Please wait a minute...
Journal of Arid Land  2021, Vol. 13 Issue (5): 433-454    DOI: 10.1007/s40333-021-0065-6
Research article     
Spatiotemporal analysis of drought variability based on the standardized precipitation evapotranspiration index in the Koshi River Basin, Nepal
Nirmal M DAHAL1,2, XIONG Donghong1,3,4,*(), Nilhari NEUPANE5, Belayneh YIGEZ1,2, ZHANG Baojun1,3,4, YUAN Yong1,2, Saroj KOIRALA1,2, LIU Lin1,2, FANG Yiping1
1Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
2University of Chinese Academy of Sciences, Beijing 100049, China
3Branch of Sustainable Mountain Development, Kathmandu Center for Research and Education, CAS-TU, Kathmandu 44600, Nepal
4Sino-Nepal Joint Research Centre for Geography, IMHE-TU-YNU, Kathmandu 44600, Nepal
5International Centre for Integrated Mountain Development (ICIMOD), Lalitpur, GPO 3226, Nepal
Download: HTML     PDF(1086KB)
Export: BibTeX | EndNote (RIS)      


Drought is an inevitable condition with negative impacts in the agricultural and climatic sectors, especially in developing countries. This study attempts to examine the spatial and temporal characteristics of drought and its trends in the Koshi River Basin (KRB) in Nepal, using the standardized precipitation evapotranspiration index (SPEI) over the period from 1987 to 2017. The Mann-Kendall test was used to explore the trends of the SPEI values. The study illustrated the increasing annual and seasonal drought trends in the KRB over the study period. Spatially, the hill region of the KRB showed substantial increasing drought trends at the annual and seasonal scales, especially in summer and winter. The mountain region also showed a significant increasing drought trend in winter. The drought characteristic analysis indicated that the maximum duration, intensity, and severity of drought events were observed in the KRB after 2000. The Terai region presented the highest drought frequency and intensity, while the hill region presented the longest maximum drought duration. Moreover, the spatial extent of drought showed a significant increasing trend in the hill region at the monthly (drought station proportion of 7.6%/10a in August), seasonal (drought station proportion of 7.2%/10a in summer), and annual (drought station proportion of 6.7%/10a) scales. The findings of this study can assist local governments, planners, and project implementers in understanding drought and developing appropriate mitigation strategies to cope with its impacts.

Key wordsdrought duration      drought intensity      drought severity      standardized precipitation evapotranspiration index      mountains      hills      Terai     
Received: 01 June 2020      Published: 10 May 2021
Corresponding Authors:
About author: *XIONG Donghong (E-mail:
Cite this article:

Nirmal M DAHAL, XIONG Donghong, Nilhari NEUPANE, Belayneh YIGEZ, ZHANG Baojun, YUAN Yong, Saroj KOIRALA, LIU Lin, FANG Yiping. Spatiotemporal analysis of drought variability based on the standardized precipitation evapotranspiration index in the Koshi River Basin, Nepal. Journal of Arid Land, 2021, 13(5): 433-454.

