Please wait a minute...
Journal of Arid Land  2022, Vol. 14 Issue (10): 1124-1137    DOI: 10.1007/s40333-022-0033-9
Research article     
Leaf stoichiometry of Leontopodium lentopodioides at high altitudes on the northeastern Qinghai-Tibetan Plateau, China
WANG Hairu1, SU Haohai1, Asim BISWAS2, CAO Jianjun1,3,4,*()
1College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, China
2School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
3Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Northwest Normal University, Lanzhou 730070, China
4Key Laboratory of Resource Environment and Sustainable Development of Oasis, College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, China
Download: HTML     PDF(1301KB)
Export: BibTeX | EndNote (RIS)      


Altitude affects leaf stoichiometry by regulating temperature and precipitation, and influencing soil properties in mountain ecosystems. Leaf carbon concentration (C), leaf nitrogen concentration (N), leaf phosphorous concentration (P), and their stoichiometric ratios of Leontopodium lentopodioides (Willd.) Beauv., a widespread species in degraded grasslands, were investigated to explore its response and adaptation strategy to environmental changes along four altitude gradients (2500, 3000, 3500, and 3800 m a.s.l.) on the northeastern Qinghai-Tibetan Plateau (QTP), China. The leaf C significantly varied but without any clear trend with increasing altitude. Leaf N showed an increasing trend, and leaf P showed a little change with increasing altitude, with a lower value of leaf P at 3500 m than those at other altitudes. Similarity, leaf C:P and N:P exhibited a little change with increasing altitude, which both had greater values at 3500 m than those at other altitudes. However, leaf C:N exhibited a decreasing trend with increasing altitude. Soil NH+ 4-N, soil pH, soil total phosphorus (STP), mean annual temperature (MAT), and mean annual precipitation (MAP) were identified as the main factors driving the variations in leaf stoichiometry of L. lentopodioides across all altitudes, with NH+ 4-N alone accounting for 50.8% of its total variation. Specifically, leaf C and N were mainly controlled by MAT, soil pH, and NH+ 4-N, while leaf P by MAP and STP. In the study area, it seems that the growth of L. lentopodioides may be mainly limited by STP. The results could help to strengthen our understanding of the plasticity of plant growth to environmental changes and provide new information on global grassland management and restoration.

Key wordsalpine area      environmental changes      leaf elements      nutrient limitation      Qilian Mountains     
Received: 08 May 2022      Published: 31 October 2022
Corresponding Authors: *CAO Jianjun (E-mail:
Cite this article:

WANG Hairu, SU Haohai, Asim BISWAS, CAO Jianjun. Leaf stoichiometry of Leontopodium lentopodioides at high altitudes on the northeastern Qinghai-Tibetan Plateau, China. Journal of Arid Land, 2022, 14(10): 1124-1137.

URL:     OR

Fig. 1 Four sampled altitudes (2500, 3000, 3500, and 3800 m) in the study area
Altitude (m) Geographic
Soil type Major species
2500 38°37'05”N 100°21'55”E 1.71 316.60 Mountain forest steppe Mountain gray cinnamon soil Potentilla bifurca Linn., Oxytropis ochrocephala, Stellera chamaejasme, and Leontopodium leontopodioides (Wild.) Beauv.
3000 38°33'22”N 100°14'26”E -1.02 379.22 Mountain forest steppe Mountain gray cinnamon soil Stipa przewalskyi Roshev., Stellera chamaejasme, Oxytropis ochrocephala, Sabina przewalskii Kom., Heteropappus hispidus (Thunb.) Less., and Leontopodium leontopodioides
3500 37°40'48”N 101°21'00”E -3.61 518.42 Alpine meadow Alpine
meadow soil
Potentilla anserine L., Potentilla fruticose L., Kobresia humilis (C. A. Mey ex Trauvt.) Sergievskaya., Poa crymophila Keng, Carex crebra V. Krecz., and Leontopodium leontopodioides
