|
Spatiotemporal analysis of drought variability based on the standardized precipitation evapotranspiration index in the Koshi River Basin, Nepal
Nirmal M DAHAL, XIONG Donghong, Nilhari NEUPANE, Belayneh YIGEZ, ZHANG Baojun, YUAN Yong, Saroj KOIRALA, LIU Lin, FANG Yiping
Journal of Arid Land. 2021, 13 (5): 433-454.
DOI: 10.1007/s40333-021-0065-6
CSTR: 32276.14.s40333-021-0065-6
Drought is an inevitable condition with negative impacts in the agricultural and climatic sectors, especially in developing countries. This study attempts to examine the spatial and temporal characteristics of drought and its trends in the Koshi River Basin (KRB) in Nepal, using the standardized precipitation evapotranspiration index (SPEI) over the period from 1987 to 2017. The Mann-Kendall test was used to explore the trends of the SPEI values. The study illustrated the increasing annual and seasonal drought trends in the KRB over the study period. Spatially, the hill region of the KRB showed substantial increasing drought trends at the annual and seasonal scales, especially in summer and winter. The mountain region also showed a significant increasing drought trend in winter. The drought characteristic analysis indicated that the maximum duration, intensity, and severity of drought events were observed in the KRB after 2000. The Terai region presented the highest drought frequency and intensity, while the hill region presented the longest maximum drought duration. Moreover, the spatial extent of drought showed a significant increasing trend in the hill region at the monthly (drought station proportion of 7.6%/10a in August), seasonal (drought station proportion of 7.2%/10a in summer), and annual (drought station proportion of 6.7%/10a) scales. The findings of this study can assist local governments, planners, and project implementers in understanding drought and developing appropriate mitigation strategies to cope with its impacts.
|
|
Quantification of groundwater recharge and evapotranspiration along a semi-arid wetland transect using diurnal water table fluctuations
JIA Wuhui, YIN Lihe, ZHANG Maosheng, ZHANG Xinxin, ZHANG Jun, TANG Xiaoping, DONG Jiaqiu
Journal of Arid Land. 2021, 13 (5): 455-469.
DOI: 10.1007/s40333-021-0100-7
CSTR: 32276.14.s40333-021-0100-7
Groundwater is a vital water resource in arid and semi-arid areas. Diurnal groundwater table fluctuations are widely used to quantify rainfall recharge and groundwater evapotranspiration (ETg). To assess groundwater resources for sustainable use, we estimated groundwater recharge and ETg using the diurnal water table fluctuations at three sites along a section with different depths to water table (DWT) within a wetland of the Mukai Lake in the Ordos Plateau, Northwest China. The water table level was monitored at an hourly resolution using a Keller DCX-22A data logger that measured both the total pressure and barometric pressure, so that the effect of barometric pressure could be removed. At this study site, a rapid water table response to rainfall was observed in two shallow wells (i.e., Obs1 and Obs2), at which diurnal water table fluctuations were also observed over the study period during rainless days, indicating that the main factors influencing water table variation are rainfall and ETg. However, at the deep-water table site (Obs3), the groundwater level only reacted to the heaviest rainfalls and showed no diurnal variations. Groundwater recharge and ETg were quantified for the entire hydrological year (June 2017-June 2018) using the water table fluctuation method and the Loheide method, respectively, with depth-dependent specific yields. The results show that the total annual groundwater recharge was approximately 207 mm, accounting for 52% of rainfall at Obs1, while groundwater recharge was approximately 250 and 21 mm at Obs2 and Obs3, accounting for 63% and 5% of rainfall, respectively. In addition, the rates of groundwater recharge were mainly determined by rainfall intensity and DWT. The daily mean ETg at Obs1 and Obs2 over the study period was 4.3 and 2.5 mm, respectively, and the main determining factors were DWT and net radiation.
|
|
Response of hydrological drought to meteorological drought in the eastern Mediterranean Basin of Turkey
Türkan BAYER ALTIN, Bekir N ALTIN
Journal of Arid Land. 2021, 13 (5): 470-486.