URL:     OR

Fig. 1 Overview of the Koshi River Basin (KRB), Nepal (a) as well as the distributions of weather stations in the KRB (b)
Region Annual mean minimum temperature (°C) Annual mean maximum temperature (°C) Annual precipitation (mm) Climate Elevation (m)
Mountain 11.3 22.3 1953.5 Cool temperate to alpine >2000
Hill 13.0 24.2 1641.4 Subtropical to warm temperate 300-2000
Terai 19.2 30.6 1637.2 Tropical <300
Table 1 Major climate features of the mountain, hill and Terai regions (derived from the selected districts) of the Koshi River Basin (KRB), Nepal
Region District Station name Elevation (m) AMP (mm) CV-AMP (%) PET (mm) CV-PET (%)
Mountain Dolakha Jiri 1877 2441.4 10.3 1222.3 2.3
Sankhuwasabha Chainpur 1277 1444.2 14.3 1367.8 4.7
Taplejung Taplejung 1744 1974.9 13.2 1161.3 4.3
Hill Kathmandu Panipokhari 1329 1504.9 13.2 1449.1 6.1
Kathmandu Kathmandu Airport 1337 1480.4 14.8 1476.0 2.6
Lalitpur Khumaltar 1334 1163.4 16.7 1394.6 2.4
Lalitpur Godavari 1527 1708.6 18.0 1273.1 6.3
Bhaktapur Nagarkot 2147 1863.3 14.4 1129.7 9.3
Makwanpur Hetauda 452 2365.3 17.9 1607.6 3.8
Kavre Dhulikhel 1543 1483.1 18.8 1230.6 8.0
Kavre Panchkhal 857 1121.9 17.6 1621.1 2.8
Okhaldhunga Okhaldhunga 1731 1781.4 11.4 1185.4 7.3
Dhankuta Pakhribas 1720 1530.5 12.4 1110.1 2.5
Dhankuta Dhankuta 1192 967.0 19.9 1261.1 9.8
Terai Bara Simara 137 1814.7 22.0 1609.1 2.9
Bara Parwanipur 87 1591.9 21.8 1599.3 3.5
Sarlahi Karmaiya 139 1834.0 20.3 1549.3 2.8
Sarlahi Manusmara 90 1438.8 30.2 1608.5 2.8
Dhanusa Janakpur 76 1523.2 26.8 1540.5 2.7
Siraha Lahan 110 1368.1 22.5 1485.2 12.4
Saptari Rajbiraj 68 1500.0 26.4 1601.8 5.5
Saptari Phattepur 83 1731.6 23.9 1693.5 4.5
Sunsari Tarahara 120 1976.1 17.6 1553.3 2.7
Table 2 Details of the weather stations selected from different regions in the KRB, Nepal
SPEI value Category
≥ -0.99 Near normal
-1.49- -1.00 Moderate drought
-1.99- -1.50 Severe drought
≤ -2.00 Extreme drought
Table 3 Classification of drought based on the standardized precipitation evapotranspiration index (SPEI) values
Fig. 2 Annual variation of the standardized precipitation evapotranspiration index (SPEI) values at the 12-month time scale at the regional (a-c) and basin (d) levels of the KRB from 1987 to 2017. The trend of the SPEI per decade (Mann-Kendall test) and the statistical level of significance are also shown.
Fig. 3 Seasonal variation in the SPEI values at the 3-month time scale at the regional (a-f) and basin (g and h) levels of the KRB from 1987 to 2017. The trend of the SPEI per decade (Mann-Kendall test) and the statistical level of significance are also shown. NS, not significant.
Region Maximum drought
Duration (month) Starting-ending time Severity Starting-ending time Intensity Starting-ending time
Mountain 14.0 Apr 2005-May 2006
Feb 2012-Mar 2013
15.49 Apr 2005-May 2006 1.74 Jun 2009-Nov 2009
Hill 17.0 Dec 2007-Apr 2009 15.72 Dec 2007-Apr 2009 1.39 Jan 2006-Mar 2006
Terai 16.0 Apr 1994-Jul 1995 17.28 Apr 1994-Jul 1995 1.84 Nov 2005
KRB 15.0 Jan 2009-Aug 2010 16.05 Feb 2012-Mar 2013 1.59 Jan 2006-Mar 2006
Region Average drought Drought frequency
Duration (month) Severity Intensity
Mountain 5.7 5.37 0.94 74
Hill 5.9 5.60 0.94 77
Terai 4.7 4.77 1.01 81
KRB 5.8 5.80 1.00 71
Table 4 Summary of the duration, severity, and intensity of drought events identified from the SPEI values at the 3-month time scale from 1987 to 2017 at the regional and basin levels of the KRB
Time M-K trend in drought station proportion (%/10a)
Mountains Hills Terai KRB