3800 37°41'24”N 101°22'12”E -5.26 553.62 Alpine meadow Alpine meadow soil Potentilla fruticosa, Potentilla anserine, Kobresia humilis, Kobresia pygmaea C. B. Clarke, and Leontopodium leontopodioides
Table 1 Basic characteristics of sample site in the northeastern Qinghai-Tibetan Plateau, China
Parameter Altitude (fixed effect) Plot (random effect) R2m R2c
F P df P
SOC 278.85 <0.0001 3 0.3337 0.97 0.97
STN 190.63 <0.0001 3 0.0375 0.97 0.98
STP 3.29 0.0793 3 0.7781 0.24 0.28
NO- 3-N 25.80 <0.0001 3 0.9999 0.69 0.69
NH+ 4-N 174.17 <0.0001 3 0.0001 0.97 0.99
SOC:STN 15.87 0.0010 3 0.0013 0.75 0.90
SOC:STP 9.07 0.0059 3 0.9999 0.44 0.44
STN:STP 8.34 0.0076 3 0.9657 0.42 0.43
pH 544.42 <0.0001 3 0.0172 0.98 0.99
Leaf C 60.28 <0.0001 3 0.7182 0.85 0.86
Leaf N 368.61 <0.0001 3 0.0016 0.98 0.99
Leaf P 11.89 0.0026 3 0.7396 0.53 0.56
Leaf C:N 95.65 <0.0001 3 0.0434 0.94 0.96
Leaf C:P 50.99 <0.0001 3 0.9999 0.81 0.81
Leaf N:P 67.84 <0.0001 3 0.9999 0.85 0.85
Table 2 Effects of altitude and plot on soil properties and leaf stoichiometry of L. lentopodioides
Parameter Altitude (m)
2500 3000 3500 3800
SOC (g/kg) 12.75±0.29c 12.28±0.61c 58.64±1.65a 50.14±1.65b
STN (g/kg) 1.59±0.29c 1.35±0.96d 5.24±0.13a 4.72±0.13b
STP (g/kg) 0.48±0.01ab 0.31±0.03b 0.27±0.05b 0.53±0.12a
NO- 3_N (mg/kg) 4.57±0.29c 4.22±0.10c 27.11±4.13a 13.83±1.87b
NH+ 4-N (mg/kg) 4.50±0.23c 3.68±0.59d 17.79±0.45a 14.68±0.33b
SOC:STN 8.02±0.11d 9.22±0.35c 11.19±0.08a 10.62±0.24b
SOC:STP 26.42±0.87c 40.81±3.96b 307.11±79.17a 147.41±33.46a
STN:STP 3.29±0.08c 4.38±0.32b 27.24±6.90a 13.99±3.21a
pH 8.42±0.02b 8.52±0.03a 6.44±0.05c 6.12±0.03d
Table 3 Soil properties at different altitudes in the northeastern Qinghai-Tibetan Plateau, China
Fig. 2 Leaf C (a), N (b), P (c), C:N (d), C:P (e), and N:P (f) ratios of L. lentopodioides at different altitudes. Different lowercase letters indicate significant differences among different altitudes at P<0.05 level. Bars are standard errors.
Fig. 3 Redundancy analysis (RDA) result for the leaf stoichiometry of L. lentopodioides and environmental factors. SOC, soil organic carbon; STN, soil total nitrogen; STP, soil total phosphorus; MAT, mean annual temperature; MAP, mean annual precipitation.
Environmental factor Explains (%) F P
SOC 0.4 0.5 0.556
STN 0.5 0.7 0.448
STP 3.9 4.6 0.024
NO- 3-N 0.4 0.5 0.524
NH+ 4-N 50.8 35.0 0.002
SOC:STN 0.5 0.7 0.478
SOC:STP 0.2 0.3 0.718
STN:STP 0.3 0.4 0.556
MAT 2.7 3.4 0.036
MAP 2.4 3.3 0.046
pH 18.3 19.5 0.002
Table 4 Dominant environmental factors influencing leaf stoichiometry of L. lentopodioides at different altitudes
Fig. 4 Structural equation modeling (SEM) results for the effects of mean annual temperature (MAT), mean annual precipitation (MAP), NH+ 4-N, NO- 3-N, soil pH, soil total nitrogen (STN), and soil total phosphorus (STP) on leaf C (a), N (b), and P (c) of L. lentopodioides. GFI, goodness-of-fit index; RMSEA, root mean square error of approximation. *, P<0.05 level; **, P<0.01 level; ***, P<0.001 level.
[1]   Aerts R, Chapin III F S. 1999. The mineral nutrition of wild plants revisited: A re-evaluation of processes and patterns. Advances in Ecological Research, 30: 1-67.
[2]   Ågren G I. 2008. Stoichiometry and nutrition of plant growth in natural communities. Annual Review of Ecology, Evolution and Systematics, 39: 153-170.
doi: 10.1146/annurev.ecolsys.39.110707.173515
[3]   Ågren G I, Weih M. 2012. Plant stoichiometry at different scales: element concentration patterns reflect environment more than genotype. New Phytologist, 194(4): 944-952.
doi: 10.1111/j.1469-8137.2012.04114.x pmid: 22471439
[4]   Ai Z M, He L R, Xin Q, et al. 2017. Slope aspect affects the non-structural carbohydrates and C:N:P stoichiometry of Artemisia sacrorum on the Loess Plateau in China. CATENA, 152: 9-17.
