Please wait a minute...
Journal of Arid Land  2021, Vol. 13 Issue (12): 1215-1229    DOI: 10.1007/s40333-021-0028-y
Original article     
Contribution of underlying terrain to sand dunes: evidence from the Qaidam Basin, Northwest China
LI Jiyan1,*(), QU Xin1, DONG Zhibao2, CAI Yingying1, LIU Min1, REN Xiaozong1, CUI Xujia1
1School of Geography Science, Taiyuan Normal University, Jinzhong 030619, China
2School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
Download: HTML     PDF(3434KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Underlying terrain strongly influences dune formation. However, the impacts of underlying terrain on the dune formation are poorly studied. In the present research, we focused on dunes that formed in the alluvial fans and dry salt flats in the Qaidam Basin, Northwest China. We quantified the dunes' sediment characteristics on different types of underlying terrain and the terrain's effects on the surface quartz grains by analyzing grain-size distribution, soluble salt contents and grain surface micro-textures. Results showed that barchan dunes were dominated by medium sands with a unimodal frequency distribution, whose peak corresponded to the saltation load. Linear dunes were mainly composed of fine sands with a bimodal frequency distribution, whose main peak represented the saltation load, and whose secondary peak represented the modified saltation or suspension load. Sand was transported from source area by running water (inland rivers) over short distances and by wind over relatively longer distances. Thus, quartz grains had poor roundness and were dominated by sub-angular and angular shapes. Surface micro-textures indicated that dune sands were successively transported by exogenic agents (glaciation, fluviation and wind). Soluble salt contents were low in dunes that developed in the alluvial fans, which represented a low-energy chemical environment, so the grain surface micro-textures mainly resulted from mechanical erosion, with weak micro-textures formed by SiO2 solution and precipitation. However, soluble salt contents were much higher in dunes that developed in the dry salt flats, which indicated a high-energy chemical environment. Therefore, in addition to micro-structures caused by mechanical erosion, micro-textures formed by SiO2 solution and precipitation also well developed. Our results improve understanding of the sediment characteristics of dune sands and the effects of underlying terrain on dune development in the Qaidam Basin, China.



Key wordsdune      grain-size distribution      soluble salts      surface micro-texture      Qaidam Basin     
Received: 08 August 2021      Published: 10 December 2021
Corresponding Authors: *LI Jiyan (E-mail: jyli@tynu.edu.cn)
Cite this article:

LI Jiyan, QU Xin, DONG Zhibao, CAI Yingying, LIU Min, REN Xiaozong, CUI Xujia. Contribution of underlying terrain to sand dunes: evidence from the Qaidam Basin, Northwest China. Journal of Arid Land, 2021, 13(12): 1215-1229.

URL:

http://jal.xjegi.com/10.1007/s40333-021-0028-y     OR     http://jal.xjegi.com/Y2021/V13/I12/1215

Fig. 1 (a), geographical settings of the Qaidam Basin; (b), location of samples.
Fig. 2 Location and sampling position of the study dunes
Fig. 3 Sample positions of dune surface sediments for barchan (BD, a) and linear (LD, b) dunes. SSW, south-southwest; NNE, north-northeast.
Sample Clay
(%)
Silt
(%)
VFS
(%)
FS
(%)
MS
(%)
CS
(%)
VCS
(%)
Soluble
salt (%)
Mz (φ) σI SKI Kg
BD01 0.00 0.00 0.13 36.51 61.10 2.13 0.00 0.13 1.84 0.44 0.01 0.95
