climatology, 33(6): 1367-1381.
doi: 10.1002/joc.v33.6
[33]   Lei X N, Xu C C, Liu F, et al. 2023. Evaluation of CMIP 6 models and multi-model ensemble for extreme precipitation over arid Central Asia. Remote Sensing, 15(9): 2376, doi: 10.3390/rs15092376.
[34]   Li B F, Chen Y N, Chen Z S, et al. 2012. Trends in runoff versus climate change in typical rivers in the arid region of northwest China. Quaternary International, 282: 87-95.
doi: 10.1016/j.quaint.2012.06.005
[35]   Li F R, Liu J L, Ren W, et al. 2018. Land-use change alters patterns of soil biodiversity in arid lands of northwestern China. Plant and Soil, 428(1): 371-388.
doi: 10.1007/s11104-018-3673-y
[36]   Li H, Hou E, Deng J W. 2022a. Spatio-temporal differentiation characteristic and evolution process of meteorological drought in Northwest China from 1960 to 2018. Frontiers in Earth Science, 10: 857953, doi: 10.3389/feart.2022.857953.
[37]   Li H B, Sheffield J, Wood E F. 2010. Bias correction of monthly precipitation and temperature fields from Intergovernmental Panel on Climate Change AR4 models using equidistant quantile matching. Journal of Geophysical Research: Atmosphere, 115(D10): D10101, doi: 10.1029/2009JD012882.
[38]   Li X M, Gao P, Li Q, et al. 2016. Muti-paths impact from climate change on snow cover in Tianshan mountainous area of China. Climate Change Research, 12(4): 303-312. (in Chinese)
[39]   Li X M, Simonovic S P, Li L H, et al. 2020. Performance and uncertainty analysis of a short-term climate reconstruction based on multi-source data in the Tianshan Mountains region, China. Journal of Arid Land, 12(3): 374-396.
doi: 10.1007/s40333-020-0065-y
[40]   Li X M, Liu X Y, Zhao K X, et al. 2023. Change in the potential snowfall phenology: past, present, and future in the Chinese Tianshan mountainous region, Central Asia. The Cryosphere, 17(6): 2437-2453.
doi: 10.5194/tc-17-2437-2023
[41]   Li X Q, He X X, Li X L, et al. 2022b. Spatiotemporal evaluation and estimation of precipitation of multi-source precipitation products in arid areas of northwest China—a case study of Tianshan Mountains. Water, 14(16): 2566, doi: 10.3390/w14162566.
[42]   Liu F, Qin T L, Yan D H, et al. 2020. Classification of instream ecological water demand and crucial values in a semi-arid river basin. Science of the Total Environment, 712: 136409, doi: 10.1016/j.scitotenv.2019.136409.
[43]   Luo M, Liu T, Meng F H, et al. 2019. Identifying climate change impacts on water resources in Xinjiang, China. Science of the Total Environment, 676: 613-626.
doi: 10.1016/j.scitotenv.2019.04.297
[44]   Mathew M. 2022. Nuclear energy: A pathway towards mitigation of global warming. Progress in Nuclear Energy, 143: 104080, doi: 10.1016/j.pnucene.2021.104080.
[45]   McKee T, Doesken N, Kleist J. 1993. The relationship of drought frequency and duration to time scales. Eighth Conference on Applied Climatology, 17(22): 179-183.
[46]   Muhtar M N, Wu C Z, Brzozowski M J, et al. 2022. Timing and spatial variation of deformation along the Kanggur-Huangshan shear zone in the Chinese Tianshan: Implications for regional differential uplift and mineralization. GSA Bulletin, 135(5-6): 1429-1442.
[47]   O'Neill B C, Tebaldi C, Vuuren D, et al. 2016. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geoscientific Model Development, 9(9): 3461-3482.
doi: 10.5194/gmd-9-3461-2016
[48]   Pi Y Y, Yu Y, Zhang Y, et al. 2020. Extreme temperature events during 1960-2017 in the arid region of Northwest China: spatiotemporal dynamics and associated large-scale atmospheric circulation. Sustainability, 12(3): 1198, doi: 10.3390/su12031198.