doi: 10.1016/j.catena.2016.12.024
[5]   An Z, Niu D C, Wen H Y, et al. 2011. Effects of N addition on nutrient resorption efficiency and C:N:P stoichiometric characteristics in Stipa bungeana of steppe grasslands in the Loess Plateau, China. Chinese Journal of Plant Ecology, 35(8): 801-807. (in Chinese)
doi: 10.3724/SP.J.1258.2011.00801
[6]   Bai Y F, Wu J G, Xing Q, et al. 2008. Primary production and rain use efficiency across a precipitation gradient on the Mongolia Plateau. Ecology, 89(8): 2140-2153.
pmid: 18724724
[7]   Bai Y F, Wu J G, Clark C M, et al. 2012. Grazing alters ecosystem functioning and C:N:P stoichiometry of grasslands along a regional precipitation gradient. Journal of Applied Ecology, 49(6): 1204-1215.
doi: 10.1111/j.1365-2664.2012.02205.x
[8]   Cao J J, Wang X Y, Adamowski J F, et al. 2020. Response of leaf stoichiometry of Oxytropis ochrocephala to elevation and slope aspect. CATENA, 194: 104772, doi: 10.1016/j.catena.2020.104772.
doi: 10.1016/j.catena.2020.104772
[9]   Cernusak L A, Winter K, Turner B L. 2010. Leaf nitrogen to phosphorus ratios of tropical trees: experimental assessment of physiological and environmental controls. New Phytologist, 185(3): 770-779.
doi: 10.1111/j.1469-8137.2009.03106.x pmid: 19968799
[10]   Chen L T, Jiang L, Jing X, et al. 2021. Above- and below-ground biodiversity jointly drive ecosystem stability in natural alpine grasslands on the Tibetan Plateau. Global Ecology and Biogeography, 30(7): 1418-1429.
doi: 10.1111/geb.13307
[11]   Cheng Y, Elrys A S, Merwad A R M, et al. 2022. Global patterns and drivers of soil dissimilatory nitrate reduction to ammonium. Environmental Science and Technology, 56(6): 3791-3800.
doi: 10.1021/acs.est.1c07997
[12]   Cramer G R, Läuchli A, Epstein E. 1986. Effects of NaCl and CaCl2 on ion activities in complex nutrient solutions and root growth of cotton. Plant Physiology, 81(3): 792-797.
doi: 10.1104/pp.81.3.792 pmid: 16664904
[13]   Crawford N M, Glass A D M. 1998. Molecular and physiological aspects of nitrate uptake in plants. Trends in Plant Science, 3(10): 389-395.
doi: 10.1016/S1360-1385(98)01311-9
[14]   Ding X H, Luo S Z, Liu J W, et al. 2012. Longitude gradient changes on plant community and soil stoichiometry characteristics of grassland in Hulunbeir. Acta Ecologica Sinica, 32(11): 3467-3476. (in Chinese)
doi: 10.5846/stxb201105020571
[15]   Du B M, Ji H W, Peng C, et al. 2017. Altitudinal patterns of leaf stoichiometry and nutrient resorption in Quercus variabilis in the Baotianman Mountains, China. Plant and Soil, 413(1): 193-202.
doi: 10.1007/s11104-016-3093-9
[16]   Du E Z, Terrer C, Pellegrini A F A, et al. 2020. Global patterns of terrestrial nitrogen and phosphorus limitation. Nature Geoscience, 13: 221-226.
doi: 10.1038/s41561-019-0530-4
[17]   Elser J J, Dobberfuhl D R, Mackay N A, et al. 1996. Organism size, life history, and N:P stoichiometry: Toward a unified view of cellular and ecosystem processes. Bioscience, 46(9): 674-684.
doi: 10.2307/1312897
[18]   Elser J J, Fagan W F, Denno R F, et al. 2000. Nutritional constraints in terrestrial and freshwater food webs. Nature, 408: 578-580.
doi: 10.1038/35046058
[19]   Elser J J, Acharya K, Kyle M. 2003. Growth rate-stoichiometry couplings in diverse biota. Ecology Letters, 6(10): 936-943.
doi: 10.1046/j.1461-0248.2003.00518.x
[20]   Fanelli G, Lestini M, Sauli A S. 2008. Floristic gradients of herbaceous vegetation and P/N ratio in soil in a Mediterranean area. Plant Ecology, 194: 231-242.
doi: 10.1007/s11258-007-9287-8
[21]   Feng J G, Tang M, Zhu B. 2021. Soil priming effect and its responses to nutrient addition along a tropical forest elevation gradient. Global Change Biology, 27(12): 2793-2806.