January 0.0 5.3* 0.0 2.2
February 0.0 0.0 0.0 2.9*
March 0.0 3.0* 0.0 0.0
April 0.0 0.0 0.0 0.0
May 0.0 0.0 0.0 0.0
June 0.0 0.0 -4.8* 0.0
July 0.0 5.1* 0.0 3.3
August 0.0 7.6* 0.0 5.7*
September 0.0 7.0** 0.0 4.8*
October 0.0 0.0 0.0 3.3
November 0.0 0.0 0.0 2.9
December 0.0 0.0 0.0 0.0
Spring 0.0 3.0 1.6 0.7
Summer 4.1 7.2* 0.0 3.8
Autumn 0.0 4.5* -2.5 4.6
Winter 0.0 5.7* -1.4 3.9
Annual 5.8* 6.7** 0.0 4.2*
Table 5 Mann-Kendall (M-K) trends in drought station proportion series calculated from the SPEI values at the 3-month time scale at the regional and basin levels of the KRB from 1987 to 2017
Region Climate variable Season Annual
Spring Summer Autumn Winter
Mountain Precipitation (mm/a) -6.40 -7.70 4.80 -11.70* -25.10
Temperature (°C/a) 0.20 0.10 0.10 0.30 0.20
Hill Precipitation (mm/a) 1.70 -68.30 -0.40 -10.90* -84.40*
Temperature (°C/a) 0.50** 0.40** 0.30** 0.50*** 0.40***
Terai Precipitation (mm/a) 11.80 -59.60 -13.40 -8.00* -59.00
Temperature (°C/a) 0.20 0.20** 0.10 0.03 0.10
KRB Precipitation (mm/a) 2.20 -64.00 -12.50 -10.50* -60.60
Temperature (°C/a) 0.30** 0.30*** 0.20** 0.20* 0.30***
Table 6 M-K trends of seasonal and annual precipitation and temperature at the regional and basin levels of the KRB from 1987 to 2017
[1]   Aadhar S, Mishra V. 2017. High-resolution near real-time drought monitoring in South Asia. Scientific Data, 4:170145, doi: 10.1038/sdata.2017.145.
doi: 10.1038/sdata.2017.145
[2]   Adhikari S. 2018. Drought impact and adaptation strategies in the mid-hill farming system of western Nepal. Environments, 5(9):101, doi: 10.3390/environments5090101.
doi: 10.3390/environments5090101
[3]   Adnan S, Ullah K, Khan A H. 2017. Meteorological impacts on evapotranspiration in different climatic zones of Pakistan. Journal of Arid Land, 9(6):938-952.
doi: 10.1007/s40333-017-0107-2
[4]   Agarwal A, Babel M S, Maskey S. 2014. Analysis of future precipitation in the Koshi river basin, Nepal. Journal of Hydrology, 513:422-434.
doi: 10.1016/j.jhydrol.2014.03.047
[5]   Agarwal A, Babel M S, Maskey S, et al. 2016. Analysis of temperature projections in the Koshi River Basin, Nepal. International Journal of Climatology, 36(1):266-279.
doi: 10.1002/joc.4342
[6]   Agrawala S, Raksakulthai V, Aalst M, et al. 2003. Development and climate change in Nepal: Focus on water resources and hydropower. Environment Directorate Development Co-operation Directorate. Paris: Organization for Economic Co-operation and Development, 64.
[7]   Allen R G, Smith M, Pereira L S, et al. 1994. An update for the calculation of reference evapotranspiration. ICID Bulletin, 43(2):1-34.
[8]   Allen R G, Pereira L S, Raes D, et al. 1998. Crop evapotranspiration-Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56. Rome: FAO, 300(9):D05109.
[9]   Alley W M. 1984. The Palmer drought severity index: limitations and assumptions. Journal of Climate and Applied Meteorology, 23(7):1100-1109.
doi: 10.1175/1520-0450(1984)023<1100:TPDSIL>2.0.CO;2
[10]   Amrit K, Pandey R P, Mishra S K. 2018. Characteristics of meteorological droughts in northwestern India. Natural Hazards, 94(2):561-582.
doi: 10.1007/s11069-018-3402-0
[11]   Aryal S. 2012. Rainfall and water requirement of rice during growing period. The Journal of Agriculture and Environment, 13:1-4.
doi: 10.3126/aej.v13i0.7576
[12]   Bandyopadhyay A, Bhadra A, Raghuwanshi N, et al. 2009. Temporal trends in estimates of reference evapotranspiration over India. Journal of Hydrologic Engineering, 14(5):508-515.
