Mathematical and statistical modeling of morphometric and planar parameters of barchans in Pashoeyeh Erg in the west of Lut Desert, Iran
Hossein GHAZANFARPOUR1, Mohsen POURKHOSRAVANI1,*(), Sayed H MOUSAVI2, Ali MEHRABI3
1 Department of Geography and Urban Planning, Shahid Bahonar University of Kerman, Kerman 7618965984, Iran 2 Department of Geography and Ecotourism, Faculty of Natural Resources and Geosciences, University of Kashan, Kashan 8731753153, Iran 3 Department of Geography and Urban Planning, Shahid Bahonar University of Kerman, Kerman 7618965984, Iran
Barchan dunes are among the most common accumulative phenomena made by wind erosion, which are usually formed in regions where the prevailing wind direction is almost constant throughout the year and there is not enough sand to completely cover the land surface. Barchans are among the most common windy landscapes in Pashoueyeh Erg in the west of Lut Desert, Iran. This study aims to elaborate on morphological properties of barchans in this region using mathematical and statistical models. The results of these methods are very important in investigating barchan shapes and identifying their behavior. Barchan shapes were mathematically modeled by simulating them in the coordinate system through nonlinear parabolic equations, so that two separate equations were calculated for barchan windward and slip-face parabolas. The type and intensity of relationships between barchan morphology and mathematical parameters were determined by the statistical modeling. The results indicated that the existing relationships followed the power correlation with the maximum coefficient of determination and minimum error of estimate. Combining the above two methods is a powerful basis for stimulating barchans in virtual and laboratory environments. The most important result of this study is to convert the mathematical and statistical models of barchan morphology to each other. Focal length is one of the most important parameters of barchan parabolas, suggesting different states of barchans in comparison with each other. As the barchan's focal length decreases, its opening becomes narrower, and the divergence of the barchan's horns reduces. Barchans with longer focal length have greater width, dimensions, and volume. In general, identifying and estimating the morphometric and planar parameters of barchans is effective in how they move, how much they move, and how they behave in the environment. These cases play an important role in the management of desert areas.
Hossein GHAZANFARPOUR, Mohsen POURKHOSRAVANI, Sayed H MOUSAVI, Ali MEHRABI. Mathematical and statistical modeling of morphometric and planar parameters of barchans in Pashoeyeh Erg in the west of Lut Desert, Iran. Journal of Arid Land, 2021, 13(8): 801-813.
Table 1 Monthly average of climatic parameters in the study area (2003-2019)
Sample barchan
Length (m)
Width (m)
Perimeter (m)
Area (×103 m²)
Height (m)
Volume (×103 m³)
Barchan 1
270.25
290.13
605.45
8.81
3.10
4.55
Barchan 2
156.51
185.95
649.96
19.66
3.50
11.47
Barchan 3
220.45
235.25
555.18
8.76
2.60
3.80
Barchan 4
737.88
1100.02
4632.54
190.54
9.00
285.69
Barchan 5
154.69
153.37
613.25
15.22
3.30
8.37
Barchan 6
570.35
840.85
3800.25
173.76
8.20
237.37
Barchan 7
177.56
164.13
631.61
18.35