[49]   Qin J C, Su B D, Wang Y J, et al. 2021. Projection of temperature and precipitation under SSPs-RCPs scenarios over northwest China. Frontiers of Earth Science, 15: 23-37.
doi: 10.1007/s11707-020-0847-8
[50]   Randall D A, Wood R A, Bony S, et al. 2007. Climate models and their evaluation. In: Solomon S, Qin D, Manning M, et al. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the IPCC (FAR). Cambridge: Cambridge University Press, 589-662.
[51]   Salehnia N, Alizadeh A, Sanaeinejad H, et al. 2017. Estimation of meteorological drought indices based on AgMERRA precipitation data and station-observed precipitation data. Journal of Arid Land, 9(6): 797-809.
doi: 10.1007/s40333-017-0070-y
[52]   Salehnia N, Ahn J. 2022. Modelling and reconstructing tree ring growth index with climate variables through artificial intelligence and statistical methods. Ecological Indicators, 134: 108496, doi: 10.1016/j.ecolind.2021.108496.
[53]   Schaller N, Mahlstein I, Cermak J, et al. 2011. Analyzing precipitation projections: A comparison of different approaches to climate model evaluation. Journal of Geophysical Research: Atmospheres, 116(D10): D10118, doi: 10.1029/2010JD014963.
[54]   Scherrer S C. 2011. Present-day interannual variability of surface climate in CMIP 3 models and its relation to future warming. International Journal of Climatology, 31(10): 1518-1529.
doi: 10.1002/joc.v31.10
[55]   Shen Y J, Shen Y J, Guo Y, et al. 2020. Review of historical and projected future climatic and hydrological changes in mountainous semiarid Xinjiang (northwestern China), Central Asia. Catena, 187: 104343, doi: 10.1016/j.catena.2019.104343.
[56]   Shi L, Halik Ü, Mamat Z, et al. 2020. Spatio-temporal variation of ecosystem services value in the Northern Tianshan Mountain Economic zone from 1980 to 2030. PeerJ, 8: e9582, doi: 10.7717/peerj.9582.
[57]   Shi Y F, Shen Y P, Kang E, et al. 2007. Recent and future climate change in Northwest China. Climate Change, 80(3): 379-393.
[58]   Sun X T, Ding Q H, Wang S, et al. 2022a. Enhanced jet stream waviness induced by suppressed tropical Pacific convection during boreal summer. Nature Communications, 13(1): 1288, doi: 10.1038/s41467-022-28911-7.
[59]   Sun Y, Zhang X B, Ding Y H, et al. 2022b. Understanding human influence on climate change in China. National Science Review, 9(3): nwab113, doi: 10.1093/nsr/nwab113.
[60]   Tang Q H, Liu X C, Zhou Y Y, et al. 2022. Climate change and water security in the northern slope of the Tianshan Mountains. Geography and Sustainability, 3(3): 246-257.
doi: 10.1016/j.geosus.2022.08.004
[61]   Tang X L, Lv X, He Y. 2013. Features of climate change and their effects on glacier snow melting in Xinjiang, China. Comptes Rendus Geoscience, 345(2): 93-100.
[62]   Taylor K E. 2001. Summarizing multiple aspects of model performance in a single diagram. Journal of Geophysical Research: Atmospheres, 106(D7): 7183-7192.
doi: 10.1029/2000JD900719
[63]   Tebaldi C, Knutti R. 2007. The use of the multi-model ensemble in probabilistic climate projections. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365(1857): 2053-2075.
doi: 10.1098/rsta.2007.2076
[64]   Tian J X, Zhang Z X, Ahmed Z S, et al. 2021. Projections of precipitation over China based on CMIP 6 models. Stochastic Environmental Research and Risk Assessment, 35: 831-848.
doi: 10.1007/s00477-020-01948-0
[65]   Tokarska K B, Stolpe M B, Sippel S, et al. 2020. Past warming trend constrains future warming in CMIP6 models. Science Advances, 6(12): 14, doi: 10.1126/sciadv.aaz9549.