DOI: 10.1007/s40333-021-0064-7
CSTR: 32276.14.s40333-021-0064-7
The hydrographic eastern Mediterranean Basin of Turkey is a drought sensitive area. The basin is an important agricultural area and it is necessary to determine the extent of extreme regional climatic changes as they occur in this basin. Pearson's correlation coefficient was used to show the correlation between standardized precipitation index (SPI) and standardized streamflow index (SSI) values on different time scales. Data from five meteorological stations and seven stream gauging stations in four sub-basins of the eastern Mediterranean Basin were analyzed over the period from 1967 to 2017. The correlation between SSI and SPI indicated that in response to meteorological drought, hydrological drought experiences a one-year delay then occurs in the following year. This is more evident at all stations from the mid-1990s. The main factor causing hydrological drought is prolonged low precipitation or the presence of a particularly dry year. Results showed that over a long period (12 months), hydrological drought is longer and more severe in the upper part than the lower part of the sub-basins. According to SPI-12 values, an uninterrupted drought period is observed from 2002-2003 to 2008-2009. Results indicated that among the drought events, moderate drought is the most common on all timescales in all sub-basins during the past 51 years. Long-term dry periods with moderate and severe droughts are observed for up to 10 years or more since the late 1990s, especially in the upper part of the sub-basins. As precipitation increases in late autumn and early winter, the stream flow also increases and thus the highest and most positive correlation values (0.26-0.54) are found in January. Correlation values (ranging between -0.11 and -0.01) are weaker and negative in summer and autumn due to low rainfall. This is more evident at all stations in September. The relation between hydrological and meteorological droughts is more evident, with the correlation values above 0.50 on longer timescales (12- and 24-months). The results presented in this study allow an understanding of the characteristics of drought events and are instructive for overcoming drought. This will facilitate the development of strategies for the appropriate management of water resources in the eastern Mediterranean Basin, which has a high agricultural potential.
|
|
Gross nitrogen transformations and N2O emission sources in sandy loam and silt loam soils
LANG Man, LI Ping, WEI Wei
Journal of Arid Land. 2021, 13 (5): 487-499.
DOI: 10.1007/s40333-021-0098-x
CSTR: 32276.14.s40333-021-0098-x
The soil type is a key factor influencing N (nitrogen) cycling in soil; however, gross N transformations and N2O emission sources are still poorly understood. In this study, a laboratory 15N tracing experiment was carried out at 60% WHC (water holding capacity) and 25oC to evaluate the gross N transformation rates and N2O emission pathways in sandy loam and silt loam soils in a semi-arid region of Heilongjiang Province, China. The results showed that the gross rates of N mineralization, immobilization, and nitrification were 3.60, 1.90, and 5.63 mg N/(kg·d) in silt loam soil, respectively, which were 3.62, 4.26, and 3.13 times those in sandy loam soil, respectively. The ratios of the gross nitrification rate to the ammonium immobilization rate (n/ia) in sandy loam soil and silt loam soil were all higher than 1.00, whereas the n/ia in sandy loam soil (4.36) was significantly higher than that in silt loam soil (3.08). This result indicated that the ability of sandy loam soil to release and conserve the available N was relatively poor in comparison with silt loam soil, and the relatively strong nitrification rate compared to the immobilization rate may lead to N loss through NO3- leaching. Under aerobic conditions, both nitrification and denitrification made contributions to N2O emissions. Nitrification was the dominant pathway leading to N2O production in soils and was responsible for 82.0% of the total emitted N2O in sandy loam soil, which was significantly higher than that in silt loam soil (71.7%). However, the average contribution of denitrification to total N2O production in sandy loam soil was 17.9%, which was significantly lower than that in silt loam soil (28.3%). These results are valuable for developing reasonable fertilization management and proposing effective greenhouse gas mitigation strategies in different soil types in semiarid regions.
|
|
Monitoring fire regimes and assessing their driving factors in Central Asia
YIN Hanmin, Jiapaer GULI, JIANG Liangliang, YU Tao, Jeanine UMUHOZA, LI Xu
Journal of Arid Land. 2021, 13 (5): 500-515.