BD02 0.00 0.00 0.68 36.92 57.75 4.62 0.00 0.03 1.83 0.51 0.01 0.95
BD03 0.00 0.91 0.41 11.36 59.10 27.32 0.00 0.90 1.35 0.56 0.04 0.96
LD01-1 7.76 22.80 15.76 24.68 17.83 2.03 0.00 9.14 3.65 2.21 0.46 1.12
LD01-2 7.28 12.74 26.88 39.87 8.15 0.00 0.00 5.09 3.57 1.82 0.60 2.15
LD01-3 5.43 12.45 14.24 33.24 24.90 2.24 0.00 7.51 2.92 1.78 0.50 1.77
LD01-4 12.02 33.42 19.29 16.34 7.92 0.18 0.00 10.83 4.56 2.37 0.36 1.03
LD02-1 0.42 1.68 9.46 23.02 20.51 28.59 15.33 0.99 1.36 1.29 0.12 0.76
LD02-2 1.58 3.36 16.92 69.72 6.99 0.00 0.00 1.42 2.65 0.72 0.30 2.12
LD02-3 0.17 1.31 3.19 10.71 34.74 41.07 8.16 0.65 1.08 0.90 0.19 1.11
LD02-4 6.98 32.39 15.59 14.67 5.21 4.22 2.54 18.39 4.20 2.36 0.17 1.07
LD03-1 0.03 0.86 1.35 0.43 16.86 55.56 24.27 0.65 0.45 0.64 0.04 0.99
LD03-2 2.47 4.62 33.89 55.62 1.14 0.00 0.00 2.26 2.93 0.85 0.36 2.59
LD03-3 1.91 6.91 14.63 23.86 27.58 20.40 1.53 3.18 2.04 1.54 0.26 1.27
LD03-4 7.26 19.24 17.90 23.73 15.20 8.16 0.59 7.92 3.42 2.19 0.34 1.16
Table 1 Grain-size fractions and soluble salt contents for dune surface sediments
Fig. 4 Grain-size frequency (blue line) and cumulative frequency (red line) curves for dune surface sediments
Fig. 5 Grain-size parameters (σI, sorting (a); SKI, skewness (b); Kg, kurtosiss (c)) for dune surface sediments as a function of mean particle size (Mz)
Fig. 6 Relationship between sand content and total content of silt, clay and salt
Sample Rounded (%) Sub-rounded (%) Sub-angular (%) Angular (%)
BD01 (n=28) 21.43 32.14 32.14 14.29
BD02 (n=22) 4.55 45.45 50.00 0.00
BD03 (n=24) 4.17 37.50 41.67 16.67
LD01-1 (n=48) 0.00 29.17 41.67 29.17
LD01-2 (n=32) 3.13 37.50 40.63 18.75
LD01-3 (n=33) 12.12 42.42 18.18 27.27
LD01-4 (n=50) 0.00 26.00 48.00 26.00
LD02-1 (n=35) 5.71 11.43 48.57 34.29
LD02-2 (n=44) 0.00 6.82 38.64 54.55
LD02-3 (n=21) 19.05 14.29 38.10 28.57
LD02-4 (n=38) 0.00 18.42 55.26 26.32
LD03-1 (n=10) 0.00 50.00 40.00 10.00
LD03-2 (n=38) 0.00 10.53 44.74 44.74
LD03-3 (n=23) 0.00 21.74 69.57 8.70
LD03-4 (n=30) 3.33 10.00 30.00 56.67
Table 2 Frequency of roundness features of quartz sand grains for dune surface sediments
Sedimentary environment Micro-texture and corresponding code
Mechanical erosion Glacial environment Conchoidal fracture-1, cleavage plane-2, striation-3, impact pits-4
Subaqueous environment Subaqueous polished surface-5, V-shaped depression-6, straight impact groove-7, bent impact groove-8
Aeolian environment Crescent-shaped depression-9, dish-shaped depression-10, pockmarked pit-11, upturned cleavage plate-12
Chemical environment SiO2 solution Solution pits-13, solution grooves-14, scaly exfoliation-15
SiO2 precipitation Siliceous sphere-16, siliceous scale-17, siliceous film-18, botryoidal precipitate of SiO2-19
Table 3 Relationship between surface micro-textures of quartz sand grains and exogenic agents responsible for these features
Fig. 7 Surface micro-textures of quartz sand grains for sand dune sediments. The connotations of the numbers are explained in Table 3.
Fig. 8 Frequency of surface micro-textures on quartz sand grains. Table 3 defines the meaning of the numbers for micro-texture type and Figure 7 illustrates these features.
Fig. 9 Lake water that has entered inter-dune area in the field of linear dunes during spring melting of snow and ice
[1]   Bao F, Dong Z B. 2015. Mineral composition and origin of surface sediment in the desert of the Qaidam Basin. Journal of Northwest University, 45(1): 90-96. (in Chinese)
[2]   Bristow C, Livingstone I. 2019. Dune sediments. In: Livingstone I, Warren A. Aeolian Geomorphology. Chichester: John Wiley & Sons, 209-236.