[66]   Tu J Q, Lu E. 2021. Understanding the uncertainty of the long-term precipitation trend under global warming through the water cycle. International Journal of Climatology, 42(8): 4273-4288.
doi: 10.1002/joc.v42.8
[67]   Visser H, Folkert R J M, Hoekstra J, et al. 2000. Identifying key sources of uncertainty in climate change projections. Climatic Change, 45(3-4): 421-457.
doi: 10.1023/A:1005516020996
[68]   Wang C, Li J, Li X, et al. 2012. Analysis on quasi-periodic characteristics of precipitation in recent 50 years and trend in next 20 years in China. Arid Zone Research, 29(1): 1-10. (in Chinese)
[69]   Wang L, Chen W. 2014. Equiratio cumulative distribution function matching as an improvement to the equidistant approach in bias correction of precipitation. Atmospheric Science Letters, 15(1): 1-6.
doi: 10.1002/asl2.2014.15.issue-1
[70]   Wang Q, Zhai P M, Qin D H. 2020. New perspectives on 'warming-wetting' trend in Xinjiang, China. Advances in Climate Change Research, 11(3): 252-260.
doi: 10.1016/j.accre.2020.09.004
[71]   Wang S J, Zhang M J, Li Z Q, et al. 2011. Glacier area variation and climate change in the Chinese Tianshan Mountains since 1960. Journal of Geographical Sciences, 21(2): 263-273.
doi: 10.1007/s11442-011-0843-8
[72]   Wang Y J, Qin D H. 2017. Influence of climate change and human activity on water resources in arid region of Northwest China: An overview. Advances in Climate Change Research, 8(4): 268-278.
doi: 10.1016/j.accre.2017.08.004
[73]   Weigel A P, Liniger M A, Appenzeller C. 2008. Can multi-model combination really enhance the prediction skill of probabilistic ensemble forecasts? Quarterly Journal of the Royal Meteorological Society, 134(630): 241-260.
doi: 10.1002/qj.v134:630
[74]   WMO (World Meteorological Organization). 2006. Drought Monitoring and Early Warning: Concepts, Progress and Future Challenges. Geneva: WMO.
[75]   Wu J, Gao X J. 2013. A gridded daily observation dataset over China region and comparison with the other datasets. Chinese Journal of Geophysics, 56(4): 1102-1111. (in Chinese)
[76]   Xiang J, Zhang L, Deng Y, et al. 2021. Projection and evaluation if extreme temperature and precipitation in major regions of China by CMIP6 models. Engineering Journal of Wuhan University, 54(1): 46-57, 81. (in Chinese)
[77]   Xu J H, Chen Y N, Li W H, et al. 2016. Understanding temporal and spatial complexity of precipitation distribution in Xinjiang, China. Theoretical and Applied Climatology, 123: 321-333.
doi: 10.1007/s00704-014-1364-z
[78]   Xu L, Zheng C L, Ma Y. 2021. Variations in precipitation extremes in the arid and semi-arid regions of China. International Journal of Climatology, 41(3): 1542-1554.
doi: 10.1002/joc.v41.3
[79]   Xu L L, Wang A H. 2019. Application of the bias correction and spatial downscaling algorithm on the temperature extremes from CMIP 5 multimodel ensembles in China. Earth and Space Science, 6(12): 2508-2524.
doi: 10.1029/2019EA000995
[80]   Xu Y, Gao X, Shen Y, et al. 2009. A daily temperature dataset over China and its application in validating a RCM simulation. Advances in Atmospheric Sciences, 26(4): 763-772.
doi: 10.1007/s00376-009-9029-z
[81]   Yang F, Lu H, Yang K, et al. 2017a. Evaluation of multiple forcing data sets for precipitation and shortwave radiation over major land areas of China. Hydrology and Earth System Sciences, 21(11): 5805-5821.