DOI: 10.1007/s40333-021-0008-2
CSTR: 32276.14.s40333-021-0008-2
Relatively little is known about fire regimes in grassland and cropland in Central Asia. In this study, eleven variables of fire regimes were measured from 2001 to 2019 by utilizing the burned area and active fire product, which was obtained and processed from the GEE (Google Earth Engine) platform, to describe the incidence, inter-annual variability, peak month and size of fire in four land cover types (forest, grassland, cropland and bare land). Then all variables were clustered to define clusters of fire regimes with unique fire attributes using the K-means algorithm. Results showed that Kazakhstan (KAZ) was the most affected by fire in Central Asia. Fire regimes in cropland in KAZ had the frequent, large and intense characters, which covered large burned areas and had a long duration. Fires in grassland mainly occurred in central KAZ and had the small scale and high-intensity characters with different quarterly frequencies. Fires in forest were mainly distributed in northern KAZ and eastern KAZ. Although fires in grassland underwent a shift from more to less frequent from 2001 to 2019 in Central Asia, vigilance is needed because most fires in grassland occur suddenly and cause harm to humans and livestock.
|
|
Potential responses of vegetation to atmospheric aerosols in arid and semi-arid regions of Asia
JIAO Linlin, WANG Xunming, CAI Diwen, HUA Ting
Journal of Arid Land. 2021, 13 (5): 516-533.
DOI: 10.1007/s40333-021-0005-5
CSTR: 32276.14.s40333-021-0005-5
Changes in atmospheric aerosols have profound effects on ecosystem productivity, vegetation growth and activity by directly and indirectly influencing climate and environment conditions. However, few studies have focused on the effects of atmospheric aerosols on vegetation growth and activity in the vulnerable arid and semi-arid regions, which are also the source areas of aerosols. Using the datasets of aerosol optical depth (AOD), normalized difference vegetation index (NDVI) and multiple climatic variables including photosynthetically active radiation (PAR), surface solar radiation (SSR), surface air temperature (TEM) and total precipitation (PRE), we analyzed the potential responses of vegetation activity to atmospheric aerosols and their associated climatic factors in arid and semi-arid regions of Asia from 2005 to 2015. Our results suggested that areas with decreasing growing-season NDVI were mainly observed in regions with relatively sparse vegetation coverage, while AOD tended to increase as NDVI decreased in these regions. Upon further analysis, we found that aerosols might exert a negative influence on vegetation activity by reducing SSR, PAR and TEM, as well as suppressing PRE in most arid and semi-arid regions of Asia. Moreover, the responses of atmospheric aerosols on vegetation activity varied among different growing stages. At the early growing stage, higher concentration of aerosol was accompanied with suppressed vegetation growth by enhancing cooling effects and reducing SSR and PAR. At the middle growing stage, aerosols tended to alter microphysical properties of clouds with suppressed PRE, thereby restricting vegetation growth. At the late growing stage, aerosols exerted significantly positive influences on vegetation activity by increasing SSR, PAR and TEM in regions with high anthropogenic aerosols. Overall, at different growing stages, aerosols could influence vegetation activity by changing different climatic factors including SSR, PAR, TEM and PRE in arid and semi-arid regions of Asia. This study not only clarifies the impacts of aerosols on vegetation activity in source areas, but also explains the roles of aerosols in climate.
|
|
Vegetation dynamics of coal mining city in an arid desert region of Northwest China from 2000 to 2019
ZHOU Siyuan, DUAN Yufeng, ZHANG Yuxiu, GUO Jinjin
Journal of Arid Land. 2021, 13 (5): 534-547.
DOI: 10.1007/s40333-021-0007-3
CSTR: 32276.14.s40333-021-0007-3
Coal mining has led to serious ecological damages in arid desert region of Northwest China. However, effects of climatic factor and mining activity on vegetation dynamics and plant diversity in this region remain unknown. Wuhai City located in the arid desert region of Northwest China is an industrial city and dominated by coal mining. Based on Landsat data and field investigation in Wuhai City, we analyzed the vegetation dynamics and the relationships with climate factors, coal mining activity and ecological restoration projects from 2000 to 2019. Results showed that vegetation in Wuhai City mostly consisted of desert plants, such as Caragana microphylla, Tetraena mongolica and Achnatherum splendens. And the vegetation fractional coverage (VFC) and greenness rate of change (GRC) showed that vegetation was slightly improved during the study period. Normalized difference vegetation index (NDVI) was positively correlated with annual mean precipitation, relative humidity and annual mean temperature, indicating that these climate factors might play important roles in the improved vegetation. Vegetation coverage and plant diversity around the coal mining area were reduced by coal mining, while the implementation of ecological restoration projects improved the vegetation coverage and plant diversity. Our results suggested that vegetation in the arid desert region was mainly affected by climate factors, and the implementation of ecological restoration projects could mitigate the impacts of coal mining on vegetation and ecological environment.
|
|