doi: 10.1111/gcb.15587 pmid: 33683768
[22]   Fierer N, Carney K M, Horner-Devine M C, et al. 2009. The biogeography of ammonia-oxidizing bacterial communities in soil. Microbial Ecology, 58(2): 435-445.
doi: 10.1007/s00248-009-9517-9 pmid: 19352770
[23]   Fois S, Motzo R, Giunta F. 2009. The effect of nitrogenous fertiliser application on leaf traits in durum wheat in relation to grain yield and development. Field Crop Research, 110(1): 69-75.
doi: 10.1016/j.fcr.2008.07.004
[24]   Fu H Y, Cui D D, Shen H. 2021. Effects of nitrogen forms and application rates on nitrogen uptake, photosynthetic characteristics and yield of double-cropping rice in south China. Agronomy, 11(1): 158, doi: 10.3390/agronomy11010158.
doi: 10.3390/agronomy11010158
[25]   Gong H D, Li Y Y, Yu T, et al. 2020. Soil and climate effects on leaf nitrogen and phosphorus stoichiometry along elevational gradients. Global Ecology and Conservation, 23: e01138, doi: 10.1016/j.gecco.2020.e01138.
doi: 10.1016/j.gecco.2020.e01138
[26]   Gong Y M, Lv G H, Guo Z J, et al. 2017. Influence of aridity and salinity on plant nutrients scales up from species to community level in a desert ecosystem. Scientific Reports, 7(1): 6811, doi: 10.1038/s41598-017-07240-6.
doi: 10.1038/s41598-017-07240-6 pmid: 28754987
[27]   Guo L Z, Liu L, Meng H Z, et al. 2021. Leaf elemental stoichiometry of Stellera Chamaejasme L. in response to environmental factors in degraded grasslands across Northern China. Research Square (Preprint), doi: 10.21203/
doi: 10.21203/
[28]   Han W X, Fang J Y, Guo D, et al. 2005. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytologist, 168(2): 377-385.
pmid: 16219077
[29]   He J S, Wang X P, Flynn D F B, et al. 2009. Taxonomic, phylogenetic, and environmental trade-offs between leaf productivity and persistence. Ecology, 90(10): 2779-2791.
doi: 10.1890/08-1126.1
[30]   Hou E Q, Chen C R, Luo Y Q, et al. 2018. Effects of climate on soil phosphorus cycle and availability in natural terrestrial ecosystems. Global Change Biology, 24(8): 3344-3356.
doi: 10.1111/gcb.14093 pmid: 29450947
[31]   Hou E Q, Wen D Z, Jiang L F, et al. 2021. Latitudinal patterns of terrestrial phosphorus limitation over the globe. Ecoloy Letters, 24(7): 1420-1431.
[32]   Hu Y K, Liu X Y, He N P, et al. 2021. Global patterns in leaf stoichiometry across coastal wetlands. Global Ecology and Biogeography, 30(4): 852-869.
doi: 10.1111/geb.13254
[33]   Huang J Y, Yu H L, Liu J L, et al. 2018. Effects of precipitation levels on the C:N:P stoichiometry in plants, microbes, and soils in a desert steppe in China. Acta Ecologica Sinica, 38(15): 5362-5373. (in Chinese)
[34]   Jiang L, He Z S, Liu J F. et al. 2019 Elevation gradient altered soil C, N, and P Stoichiometry of Pinus taiwanensis forest on Daiyun Mountain. Forests, 10(12): 1089, doi: 10.3390/f10121089.
doi: 10.3390/f10121089
[35]   Kang H Z, Zhuang H L, Wu L L, et al. 2011. Variation in leaf nitrogen and phosphorus stoichiometry in Picea abies across Europe: An analysis based on local observations. Forest Ecology and Management, 261(2): 195-202.
doi: 10.1016/j.foreco.2010.10.004
[36]   Koerselman W, Meuleman A F M. 1996. The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. Journal of Applied Ecology, 33(6): 1441-1450.
doi: 10.2307/2404783
[37]   Li X L, Zhang J L, Gai J P, et al. 2015. Contribution of arbuscular mycorrhizal fungi of sedges to soil aggregation along an altitudinal alpine grassland gradient on the Tibetan Plateau. Environmental Microbiology, 17(8): 2841-2857.
doi: 10.1111/1462-2920.12792 pmid: 25630567
[38]   Li Y, Niu S L, Yu G R. 2016. Aggravated phosphorus limitation on biomass production under increasing nitrogen loading: a meta-analysis. Global Change Biology, 22(2): 934-943.
doi: 10.1111/gcb.13125 pmid: 26463578
[39]   Li Z L, Zeng Z Q, Tian D S, et al. 2020. Global variations and controlling factors of soil nitrogen turnover rate. Earth-Science Reviews, 207: 103250, doi: 10.1016/j.earscirev.2020.103250.