doi: 10.5194/hess-21-5805-2017
[82]   Yang P, Xia J, Zhang Y Y, et al. 2017b. Temporal and spatial variations of precipitation in Northwest China during 1960-2013. Atmospheric Research, 183: 283-295.
doi: 10.1016/j.atmosres.2016.09.014
[83]   Yang X L, Zhou B T, Xu Y, et al. 2021. CMIP 6 evaluation and projection of temperature and precipitation over China. Advances in Atmospheric Sciences, 38(5): 817-830.
doi: 10.1007/s00376-021-0351-4
[84]   Yang X Y, Li D W, Yang Z, et al. 2023. Revealing historical observations and future projections of precipitation over Northwest China based on dynamic downscaled CMIP6 simulations. Frontiers in Earth Science, 10: 1090221, doi: 10.3389/feart.2022.1090221.
[85]   Yao J Q, Chen Y N, Guan X F, et al. 2022. Recent climate and hydrological changes in a mountain-basin system in Xinjiang, China. Earth-Science Reviews, 226: 103957, doi: 10.1016/j.earscirev.2022.103957.
[86]   Yu X, Lei J Q, Gao X. 2022. An over review of desertification in Xinjiang, Northwest China. Journal of Arid Land, 14(11): 1181-1195.
doi: 10.1007/s40333-022-0077-x
[87]   Yu Y, Pi Y Y, Yu X, et al. 2019. Climate change, water resources and sustainable development in the arid and semi-arid lands of Central Asia in the past 30 years. Journal of Arid Land, 11(1): 1-14.
doi: 10.1007/s40333-018-0073-3
[88]   Zarrin A, Dadashi-Roudbari A. 2021. Projection of future extreme precipitation in Iran based on CMIP6 multi-model ensemble. Theoretical and Applied Climatology, 144: 643-660.
doi: 10.1007/s00704-021-03568-2
[89]   Zhang Q, Sun P, Li J F, et al. 2014. Spatiotemporal properties of droughts and related impacts on agriculture in Xinjiang, China. International Journal of Climatology, 35(7): 1254-1266.
doi: 10.1002/joc.2015.35.issue-7
[90]   Zhang Q, Zhu B, Yang J, et al. 2021a. New characteristics about the climate humidification trend in Northwest China. Chinese Science Bulletin, 66(28-29): 3757-3771. (in Chinese)
[91]   Zhang W X, Furtado K, Wu P L, et al. 2021b. Increasing precipitation variability on daily-to-multiyear time scales in a warmer world. Science Advances, 7(31): eabf8021, doi: 10.1126/sciadv.abf8021.
[92]   Zheng C L, Wang Q. 2014. Spatiotemporal variations of reference evapotranspiration in recent five decades in the arid land of northwestern China. Hydrological Processes, 28(25): 6124-6134.
doi: 10.1002/hyp.v28.25
[93]   Zhou T J, Chen Z M, Chen X L, et al. 2021. Interpreting IPCC AR6: future global climate based on projection under scenarios and on near-term information. Climate Change Research, 17(6): 652-663. (in Chinese)
[94]   Zhu B, Xue L Q, Wei G H, et al. 2019. CMIP 5 projected changes in temperature and precipitation in arid and humid basins. Theoretical and Applied Climatology, 136(3): 1133-1144.
doi: 10.1007/s00704-018-2542-1
[95]   Zhu H H, Jiang Z H, Li L. 2021. Projection of climate extremes in China, an incremental exercise from CMIP 5 to CMIP6. Science Bulletin, 66(24): 2528-2537.
doi: 10.1016/j.scib.2021.07.026
[1] WANG Baoliang, WANG Hongxiang, JIAO Xuyang, HUANG Lintong, CHEN Hao, GUO Wenxian. Runoff change in the Yellow River Basin of China from 1960 to 2020 and its driving factors[J]. Journal of Arid Land, 2024, 16(2): 168-194.
[2] ZHAO Yaxuan, CAO Bo, SHA Linwei, CHENG Jinquan, ZHAO Xuanru, GUAN Weijin, PAN Baotian. Land use and cover change and influencing factor analysis in the Shiyang River Basin, China[J]. Journal of Arid Land, 2024, 16(2): 246-265.