[3]   Chen B X, Lü M Q. 1959. Aeolian landforms in the Qaidam Basin. Journal of Nanjing University, (6): 35-42. (in Chinese)
[4]   Dong Z B, Wang T, Wang X M. 2004. Geomorphology of the megadunes in the Badain Jaran Desert. Geomorphology, 60(1-2): 191-203.
doi: 10.1016/j.geomorph.2003.07.023
[5]   Dong Z B, Wei Z H, Qian G Q, et al. 2010. ''Raked'' linear dunes in the Kumtagh Desert, China. Geomorphology, 123(1-2): 122-128.
doi: 10.1016/j.geomorph.2010.07.005
[6]   Dong Z B, Hu G Y, Qian G Q, et al. 2017a. High-altitude aeolian research on the Tibetan Plateau. Reviews of Geophysics, 55(4): 864-901.
doi: 10.1002/rog.v55.4
[7]   Dong Z B, Lu J H, Qian G Q, et al. 2017b. Tibetan Plateau Atlas of Aeolian Geomorphology. Xi'an: Xi'an Map Press, 14-37. (in Chinese)
[8]   Du S S, Wu Y Q, Tan L H. 2018. Geochemical evidence for the provenance of aeolian deposits in the Qaidam Basin, Tibetan Plateau. Aeolian Research, 32: 60-70.
doi: 10.1016/j.aeolia.2018.01.005
[9]   Folk R L, Ward W C. 1957. Brazos River bar: a study in the significance of grain size parameters. Journal of Sedimentary Research, 27(1): 3-26.
doi: 10.1306/74D70646-2B21-11D7-8648000102C1865D
[10]   Gao C H, Mu G J, Yan S, et al. 1995. Features of surface microtextures of quartz sand grains in the hinterland of the Taklimakan Desert and their environmental significance. Geological Review, 41(2): 152-158. (in Chinese)
[11]   Garzanti E, Vermeesch P, Andò S, et al. 2013. Provenance and recycling of Arabian desert sand. Earth-Science Reviews, 120: 1-19.
doi: 10.1016/j.earscirev.2013.01.005
[12]   Han W X, Ma Z B, Lai Z P, et al. 2014. Wind erosion on the north-eastern Tibetan Plateau: constraints from OSL and U-Th dating of playa salt crust in the Qaidam Basin. Earth Surface Processes and Landforms, 39(6): 779-789.
doi: 10.1002/esp.v39.6
[13]   Hu F G, Yang X P. 2016. Geochemical and geomorphological evidence for the provenance of aeolian deposit in the Badain Jaran Desert, northwestern China. Quaternary Science Reviews, 131: 179-192.
doi: 10.1016/j.quascirev.2015.10.039
[14]   Kocurek G, Lancaster N. 1999. Aeolian system sediment state: theory and Mojave Desert Kelso dune field example. Sedimentology, 46(3): 505-515.
doi: 10.1046/j.1365-3091.1999.00227.x
[15]   Krinsley D H, Doornkamp J C. 1973. Atlas of Quartz Sand Surface Textures. Cambridge: Cambridge University Press, 1-91.
[16]   Lancaster N. 2013. Sand seas and dune fields. In: Shroder J, Lancaster N, Sherman D J, et al. Treatise on Geomorphology. San Diego: Academic Press, 219-245.
[17]   Lancaster N, Baker S, Bacon S, et al. 2015. Owens Lake dune fields: composition, sources of sand, and transport pathways. CATENA, 134: 41-49.
doi: 10.1016/j.catena.2015.01.003
[18]   Li J Y, Dong Z B, Zhang Z C, et al. 2015. Grain-size characteristics of linear dunes on the northern margin of Qarhan Salt Lake, northwestern China. Journal of Arid Land, 7(4): 438-449.
doi: 10.1007/s40333-015-0005-4
[19]   Li J Y, Dong Z B, Qian G Q, et al. 2016. Yardangs in the Qaidam Basin, northwestern China: distribution and morphology. Aeolian Research, 20: 89-99.
doi: 10.1016/j.aeolia.2015.11.002
[20]   Li J Y, Zhao E D, Liu W L. 2018. Provenance and transport pathways of linear dunes in the northern margin of Qarhan Salt Lake of China. Journal of Desert Research, 38(5): 909-918. (in Chinese)
[21]   Li J Y, Zhou L, Yan J L, et al. 2020. Source of aeolian dune sands on the northern margin of Qarhan Salt Lake, Qaidam Basin, NW China. Geological Journal, 55(5): 3643-3653.
doi: 10.1002/gj.v55.5
[22]   Lü P, Dong Z B, Rozier O. 2018. The combined effect of sediment availability and wind regime on the morphology of aeolian sand dunes. Journal of Geophysical Research: Earth Surface, 123(11): 2878-2886.
doi: 10.1029/2017JF004361
[23]   Muhs D R, Reynolds R L, Been J. 2003. Aeolian sand transport pathways in the southwestern United States: importance of the Colorado River and local sources. Quaternary International, 104(1): 3-18.
doi: 10.1016/S1040-6182(02)00131-3
[24]   Powers M C. 1953. A new roundness scale for sedimentary particles. Journal of Sedimentary Petrology, 23(2): 117-119.