doi: 10.1016/j.earscirev.2020.103250
[40]   Lin Y T, Lai Y, Tang S B, et al. 2022. Climatic and edaphic variables determine leaf C, N, P stoichiometry of deciduous Quercus species. Plant and Soil, 474: 383-394.
doi: 10.1007/s11104-022-05342-3
[41]   Liu C A, Liang M Y, Nie Y, et al. 2019. The conversion of tropical forests to rubber plantations accelerates soil acidification and changes the distribution of soil metal ions in topsoil layers. Science of the Total Environment, 696: 134082, doi: 10.1016/j.scitotenv.2019.134082.
doi: 10.1016/j.scitotenv.2019.134082
[42]   Liu D, Zhang J, Biswas A, et al. 2020. Seasonal dynamics of leaf stoichiometry of Phragmites australis: a case study from Yangguan Wetland, Dunhuang, China. Plants, 9(10): 1323-1323.
doi: 10.3390/plants9101323
[43]   Liu H B, Li Y, Zhang X Z, et al. 2020. Climate differences in different time scales in the east and west section of the Qilian Mountains. Journal of Lanzhou University, 56(6): 724-732. (in Chinese)
[44]   Liu X J, Zhang Y, Han W X, et al. 2013. Enhanced nitrogen deposition over China. Nature, 494(7438): 459-462.
doi: 10.1038/nature11917
[45]   Liu Y, Ding Z, Bachofen C, et al. 2018. The effect of saline-alkaline and water stresses on water use efficiency and standing biomass of Phragmites australis and Bolboschoenus planiculmis. Science of the Total Environment, 644: 207-216.
doi: 10.1016/j.scitotenv.2018.05.321
[46]   Medici A, Szponarski W, Dangeville P, et al. 2019. Identification of molecular integrators shows that nitrogen actively controls the phosphate starvation response in plants. The Plant Cell, 31(5): 1171-1184.
doi: 10.1105/tpc.18.00656 pmid: 30872321
[47]   Miller A E, Bowman W D. 2002. Variation in nitrogen-15 natural abundance and nitrogen uptake traits among co-occurring alpine species: do species partition by nitrogen form? Oecologia, 130: 609-616.
doi: 10.1007/s00442-001-0838-8 pmid: 28547264
[48]   Moe S J, Stelzer R S, Forman M R, et al. 2005. Recent advances in ecological stoichiometry: insights for population and community ecology. Oikos, 109(1): 29-39.
doi: 10.1111/j.0030-1299.2005.14056.x
[49]   Nakagawa M, Ushio M, Kume T, et al. 2019. Seasonal and long-term patterns in litterfall in a bornean tropical rainforest. Ecological Research, 34(1): 31-39.
doi: 10.1111/1440-1703.1003
[50]   Nelson D W, Sommers L E. 1982. Total carbon, organic carbon, and organic matter. In: Page A L, Miller R H, Keeney D R. Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties. Madison: American Society of Agronomy, 539-579.
[51]   Niu Y L, Kang J F, Su H H, et al. 2021. Elevation alone alters Leaf N and Leaf C to N Ratio of Picea Crassifolia Kom. in China's Qilian Mountains. Forests, 12(10): 1325, doi: 10.3390/f12101325.
doi: 10.3390/f12101325
[52]   Olsen S R, Cole C V, Watanabe F S, et al. 1954. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate. Washington: United States Department of Agriculture Circular, 939: 1-19.
[53]   Pandey R, Zinta G, AbdElgawad H, et al. 2015. Physiological and molecular alterations in plants exposed to high CO2 under phosphorus stress. Biotechnology Advances, 33(3-4): 303-316.
doi: 10.1016/j.biotechadv.2015.03.011 pmid: 25797341
[54]   Patton A J, Cunningham S M, Volenec J J, et al. 2007. Differences in freeze tolerance of Zoysiagrasses: II. carbohydrate and proline accumulation. Crop Science, 47(5): 2170-2181.
doi: 10.2135/cropsci2006.12.0784
[55]   Puhakainen T, Li C Y, Boije-Malm M, et al. 2004. Short-day potentiation of low temperature-induced gene expression of a c-repeat-binding factor-controlled gene during cold acclimation in Silver birch. Plant Physiology, 136(4): 4299-4307.
pmid: 15563624
[56]   Qin Y Y, Feng Q, Holden N M, et al. 2016. Variation in soil organic carbon by slope aspect in the middle of the Qilian Mountains in the upper Heihe River Basin, China. CATENA, 147: 308-314.
doi: 10.1016/j.catena.2016.07.025
[57]   Reich P B, Oleksyn J. 2004. Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciences of the United States of America, 101(30): 11001-11006.