doi: 10.1061/(ASCE)HE.1943-5584.0000006
[13]   Baniya B, Tang Q, Xu X, et al. 2019. Spatial and temporal variation of drought based on satellite derived vegetation condition index in Nepal from 1982-2015. Sensors, 19(2):430, doi: 10.3390/s19020430.
doi: 10.3390/s19020430
[14]   Beguería S, Vicente-Serrano S M, Reig F, et al. 2014. Standardized precipitation evapotranspiration index (SPEI) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. International Journal of Climatology, 34(10):3001-3023.
doi: 10.1002/joc.2014.34.issue-10
[15]   Bharati L, Gurung P, Jayakody P, et al. 2014. The projected impact of climate change on water availability and development in the Koshi Basin, Nepal. Mountain Research and Development, 34(2):118-130.
doi: 10.1659/MRD-JOURNAL-D-13-00096.1
[16]   Bharati L, Bhattarai U, Khadka A, et al. 2019. From the mountains to the plains: Impact of climate change on water resources in the Koshi River Basin. Colombo: International Water Management Institute ( IWMI), 49.
[17]   Bhatt D, Maskey S, Babel M S, et al. 2014. Climate trends and impacts on crop production in the Koshi River basin of Nepal. Regional Environment Change, 14(4):1291-1301.
doi: 10.1007/s10113-013-0576-6
[18]   Bisht D S, Sridhar V, Mishra A, et al. 2019. Drought characterization over India under projected climate scenario. International Journal of Climatology, 39(4):1889-1911.
doi: 10.1002/joc.2019.39.issue-4
[19]   Bolch T, Kulkarni A, Kääb A, et al. 2012. The state and fate of Himalayan glaciers. Science, 336(6079):310-314.
doi: 10.1126/science.1215828
[20]   Burke E J, Brown S J, Christidis N. 2006. Modeling the recent evolution of global drought and projections for the twenty-first century with the Hadley Centre climate model. Journal of Hydrometeorology, 7(5):1113-1125.
doi: 10.1175/JHM544.1
[21]   Burn D H, Elnur M A H. 2002. Detection of hydrologic trends and variability. Journal of Hydrology, 255(1-4):107-122.
doi: 10.1016/S0022-1694(01)00514-5
[22]   Challinor A J, Ewert F, Arnold S, et al. 2009. Crops and climate change: progress, trends, and challenges in simulating impacts and informing adaptation. Journal of Experimental Botany, 60(10):2775-2789.
doi: 10.1093/jxb/erp062 pmid: 19289578
[23]   Chen N S, Hu G S, Deng W, et al. 2013. On the water hazards in the trans-boundary Kosi River basin. Natural Hazards & Earth System Sciences, 13(3):795-808.
[24]   Chen T, Xia G, Liu T, et al. 2016. Assessment of drought impact on main cereal crops using a standardized precipitation evapotranspiration index in Liaoning Province, China. Sustainability, 8(10):1069, doi: 10.3390/su8101069.
doi: 10.3390/su8101069
[25]   Chinnasamy P, Bharati L, Bhattarai U, et al. 2015. Impact of planned water resource development on current and future water demand in the Koshi River basin, Nepal. Water International, 40(7):1004-1020.
doi: 10.1080/02508060.2015.1099192
[26]   Dabanli I. 2018. Drought risk assessment by using drought hazard and vulnerability indexes. Natural Hazards and Earth System Sciences, 129:1-15.
[27]   Dahal P, Shrestha N S, Shrestha M L, et al. 2016. Drought risk assessment in central Nepal: temporal and spatial analysis. Natural Hazards, 80(3):1913-1932.
doi: 10.1007/s11069-015-2055-5
[28]   Dahal V, Shakya N M, Bhattarai R. 2016. Estimating the impact of climate change on water availability in Bagmati Basin, Nepal. Environmental Processes, 3(1):1-17.