3.30
10.09
Barchan 8
350.15
355.32
900.52
28.71
4.80
22.96
Barchan 9
674.54
946.72
3912.14
173.89
8.60
249.15
Barchan 10
450.55
600.35
3580.65
13.65
7.40
16.83
Barchan 11
180.71
193.63
746.80
17.99
3.00
8.99
Barchan 12
196.63
196.87
710.21
25.98
3.30
14.28
Barchan 13
100.85
110.45
430.65
8.60
2.50
3.58
Barchan 14
735.97
879.93
3824.34
138.15
8.10
186.43
Barchan 15
150.22
160.85
600.95
17.56
2.80
8.19
Barchan 16
110.86
120.82
440.21
8.61
2.60
3.73
Barchan 17
155.21
168.48
593.51
17.53
2.60
7.60
Barchan 18
190.35
210.68
780.45
25.39
3.20
13.54
Barchan 19
790.19
776.33
3349.39
134.97
7.60
170.89
Barchan 20
125.64
115.93
476.11
7.75
2.00
2.59
Barchan 21
125.15
140.35
514.91
10.98
2.00
3.66
Barchan 22
210.23
220.56
540.24
8.71
2.70
3.92
Barchan 23
300.25
308.55
860.45
28.66
4.50
21.48
Barchan 24
183.13
196.32
720.93
24.71
2.50
10.29
Barchan 25
815.94
722.44
3250.63
119.11
7.00
138.90
Barchan 26
159.91
155.87
602.39
15.38
3.30
8.46
Barchan 27
161.91
158.87
605.39
15.38
3.50
8.97
Barchan 28
160.52
190.95
651.96
19.67
3.70
12.12
Barchan 29
198.95
209.66
782.51
28.54
4.10
19.50
Barchan 30
699.91
1111.12
4644.49
189.99
8.90
281.71
Barchan 31
149.98
150.95
609.97
15.20
3.50
8.87
Barchan 32
210.81
212.53
789.28
28.55
4.00
19.03
Barchan 33
180.25
168.52
638.12
18.36
3.70
11.32
Barchan 34
200.15
215.65
790.15
27.19
4.00
18.12
Barchan 35
595.55
895.75
3850.88
173.80
7.80
225.85
Barchan 36
150.12
165.58
570.65
14.76
3.50
8.61
Barchan 37
195.15
211.51
783.34
27.18
3.60
16.30
Barchan 38
170.75
183.63
735.85
18.18
3.10
9.39
Barchan 39
180.75
181.88
690.95
25.86
3.00
12.93
Barchan 40
600.85
750.25
3725.95
13.80
7.80
17.93
Barchan 41
140.47
159.91
560.54
14.64
3.00
7.32
Barchan 42
120.52
130.65
450.53
8.76
2.80
4.09
Barchan 43
150.25
170.35
605.57
17.66
3.20
9.41
Barchan 44
90.46
100.85
420.45
8.59
2.20
3.15
Barchan 45
180.95
200.93
775.25
25.37
3.10
13.11
Barchan 46
183.91
203.02
768.23
25.36
3.00
12.68
Barchan 47
750.65
736.55
3295.95
135.13
7.50
168.84
Barchan 48
120.85
110.95
460.76
7.69
2.40
3.08
Barchan 49
130.15
150.21
525.15
11.06
2.30
4.24
Barchan 50
170.45
180.54
620.95
24.61
2.20
9.02
Table 2 Morphometric and planar parameters of barchans in the study area
Fig. 1A schematic representation of barchan's morphometric and planar parameters (Hesp ans Hastings, 1998; Sauermann et al., 2000; Daniell and Hughe, 2007). Lo, length of the windward side; Ls, length of the slip-face; La, length of the right horn; Lb, length of the left horn; Wa, width of the right side; Wb, width of the left side. The yellow color indicates the windward side, the orange color indicates the slip-face of the barchan, and the gray color indicates the barchan.
Fig. 2Image of a barchan with its parabolas and components in the coordinate system. In this image, O is the origin of the coordinate system, F is the coordinates of the focus, S is the coordinates of the parabola's vertex, p is the distance between the focus and vertex, and G is the directrix of the parabola.
Parameter
Minimum
Maximum
Difference
Mean
SD
Skewness
Length (m)
110.87
815.94
705.07
310.64
263.21
1.250
Width (m)
115.93
1100.02
984.09
350.36
325.10
1.393
Perimeter (m)
440.20
4632.54
4192.34
1428.70
1426.79
1.355
Area (m2)
7747.12
191,000.00
183,000.00
51,723.00
60,823.68
1.407
Height (m)
2.00
9.00
7.00
4.27
2.33