[58]   Reich P B, Oleksyn J, Modrzynski J, et al. 2005. Linking litter calcium, earthworms and soil properties: A common garden test with 14 tree species. Ecology Letters, 8(8): 811-818.
doi: 10.1111/j.1461-0248.2005.00779.x
[59]   Reich P B, Oleksyn J, Wright I J. 2009. Leaf phosphorus influences the photosynthesis-nitrogen relation: A cross-biome analysis of 314 species. Oecologia, 160(2): 207-212.
doi: 10.1007/s00442-009-1291-3 pmid: 19212782
[60]   Rong Q Q, Liu J T, Cai Y P, et al. 2015. Leaf carbon, nitrogen and phosphorous stoichiometry of Tamarix chinensis Lour. in the Laizhou Bay coastal wetland, China. Ecological Engineering, 76: 57-65.
doi: 10.1016/j.ecoleng.2014.03.002
[61]   Ruan J Y, Zhang F S, Wong M H. 2000. Effect of nitrogen form and phosphorus source on the growth, nutrient uptake and rhizosphere soil property of Camellia sinensis L. Plant and Soil, 223(1): 65-73.
doi: 10.1023/A:1004882001803
[62]   Ruan Z, Giordano M. 2017. The use of NH+ 4 rather than NO- 3 affects cell stoichiometry, C allocation, photosynthesis and growth in the cyanobacterium Synechococcus sp. UTEX LB 2380, only when energy is limiting. Plant, Cell and Environment, 40(2): 227-236.
doi: 10.1111/pce.12858
[63]   Sardans J, Alonso R, Janssens I A, et al. 2016. Foliar and soil concentrations and stoichiometry of nitrogen and phosphorous across European Pinus sylvestris forests: relationships with climate, N deposition and tree growth. Functional Ecology, 30(5): 676-689.
doi: 10.1111/1365-2435.12541
[64]   Schermelleh-Engel K, Moosbrugger H, Müller H. 2003. Evaluating the fit of structural equation models: tests of significance and descriptive goodness-of-fit measures. Methods of Psychological Research, 8(2): 23-74.
[65]   Schreeg L A, Santiago L S, Wright S J, et al. 2014. Stem, root, and older leaf N:P ratios are more responsive indicators of soil nutrient availability than new foliage. Ecology, 95(8): 2062-2068.
pmid: 25230458
[66]   Sterner R W, Elser J J. 2002. Ecological Stoichiometry:The Biology of Elements from Molecules to the Biosphere. Princeton: Princeton University Press, 42-43.
[67]   Su H H, Zhang X F, Niu Y L, et al. 2021. Effects of altitude on leaf ecological stoichiometry of Stellera chamaejasme in the Qilian Mountains. Journal of Desert Research, 41(6): 205-212. (in Chinese)
[68]   Su H H, Cui J B, Adamowski J F, et al. 2022. Using leaf ecological stoichiometry to direct the management of Ligularia virgaurea on the Northeast Qinghai-Tibetan Plateau. Frontiers in Environmental Science, 9: 805405, doi: 10.3389/ fenvs.2021.805405.
doi: 10.3389/ fenvs.2021.805405
[69]   Sun H T, Jiang S, Liu J M, et al. 2016. Structure and ecological adaptability of leaves of three Asteraceae species at different altitudes on the Qinghai-Tibet Plateau. Acta Ecologica Sinica, 36(6): 1559-1570. (in Chinese)
[70]   Sun L K, Zhang B G, Wang B, et al. 2017. Leaf elemental stoichiometry of Tamarix Lour. species in relation to geographic, climatic, soil, and genetic components in China. Ecological Engineering, 106: 448-457.
doi: 10.1016/j.ecoleng.2017.06.018
[71]   Tang Z Y, Xu W T, Zhou G Y, et al. 2018 Patterns of plant carbon, nitrogen, and phosphorus concentration in relation to productivity in China's terrestrial ecosystems. Proceedings of the National Academy of Sciences, 115(16): 4033-4038.
[72]   Tao Y, Nuerhailati M, Zhang Y M, et al. 2021. Influence of branch death on leaf nutrient status and stoichiometry of wild apple trees (Malus sieversii) in the western Tianshan Mountains, China. Polish Journal of Ecology, 68(4): 296-312.