[29]   Dai A. 2011. Characteristics and trends in various forms of the Palmer Drought Severity Index during 1900-2008. Journal of Geophysical Research: Atmospheres, 116(D12), doi: 10.1029/2010JD015541.
doi: 10.1029/2010JD015541
[30]   Damberg L, AghaKouchak A. 2014. Global trends and patterns of drought from space. Theoretical and Applied Climatology, 117(3-4):441-448.
doi: 10.1007/s00704-013-1019-5
[31]   Das P K, Dutta D, Sharma J, et al. 2016. Trends and behaviour of meteorological drought (1901-2008) over Indian region using standardized precipitation-evapotranspiration index. International Journal of Climatology, 36(2):909-916.
doi: 10.1002/joc.4392
[32]   Dehghan S, Salehnia N, Sayari N, et al. 2020. Prediction of meteorological drought in arid and semi-arid regions using PDSI and SDSM: a case study in Fars Province, Iran. Journal of Arid Land, 12(2):318-330.
doi: 10.1007/s40333-020-0095-5
[33]   di Lena B, Vergni L, Antenucci F, et al. 2014. Analysis of drought in the region of Abruzzo (Central Italy) by the standardized precipitation index. Theoretical and Applied Climatology, 115(1-2):41-52.
doi: 10.1007/s00704-013-0876-2
[34]   Dixit A, Upadhya M, Dixit K, et al. 2009. Living with Water Stress in the Hills of the Koshi Basin, Nepal. Kathmandu: International Centre for Integrated Mountain Development, 31.
[35]   Droogers P, Allen R G. 2002. Estimating reference evapotranspiration under inaccurate data conditions. Irrigation and Drainage Systems, 16(1):33-45.
doi: 10.1023/A:1015508322413
[36]   Duan K, Mei Y. 2014. Comparison of meteorological, hydrological and agricultural drought responses to climate change and uncertainty assessment. Water Resources Management, 28(14):5039-5054.
doi: 10.1007/s11269-014-0789-6
[37]   Easterling D R, Meehl G A, Parmesan C, et al. 2000. Climate extremes: observations, modeling, and impacts. Science, 289(5487):2068-2074.
doi: 10.1126/science.289.5487.2068
[38]   Farmer W, Strzepek K, Schlosser C A, et al. 2011. A method for calculating reference evapotranspiration on daily time scales. MIT Joint Program on the Science and Policy of Global Change. Cambridge: Massachusetts Institute of Technology, 21.
[39]   Gao X, Zhao Q, Zhao X, et al. 2017. Temporal and spatial evolution of the standardized precipitation evapotranspiration index (SPEI) in the Loess Plateau under climate change from 2001 to 2050. Science of the Total Environment, 595:191-200.
doi: 10.1016/j.scitotenv.2017.03.226
[40]   Ghimire Y N, Shivakoti G P, Perret S R. 2010. Household-level vulnerability to drought in hill agriculture of Nepal: implications for adaptation planning. International Journal of Sustainable Development & World Ecology, 17(3):225-230.
[41]   Gilbert R O. 1987. Statistical Methods for Environmental Pollution Monitoring. New York: John Wiley & Sons, 320.
[42]   Gumus V, Algin H M. 2017. Meteorological and hydrological drought analysis of the Seyhan-Ceyhan River Basins, Turkey. Meteorological Applications, 24(1):62-73.
doi: 10.1002/met.2017.24.issue-1
[43]   Hamal K, Sharma S, Khadka N, et al. 2020. Assessment of drought impacts on crop yields across Nepal during 1987-2017. Meteorological Applications, 27(5):1-18.
[44]   Hargreaves G H, Samani Z A. 1985. Reference crop evapotranspiration from temperature. Applied Engineering in Agriculture, 1(2):96-99.
doi: 10.13031/2013.26773
[45]   Huang J, Zhai J, Jiang T, et al. 2018. Analysis of future drought characteristics in China using the regional climate model CCLM. Climate Dynamics, 50(1-2):507-525.
doi: 10.1007/s00382-017-3623-z
[46]   IPCC (Intergovernmental Panel on Climate Change). 2018. Global warming of 1.5°C. An IPCC special report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. Geneva: Intergovernmental Panel on Climate Change, 616.
[47]   Jamro S, Dars G H, Ansari K, et al. 2019. Spatio-temporal variability of drought in Pakistan using standardized precipitation evapotranspiration index. Applied Sciences, 9(21):4588, doi: 10.3390/app9214588.
doi: 10.3390/app9214588
[48]   Joshi G R. 2018. Agricultural economy of Nepal: Development challenges & opportunities. Kathmandu: Sustainable Research & Development Center, 374.