[3] ZHAO Xuqin, LUO Min, MENG Fanhao, SA Chula, BAO Shanhu, BAO Yuhai. Spatiotemporal changes of gross primary productivity and its response to drought in the Mongolian Plateau under climate change[J]. Journal of Arid Land, 2024, 16(1): 46-70.
[4] Mitiku A WORKU, Gudina L FEYISA, Kassahun T BEKETIE, Emmanuel GARBOLINO. Projecting future precipitation change across the semi-arid Borana lowland, southern Ethiopia[J]. Journal of Arid Land, 2023, 15(9): 1023-1036.
[5] QIN Guoqiang, WU Bin, DONG Xinguang, DU Mingliang, WANG Bo. Evolution of groundwater recharge-discharge balance in the Turpan Basin of China during 1959-2021[J]. Journal of Arid Land, 2023, 15(9): 1037-1051.
[6] MA Jinpeng, PANG Danbo, HE Wenqiang, ZHANG Yaqi, WU Mengyao, LI Xuebin, CHEN Lin. Response of soil respiration to short-term changes in precipitation and nitrogen addition in a desert steppe[J]. Journal of Arid Land, 2023, 15(9): 1084-1106.
[7] ZHANG Hui, Giri R KATTEL, WANG Guojie, CHUAI Xiaowei, ZHANG Yuyang, MIAO Lijuan. Enhanced soil moisture improves vegetation growth in an arid grassland of Inner Mongolia Autonomous Region, China[J]. Journal of Arid Land, 2023, 15(7): 871-885.
[8] ZHANG Zhen, XU Yangyang, LIU Shiyin, DING Jing, ZHAO Jinbiao. Seasonal variations in glacier velocity in the High Mountain Asia region during 2015-2020[J]. Journal of Arid Land, 2023, 15(6): 637-648.
[9] GAO Xiang, WEN Ruiyang, Kevin LO, LI Jie, YAN An. Heterogeneity and non-linearity of ecosystem responses to climate change in the Qilian Mountains National Park, China[J]. Journal of Arid Land, 2023, 15(5): 508-522.
[10] Reza DEIHIMFARD, Sajjad RAHIMI-MOGHADDAM, Farshid JAVANSHIR, Alireza PAZOKI. Quantifying major sources of uncertainty in projecting the impact of climate change on wheat grain yield in dryland environments[J]. Journal of Arid Land, 2023, 15(5): 545-561.
[11] Sakine KOOHI, Hadi RAMEZANI ETEDALI. Future meteorological drought conditions in southwestern Iran based on the NEX-GDDP climate dataset[J]. Journal of Arid Land, 2023, 15(4): 377-392.
[12] Mehri SHAMS GHAHFAROKHI, Sogol MORADIAN. Investigating the causes of Lake Urmia shrinkage: climate change or anthropogenic factors?[J]. Journal of Arid Land, 2023, 15(4): 424-438.
[13] ZHANG Yixin, LI Peng, XU Guoce, MIN Zhiqiang, LI Qingshun, LI Zhanbin, WANG Bin, CHEN Yiting. Temporal and spatial variation characteristics of extreme precipitation on the Loess Plateau of China facing the precipitation process[J]. Journal of Arid Land, 2023, 15(4): 439-459.
[14] Adnan ABBAS, Asher S BHATTI, Safi ULLAH, Waheed ULLAH, Muhammad WASEEM, ZHAO Chengyi, DOU Xin, Gohar ALI. Projection of precipitation extremes over South Asia from CMIP6 GCMs[J]. Journal of Arid Land, 2023, 15(3): 274-296.
[15] ZHAO Lili, LI Lusheng, LI Yanbin, ZHONG Huayu, ZHANG Fang, ZHU Junzhen, DING Yibo. Monitoring vegetation drought in the nine major river basins of China based on a new developed Vegetation Drought Condition Index[J]. Journal of Arid Land, 2023, 15(12): 1421-1438.