[73]   Thomson A J, Giannopoulos G, Pretty J, et al. 2012. Biological sources and sinks of nitrous oxide and strategies to mitigate emissions. Philosophical Transactions of the Royal Society B-Biological Sciences, 367(1593): 1157-1168.
doi: 10.1098/rstb.2011.0415 pmid: 22451101
[74]   Tian D S, Reich P B, Chen H Y H, et al. 2019. Global changes alter plant multi-element stoichiometric coupling. New Phytologist, 221(2): 807-817.
doi: 10.1111/nph.15428 pmid: 30256426
[75]   Tian H Q, Chen G S, Zhang C, et al. 2010. Pattern and variation of C:N:P ratios in China's soils: A synthesis of observational data. Biogeochemistry, 98: 139-151.
doi: 10.1007/s10533-009-9382-0
[76]   Treseder K K, Vitousek P M. 2001. Effects of soil nutrient availability on investment in acquisition of N and P in Hawaiian rain forests. Ecology, 82(4): 946-954.
doi: 10.1890/0012-9658(2001)082[0946:EOSNAO]2.0.CO;2
[77]   Vitousek P M, Porder S, Houlton B Z, et al. 2010. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions. Ecological Applications, 20(1): 5-15.
doi: 10.1890/08-0127.1
[78]   Wang F, Gou X H, Zhang F, et al. 2019. Variations in leaf traits of Juniperus przewalskii from an extremely arid and cold environment. Science of the Total Environment, 689: 434-443.
doi: 10.1016/j.scitotenv.2019.06.237
[79]   Wang N, Gao J, Zhang S Q, et al. 2014. Variations in leaf and root stoichiometry of Nitraria tangutorum along aridity gradients in the Hexi Corridor, northwest China. Contemporary Problems of Ecology, 7(3): 308-314.
doi: 10.1134/S1995425514030123
[80]   Wu Z T, Dijkstra P, Koch G W, et al. 2011. Responses of terrestrial ecosystems to temperature and precipitation change: A meta-analysis of experimental manipulation. Global Change Biology, 17(2): 927-942.
doi: 10.1111/j.1365-2486.2010.02302.x
[81]   Xia C X, Yu D, Wang Z, et al. 2014. Stoichiometry patterns of leaf carbon, nitrogen and phosphorous in aquatic macrophytes in eastern China. Ecological Engineering, 70: 406-413.
doi: 10.1016/j.ecoleng.2014.06.018
[82]   Xu L L, Zhang X Z, Shi P L, et al. 2005. Net ecosystem carbon dioxide exchange of alpine meadow in the Tibetan Plateau from August to October. Acta Ecologica Sinica, 25(8): 1948-1952. (in Chinese)
[83]   Xu X L, Wanek W, Zhou C P, et al. 2014. Nutrient limitation of alpine plants: Implications from leaf N:P stoichiometry and leaf δ15N. Journal of Plant Nutrition and Soil Science, 177(3): 378-387.
doi: 10.1002/jpln.201200061
[84]   Yan W M, Zhong Y Q W, Zheng S X, et al. 2016. Linking plant leaf nutrients/stoichiometry to water use efficiency on the Loess Plateau in China. Ecological Engineering, 87: 124-131.
doi: 10.1016/j.ecoleng.2015.11.034
[85]   Yang F, Wu J J, Zhang D D, et al. 2018. Soil bacterial community composition and diversity in relation to edaphic properties and plant traits in grasslands of southern China. Applied Soil Ecology, 128: 43-53.
doi: 10.1016/j.apsoil.2018.04.001
[86]   Yang X T, Fan J, Ge J M, et al. 2022. Soil physical and chemical properties and vegetation characteristics of different types of grassland in Qilian Mountains, China. Chinese Journal of Applied Ecology, 33(4): 878-886. (in Chinese)
[87]   Yang Y, Liu B R, An S S. 2018. Ecological stoichiometry in leaves, roots, litters and soil among different plant communities in a desertified region of Northern China. CATENA, 166: 328-338.
doi: 10.1016/j.catena.2018.04.018
[88]   Zhang B, Xue K, Zhou S T, et al. 2019. Phosphorus mediates soil prokaryote distribution pattern along a small-scale elevation gradient in Noijin Kangsang Peak, Tibetan Plateau. FEMS Microbiology Ecology, 95(6): fiz076, doi: 10.1093/femsec/fiz076.
doi: 10.1093/femsec/fiz076
[89]   Zhang Y Y, Liu M X, Li B W, et al. 2020. Population distribution pattern and spatial correlation of Kobresia humilis and Leontopodium nanum at different elevations. Chinese Journal of Ecology, 39(2): 404-411. (in Chinese)
[90]   Zhao C Y, Nan Z R, Cheng G D. 2005. Methods for modelling of temporal and spatial distribution of air temperature at landscape scale in the southern Qilian mountains, China. Ecological Modelling, 189(1-2): 209-220.