[25]   Pye K, Tsoar H. 2009. Aeolian Sand and Sand Dunes. Berlin: Springer, 141-173.
[26]   Qian G Q, Yang Z L, Luo W Y, et al. 2020. Morphological and sedimentary characteristics of dome dunes in the northeastern Qaidam Basin, China. Geomorphology, 350: 106923, doi: 10.1016/j.geomorph.2019.106923.
doi: 10.1016/j.geomorph.2019.106923
[27]   Qian Z Y. 1986. Investigations on the sand harm to Qinghai-Xizang railway in Yanqiao area and sand control plan. Journal of Desert Research, 6(2): 27-30.
[28]   Rubin D M, Hesp P A. 2009. Multiple origins of linear dunes on Earth and Titan. Nature Geoscience, 2: 653-658.
doi: 10.1038/ngeo610
[29]   Scheidt S, Lancaster N, Ramsey M. 2011. Eolian dynamics and sediment mixing in the Gran Desierto, Mexico, determined from thermal infrared spectroscopy and remote-sensing data. Geological Society of America Bulletin, 123(7-8): 1628-1644.
doi: 10.1130/B30338.1
[30]   Vos K, Vandenberghe N, Elsen J. 2014. Surface textural analysis of quartz grains by scanning electron microscopy (SEM): From sample preparation to environmental interpretation. Earth-Science Reviews, 128: 93-104.
doi: 10.1016/j.earscirev.2013.10.013
[31]   Wasson R J, Hyde R. 1983. Factors determining desert dune type. Nature, 304: 337-339.
doi: 10.1038/304337a0
[32]   Wu Z. 2010. Geomorphology of Wind-drift Sands and Their Controlled Engineering. Beijing: Science Press, 236-286. (in Chinese)
[33]   Xie Y Y. 1984. Atlas of Quartz Sand Surface Textural Features of China Micrographs. Beijing: China Ocean Press, 1-148. (in Chinese)
[34]   Xu Z W, Lu H Y, Zhao C F, et al. 2010. Composition, origin and weathering process of surface sediment in Kumtagh Desert, northwest China. Acta Geographica Sinica, 65(1): 53-64. (in Chinese)
[35]   Yu L P, Lai Z P. 2012. OSL chronology and palaeoclimatic implications of aeolian sediments in the eastern Qaidam Basin of the northeastern Qinghai-Tibetan Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology, 337-338: 120-129.
doi: 10.1016/j.palaeo.2012.04.004
[36]   Yu L P, Lai Z P. 2014. Holocene climate change inferred from stratigraphy and OSL chronology of aeolian sediments in the Qaidam Basin, northeastern Qinghai-Tibetan Plateau. Quaternary Research, 81(3): 488-499.
doi: 10.1016/j.yqres.2013.09.006
[37]   Yu L P, Lai Z P, An P, et al. 2015. Aeolian sediments evolution controlled by fluvial processes, climate change and human activities since LGM in the Qaidam Basin, Qinghai-Tibetan Plateau. Quaternary International, 372: 23-32.
doi: 10.1016/j.quaint.2014.09.043
[38]   Zeng Y N, Feng Z D, Cao G C. 2003. Desert formation and evolution in Qaidam Basin since the last glacial epoch. Acta Geographica Sinica, 58(3): 452-457. (in Chinese)
[39]   Zhang C, Li Z L, Chen Q J, et al. 2020. Provenance of aeolian sands in the Ulan Buh Desert, northwestern China, revealed by heavy mineral assemblages. CATENA, 193: 104624, doi: 10.1016/j.catena.2020.104624.
doi: 10.1016/j.catena.2020.104624
[40]   Zhang J Z, Liu E B. 1985. Hydrological characteristics of streams in Qaidam Basin. Acta Geographica Sinica, 52(3): 242-255. (in Chinese)
[41]   Zhang Z C, Dong Z B, Qian G Q, et al. 2018. Formation and development of dunes in the northern Qarhan Desert, central Qaidam Basin, China. Geological Journal, 53(3): 1123-1134.
doi: 10.1002/gj.v53.3
[42]   Zhou J X, Zhu Y, Yuan C Q. 2012. Origin and lateral migration of linear dunes in the Qaidam Basin of NW China revealed by dune sediments, internal structures, and optically stimulated luminescence ages, with implications for linear dunes on Titan. GSA Bulletin, 124(7-8): 1147-1154.
doi: 10.1130/B30550.1
[43]   Zhu Z D, Wu Z, Liu S, et al. 1980. An Outline of Chinese Desert. Beijing: Science Press, 77-78. (in Chinese)
[1] WU Wangyang, ZHANG Dengshan, TIAN Lihui, SHEN Tingting, GAO Bin, YANG Dehui. Morphological change and migration of revegetated dunes in the Ketu Sandy Land of the Qinghai Lake, China[J]. Journal of Arid Land, 2023, 15(7): 827-841.