1.166
Volume (m3)
2582.27
286,000.00
283,000.00
58,838.00
91,642.22
1.578
Table 3 Statistical characteristics of the studied barchans in the study area
Samples for modeling barchan parabolas
Parabola
p (m)
Coordinates of the vertex
Equation of the directrix
Coordinates of the focus
Parabola equation
Barchan 1
Windward side
15.45
0.00, 0.00
x= -15.45
15.45, 0.00
y2=61.798x
Slip-face
11.60
91.46, 0.00
x=79.86
103.07, 0.00
y2=46.42(x-91.46)
Barchan 2
Windward side
16.56
0.00, 0.00
x= -16.56
16.56, 0.00
y2=66.260x
Slip-face
22.84
129.11, 0.00
x=106.27
151.95, 0.00
y2=91.36(x-129.11)
Barchan 3
Windward side
19.59
0.00, 0.00
x= -19.59
19.59, 0.00
y2=78.350x
Slip-face
16.12
135.82, 0.00
x=119.69
151.94, 0.00
y2=64.48(x-135.82)
Barchan 4
Windward side
30.87
0.00, 0.00
x= -30.87
30.87, 0.00
y2=123.501x
Slip-face
42.15
295.19, 0.00
x=253.04
337.33, 0.00
y2=168.61(x -295.19)
Barchan 5
Windward side
18.12
0.00, 0.00
x= -18.12
18.12, 0.00
y2=72.470x
Slip-face
9.05
82.49, 0.00
x=73.44
91.54, 0.00
y2=36.20(x-82.49)
Barchan 6
Windward side
17.85
0.00, 0.00
x= -17.85
17.85, 0.00
y2=71.390x
Slip-face
23.43
107.12, 0.00
x=83.69
130.55, 0.00
y2=93.73(x-107.12)
Barchan 7
Windward side
16.74
0.00, 0.00
x= -16.74
16.74, 0.00
y2=66.980x
Slip-face
17.31
134.01, 0.00
x=116.71
151.32, 0.00
y2=69.23(x-134.012)
Barchan 8
Windward side
29.82
0.00, 0.00
x= -29.83
29.83, 0.00
y2=119.304x
Slip-face
42.86
291.33, 0.00
x=248.47
334.20, 0.00
y2=171.45(x-291.33)
Barchan 9
Windward side
16.80
0.00, 0.00
x= -16.80
16.80, 0.00
y2=67.208x
Slip-face
9.33
107.83, 0.00
x=98.49
117.17, 0.00
y2=37.34(x-107.83)
Barchan 10
Windward side
15.31
0.00, 0.00
x= -15.37
15.37, 0.00
y2=61.470x
Slip-face
21.97
110.12, 0.00
x=88.15
132.09, 0.00
y2=87.89(x-110.12)
Barchan 11
Windward side
23.44
0.00, 0.00
x= -23.44
23.44, 0.00
y2=93.750x
Slip-face
35.05
145.14, 0.00
x=110.08
180.19, 0.00
y2=140.21(x-145.14)
Barchan 12
Windward side
38.55
0.00, 0.00
x= -38.55
38.55, 0.00
y2=154.197x
Slip-face
51.55
237.40, 0.00
x=185.85
288.94, 0.00
y2=206.19(x-237.397)
Barchan 13
Windward side
12.11
0.00, 0.00
x= -12.11
12.11, 0.00
y2=48.440x
Slip-face
9.86
75.95, 0.00
x=66.08
85.81, 0.00
y2=39.45(x-75.95)
Barchan 14
Windward side
14.10
0.00, 0.00
x= -14.10
14.10, 0.00
y2=56.420x
Slip-face
17.73
114.15, 0.00
x=96.41
131.88, 0.00
y2=70.93(x-114.15)
Barchan 15
Windward side
21.50
0.00, 0.00
x= -21.50
21.50, 0.00
y2=85.990x
Slip-face
25.08
128.38, 0.00
x=103.30
153.45, 0.00
y2=100.31(x-128.38)
Barchan 16
Windward side
51.52
0.00, 0.00
x= -51.52
51.52, 0.00
y2=206.091x
Slip-face
64.75
195.17, 0.00
x=130.42
259.93, 0.00
y2=259.012(x-195.17)
Barchan 17
Windward side
12.39
0.00, 0.00
x= -12.39
12.39, 0.00
y2=49.560x
Slip-face
17.46
60.93, 0.00
x=43.47
78.40, 0.00
y2=69.85(x-60.93)
Barchan 18
Windward side
13.23
0.00, 0.00
x= -13.24
13.24, 0.00
y2=52.940x
Slip-face
8.69
83.08, 0.00
x=74.39
91.77, 0.00
y2=34.76(x-83.08)
Barchan 19
Windward side
19.09
0.00, 0.00
x= -19.09
19.09, 0.00
y2=76.370x
Slip-face
18.72
130.46, 0.00
x=111.74
149.18, 0.00
y2=74.88(x-130.46)
Barchan 20
Windward side
57.27
0.00, 0.00
x= -57.27
57.27, 0.00
y2=229.870x
Slip-face
72.22
188.11, 0.00
x=115.89
260.33, 0.00
y2=288.88(x-188.108)
Table 4Results of mathematical modeling of the studied barchans in the study area using parabolic equations
Sig.