doi: 10.1016/j.ecolmodel.2005.03.016
[91]   Zhao C Y, Nan Z R, Cheng G D, et al. 2006. GIS-assisted modelling of the spatial distribution of Qinghai spruce (Picea crassifolia) in the Qilian Mountains, northwestern China based on biophysical parameters. Ecological Modelling, 191(3-4): 487-500.
doi: 10.1016/j.ecolmodel.2005.05.018
[92]   Zhao S, Liu J J, Banerjee S, et al. 2018. Soil pH is equally important as salinity in shaping bacterial communities in saline soils under halophytic vegetation. Scientific Reports, 8(1): 4550, doi: 10.1038/s41598-018-22788-7.
doi: 10.1038/s41598-018-22788-7 pmid: 29540760
[93]   Zhao S Y, Li J T, Sun X, et al. 2018. Responses of soil and plant stoichiometric characteristics along rainfall gradients in Mongolian pine plantations in native and introduced regions. Acta Ecologica Sinica, 38(20): 7189-7197. (in Chinese)
[94]   Zhu M, Liu W, Qin Y Y, et al. 2016. Distribution of soil organic carbon at hillslope scale in forest-steppe zone of Qilian Mountain. Journal of Desert Research, 36(3): 741-748. (in Chinese)
[1] GAO Xiang, WEN Ruiyang, Kevin LO, LI Jie, YAN An. Heterogeneity and non-linearity of ecosystem responses to climate change in the Qilian Mountains National Park, China[J]. Journal of Arid Land, 2023, 15(5): 508-522.
[2] TONG Shan, CAO Guangchao, ZHANG Zhuo, ZHANG Jinhu, YAN Xin. Soil microbial community diversity and distribution characteristics under three vegetation types in the Qilian Mountains, China[J]. Journal of Arid Land, 2023, 15(3): 359-376.
[3] YANG Jingyi, LUO Weicheng, ZHAO Wenzhi, LIU Jiliang, WANG Dejin, LI Guang. Soil seed bank is affected by transferred soil thickness and properties in the reclaimed coal mine in the Qilian Mountains, China[J]. Journal of Arid Land, 2023, 15(12): 1529-1543.
[4] WANG Ziyi, LIU Xiaohong, WANG Keyi, ZENG Xiaomin, ZHANG Yu, GE Wensen, KANG Huhu, LU Qiangqiang. Tree-ring δ15N of Qinghai spruce in the central Qilian Mountains of China: Is pre-treatment of wood samples necessary?[J]. Journal of Arid Land, 2022, 14(6): 673-690.
[5] ZHAO Yanni, CHEN Rensheng, HAN Chuntan, WANG Lei. Adjustment of precipitation measurements using Total Rain weighing Sensor (TRwS) gauges in the cryospheric hydrometeorology observation (CHOICE) system of the Qilian Mountains, Northwest China[J]. Journal of Arid Land, 2022, 14(3): 310-324.
[6] ZHOU Zuhao, HAN Ning, LIU Jiajia, YAN Ziqi, XU Chongyu, CAI Jingya, SHANG Yizi, ZHU Jiasong. Glacier variations and their response to climate change in an arid inland river basin of Northwest China[J]. Journal of Arid Land, 2020, 12(3): 357-373.
[7] Junjie LIU, Xiaoping WANG, Zhanlei RONG, Yunfei GAO, Guangde ZHANG, Wenbin WANG, Lijuan GE, Yahua MAO, Zhaoxia GUO, Qingtao WANG, Chuanyan ZHAO. Modified non-rectangular hyperbola equation with plant height for photosynthetic light-response curves of Potentilla anserina and Elymus nutans at various growth phases in the Heihe River Basin, Northwest China[J]. Journal of Arid Land, 2019, 11(5): 764-773.
[8] TAO Ye, WU Ganlin, ZHANG Yuanming, ZHOU Xiaobing. Leaf N and P stoichiometry of 57 plant species in the Karamori Mountain Ungulate Nature Reserve, Xinjiang, China[J]. Journal of Arid Land, 2016, 8(6): 935-947.
[9] Rong YANG, YongZhong SU, Min WANG, Tao WANG, Xiao YANG, GuiPing FAN, TianChang WU. Spatial pattern of soil organic carbon in desert grasslands of the diluvial-alluvial plains of northern Qilian Mountains[J]. Journal of Arid Land, 2014, 6(2): 136-144.
[10] ZongQiang CHANG, XiaoQing LIU, Qi FENG, ZongXi CHE, HaiYang XI, YongHong SU, JianHua SI. Non-growing season soil CO2 efflux and its changes in an alpine meadow ecosystem of the Qilian Mountains, Northwest China[J]. Journal of Arid Land, 2013, 5(4): 488-499.