[2] WANG Wang, CHEN Jiaqi, CHEN Jiansheng, WANG Tao, ZHAN Lucheng, ZHANG Yitong, MA Xiaohui. Contribution of groundwater to the formation of sand dunes in the Badain Jaran Desert, China[J]. Journal of Arid Land, 2023, 15(11): 1340-1354.
[3] Alamusa , SU Yuhang, YIN Jiawang, ZHOU Quanlai, WANG Yongcui. Effect of sand-fixing vegetation on the hydrological regulation function of sand dunes and its practical significance[J]. Journal of Arid Land, 2023, 15(1): 52-62.
[4] MENG Nan, WANG Nai'ang, ZHAO Liqiang, NIU Zhenmin, SUN Jiaqi. Wind regimes and associated sand dune types in the hinterland of the Badain Jaran Desert, China[J]. Journal of Arid Land, 2022, 14(5): 473-489.
[5] Hossein GHAZANFARPOUR, Mohsen POURKHOSRAVANI, Sayed H MOUSAVI, Ali MEHRABI. Mathematical and statistical modeling of morphometric and planar parameters of barchans in Pashoeyeh Erg in the west of Lut Desert, Iran[J]. Journal of Arid Land, 2021, 13(8): 801-813.
[6] YANG Junhuai, XIA Dunsheng, WANG Shuyuan, TIAN Weidong, MA Xingyue, CHEN Zixuan, GAO Fuyuan, LING Zhiyong, DONG Zhibao. Near-surface wind environment in the Yarlung Zangbo River basin, southern Tibetan Plateau[J]. Journal of Arid Land, 2020, 12(6): 917-936.
[7] PANG Yingjun, WU Bo, LI Yonghua, XIE Shengbo. Morphological characteristics and dynamic changes of seif dunes in the eastern margin of the Kumtagh Desert, China[J]. Journal of Arid Land, 2020, 12(5): 887-902.
[8] CHEN Yanfeng, CAO Qiumei, LI Dexin, LIU Huiliang, ZHANG Daoyuan. Effects of temperature and light on seed germination of ephemeral plants in the Gurbantunggut Desert, China: implications for vegetation restoration[J]. Journal of Arid Land, 2019, 11(6): 916-927.
[9] Chao LI, Zhibao DONG, Shuyan YIN, Guoxiang CHEN, Junhuai YANG. Influence of salinity and moisture on the threshold shear velocity of saline sand in the Qarhan Desert, Qaidam Basin of China: A wind tunnel experiment[J]. Journal of Arid Land, 2019, 11(5): 674-684.
[10] Hai ZHU, Shunjun HU, Jingsong YANG, KARAMAGE Fidele, Hao LI, Sihua FU. Spatio-temporal variation of soil moisture in a fixed dune at the southern edge of the Gurbantunggut Desert in Xinjiang, China[J]. Journal of Arid Land, 2019, 11(5): 685-700.
[11] Xuemin GAO, Zhibao DONG, Zhenghu DUAN, Min LIU, Xujia CUI, Jiyan LI. Wind regime for long-ridge yardangs in the Qaidam Basin, Northwest China[J]. Journal of Arid Land, 2019, 11(5): 701-712.
[12] Yong WANG, Ping YAN, Guang HAN, Wei WU, Run ZHANG. Sand source and formation mechanism of riverine sand dunes: a case study in Xiangshui River, China[J]. Journal of Arid Land, 2019, 11(4): 525-536.
[13] Weimin ZHANG, Lihai TAN, Zhishan AN, Kecun ZHANG, Yang GAO, Qinghe NIU. Morphological variation of star dune and implications for dune management: a case study at the Crescent Moon Spring scenic spot of Dunhuang, China[J]. Journal of Arid Land, 2019, 11(3): 357-370.
[14] Jinhu ZHANG, Nai'ang WANG, Zhenmin NIU, Jie SUN, Chunyu DONG, LyuLyu ZHANG. Stable isotope analysis of water sources for Tamarix laxa in the mega-dunes of the Badain Jaran Desert, China[J]. Journal of Arid Land, 2018, 10(6): 821-832.
[15] Qingsheng LIU, Gaohuan LIU, Chong HUANG. Monitoring desertification processes in Mongolian Plateau using MODIS tasseled cap transformation and TGSI time series[J]. Journal of Arid Land, 2018, 10(1): 12-26.