SE
R2adj
R2
r
Type of relationship
Parameters
0.015
0.156
0.955
0.970
0.985
Power
Focal length & width
0.024
0.311
0.929
0.952
0.976
Power
Focal length & length
0.190
0.109
0.943
0.962
0.981
Power
Focal length & height
00.22
0.247
0.935
0.957
0.978
Power
Focal length & perimeter
0.006
0.148
0.983
0.989
0.994
Power
Focal length & area
0.008
0.250
0.975
0.984
0.992
Power
Focal length & volume
Table 5 Correlations between the focal length of the windward slope parabola and the morphometric and planar parameters of barchans in the study area
Fig. 3Relationships between the focal length of windward slope parabola and the morphometric and planar parameters of barchans in the study area. (a), length; (b), width; (c), volume; (d), height; (e), perimeter; (f), area.
Sig.
SE
R2adj
R2
r
Type of relationship
Parameters
0.107
0.497
0.695
0.797
0.893
Power
Focal length & width
0.160
0.887
0.558
0.705
0.840
Power
Focal length & length
0.144
0.288
0.599
0.732
0.856
Power
Focal length & height
0.126
0.577
0.645
0.763
0.874
Power
Focal length & perimeter
0.114
0.650
0.677
0.785
0.886
Power
Focal length & area
0.122
0.934
0.657
0.772
0.878
Power
Focal length & volume
Table 6 Correlations between the focal length of the slip-face parabola and the morphometric and planar parameters of barchans in the study area
Fig. 6Relationships between the focal length of slip-face parabola and the morphometric and planar parameters of barchans in the study area. (a), length; (b), width; (c), volume; (d), height; (e), perimeter; (f), area.
Parameters
Equation parameter
Unstandardized coefficient
SE
t
Sig.
Equation
Focal length & width
Constant
0.061
0.075
0.814
0.501
p=0.061W2.843
Power
2.834
0.410
6.917
0.020
Focal length & length
Constant
0.247
0.210
1.176
0.361
p=0.247L2.317
Power
2.317
0.283
8.176
0.150
Focal length & height
Constant
0.064
0.038
1.656
0.240
p=0.64H0.124
Power
1.431
0.201
7.109
0.019
Focal length & perimeter
Constant
0.124
0.171
0.729
0.542
p=0.124P3.041
Power
3.041
0.457
6.647
0.022
Focal length & area
Constant
0.658
0.542
1.214
0.349
p=0.658A3.650
Power
3.650
0.275
13.297
0.006
Focal length & volume
Constant
0.007
0.010
0.718
0.547
p=0.007V5.081
Power
5.081
0.464
10.947
0.008
Table 7 Correlations between the focal length of the windward slope parabola and the morphometric and planar parameters of barchans in the study area
Parameters
Equation parameter
Unstandardized coefficient
SE
t
Sig.
Equation
Focal length & width
Constant
3.507
5.592
0.627
0.595
p=3.507W1.457
Power
1.457
0.521
2.799
0.107
Focal length & length
Constant
8.589
13.402
0.641
0.587
p=8.589L1.115
Power
1.115
0.509
2.189
0.160
Focal length & height
Constant
0.543
0.501
1.084
0.392
p=0.543H0.705
Power
0.705
0.301
2.340
0.144
Focal length & perimeter
Constant
10.600
19.605
0.541
0.643
p=10.600P1.533
Power
1.533
0.604
2.539
0.126
Focal length & area
Constant
138.689
288.796
0.480
0.678
p=138.689A1.836
Power
1.836
0.680
2.700
0.114
Focal length & volume
Constant
12.553
37.580
0.334
0.770
p=12553V2.541
Power
2.541
0.977
2.599
0.122
Table 8 Correlation coefficients between the focal length of the slip-face parabola and the morphometric and planar parameters of barchans in the study area
[1]
Alvarez C A, Franklin E M. 2019. Horns of subaqueous barchan dunes: A study at the grain scale. Physical Review E, 100(4): 042904, doi: 10.1103/PhysRevE.100.042904.
[2]
Anton D, Vincent P. 1986. Parabolic dunes of the Jafurah Desert, Eastern Province, Saudi Arabia. Journal of Arid Environments, 11(3):187-198.
[3]
Anthonsen K L, Clemmensen L B, Jensen J H. 1996. Evolution of a dune from crescentic to parabolic form in response to short-term climatic changes: Rabjerg Mile, Skagen Odde, Denmark. Geomorphology, 17(1-3):63-77.
[4]
Bagnold R A. 1941. The Physics of Blown Sand and Desert Dunes. London: Methuen Press,232.
[5]
Cooke R, Warren A, Goudie A. 1993. Desert Geomorphology. London: UCL Press,325.
[6]
Daniell J, Hughes M. 2007. The morphology of barchan-shaped sand banks from western Torres Strait, northern Australia. Sedimentary Geology, 202(4):638-652.
[7]
Durán O, Schwämmle V, Lind P G, et al. 2011. Size distribution and structure of Barchan dune fields. Nonlinear Processes in Geophysics, 18(4):455-467.
[8]
Engel M, Boesl F, Brückner H. 2018. Migration of barchan dunes in qatar-controls of the shamal, teleconnections, sea-level changes and human impact. Geosciences, 8(7): 240, doi: 10.3390/geosciences8070240.
[9]
Finkel H J. 1959. The barchans of Southern Peru. Journal of Geology, 67(6):614-647.
[10]
Hamdan M A, Refaat A A,Abdel Wahed M. 2016. Morphologic characteristics and migration rate assessment of barchan dunes in the Southeastern Western Desert of Egypt. Geomorphology, 257:57-74.
[11]
Hersen P. 2004. On the crescentic shape of barchan dunes. The European Physical Journal, 37(4):507-514.
[12]
Hersen P. 2005. Flow effects on the morphology and dynamics of Aeolian and subaqueous barchan dunes. Journal of Geophysical Research, 110(F4):2-10.
[13]
Hesp P A, Hastings K. 1998. Width, height and slope relationships and aerodynamic maintenance of barchans. Geomorphology, 22(2):193-204.
[14]
Hesse R. 2008. Do swarms of migrating barchan dunes record paleenvironmental changes? A case study spanning the middle to late Holocene in the Pampa de Jaguay, southern Peru. Geomorphology, 104(3-4):185-190.
[15]
Howard A D, Morton J B, Mohamed G. 1978. Sand transport model of barchan dune equilibrium. Sedimentology, 25(3):307-338.
[16]
Kocurek G, Townsley M, Yeh E, et al. 1992. Dune and dune-field development on Padre Island, Texas, with implications for interdune deposition and water-table-controlled accumulation. Journal of Sedimentary Research, 62(4):622-635.
[17]
Landsberg S Y. 1956. The orientation of dunes in Britain and Denmark in relation to wind. Geographical Journal, 122(2):176-189.
[18]
Leithold L. 1992. Calculus, Integral and Analytic Geometry, Volume II (Part I)(3rd ed.). In: Behzad M, Razaghi M, Kazemi S, et al. Tehran: Tehran University Press,375.
[19]
Lettau K, Lettau H. 1969. Bulk transport of sand by the barchans of the Pampa de La Joya in Southern Peru. Geomorphology, 13(2):182-195.
[20]
Mousavi S H, Dorgouie M, Vali A A, et al. 2010. Statistical modeling of morphological parameters of barchan dunes (Case study: Chah Jam Erg in South of Haj Ali GHoli Playa, in Central Part of Semnan Province, IRAN). Journal of Geography and Geology, 2(1):98-113.
[21]
Sauermann G, Rognon P, Poliakov A, et al. 2000. The shape of the barchan dunes of Southern Morocco. Geomorphology, 36(1-2):47-62.
[22]
Tsoar H, Parteli E J R. 2016. Bidirectional winds, barchan dune asymmetry and formation of seif dunes from barchans: a discussion. Environmental Earth Sciences, 75(18): 1237, doi: 10.1007/s12665-016-6040-4.
[23]
Wippermann F K, Gross G. 1986. The wind-induced shaping and migration of an isolated dune: A numerical experiment. Boundary-Layer Meteorology, 36(4):319-334.
[24]
Wang Z T, Tao S C, Xie Y W, et al. 2007. Barchans of Minqin: Morphometry. Geomorphology, 89(3-4):405-411.
[25]
Yang J H. Dong Z B. Liu Z Y, et al. 2019. Migration of barchan dunes in the western Quruq Desert, northwestern China. Earth Surface Processes and Landforms, 44(10):2016-2029.
[26]
Zhang Z C, Dong Z B, Hu G Y, et al. 2018. Migration and morphology of asymmetric barchans in the Central Hexi Corridor of northwest China. Geosciences, 8(6): 204, doi: 10.3390/geosciences8060204.