[49]   Kafle H K. 2014. Spatial and temporal variation of drought in far and mid-western regions of Nepal: Time series analysis (1982-2012). Nepal Journal of Science and Technology, 15(2):65-76.
doi: 10.3126/njst.v15i2.12118
[50]   Kansakar S R, Hannah D M, Gerrard J, et al. 2004. Spatial pattern in the precipitation regime of Nepal. International Journal of Climatology, 24(13):1645-1659.
doi: 10.1002/(ISSN)1097-0088
[51]   Karki M, Mool P, Shrestha A. 2009. Climate change and its increasing impacts in Nepal. The Initiation, 3:30-37.
doi: 10.3126/init.v3i0.2425
[52]   Khan J U, Islam A S, Das M K, et al. 2020. Future changes in meteorological drought characteristics over Bangladesh projected by the CMIP5 multi-model ensemble. Climatic Change, 162:667-685.
doi: 10.1007/s10584-020-02832-0
[53]   Khanal U, Wilson C, Hoang V-N, et al. 2018. Farmers' adaptation to climate change, its determinants and impacts on rice yield in Nepal. Ecological Economics, 144:139-147.
doi: 10.1016/j.ecolecon.2017.08.006
[54]   Khatiwada K R, Pandey V P. 2019. Characterization of hydro-meteorological drought in Nepal Himalaya: A case of Karnali River Basin. Weather and Climate Extremes, 26:100239, doi: 10.1016/j.wace.2019.100239.
doi: 10.1016/j.wace.2019.100239
[55]   Li L, She D, Zheng H, et al. 2020. Elucidating diverse drought characteristics from two meteorological drought indices (SPI and SPEI) in China. Journal of Hydrometeorology, 21(7):1513-1530.
doi: 10.1175/JHM-D-19-0290.1
[56]   Liu X, Wang S, Zhou Y, et al. 2015. Regionalization and spatiotemporal variation of drought in China based on standardized precipitation evapotranspiration index (1961-2013). Advances in Meteorology, 2015, doi: 10.1155/2015/950262.
doi: 10.1155/2015/950262
[57]   Liu X, Pan Y, Zhu X, et al. 2018. Drought evolution and its impact on the crop yield in the North China Plain. Journal of Hydrology, 564:984-996.
doi: 10.1016/j.jhydrol.2018.07.077
[58]   Livada I, Assimakopoulos V. 2007. Spatial and temporal analysis of drought in Greece using the Standardized Precipitation Index (SPI). Theoretical and Applied Climatology, 89(3-4):143-153.
doi: 10.1007/s00704-005-0227-z
[59]   Malla G. 2008. Climate change and its impact on Nepalese agriculture. Journal of Agriculture and Environment, 9:62-71.
doi: 10.3126/aej.v9i0.2119
[60]   Manton M J, Della-Marta P M, Haylock M R, et al. 2001. Trends in extreme daily rainfall and temperature in Southeast Asia and the South Pacific: 1961-1998. International Journal of Climatology, 21(3):269-284.
doi: 10.1002/(ISSN)1097-0088
[61]   McKee T B, Doesken N, Kleist J. 1993. The relationship of drought frequency and duration to time scales. In: Proceedings of the 8th Conference on Applied Climatology. Anaheim: American Meteorological Society, 179-183.
[62]   Mishra A K, Singh V P. 2010. A review of drought concepts. Journal of Hydrology, 391(1-2):202-216.
doi: 10.1016/j.jhydrol.2010.07.012
[63]   Mohsenipour M, Shahid S, Chung E, et al. 2018. Changing pattern of droughts during cropping seasons of Bangladesh. Water Resources Management, 32(5):1555-1568.
doi: 10.1007/s11269-017-1890-4
[64]   NCVST (Nepal Climate Vulnerability Study Team). 2009. Vulnerability through the eyes of vulnerable: Climate change induced uncertainties and Nepal's development predicaments. Kathmandu: Institute for Social and Environmental Transition-Nepal, 95.
[65]   Neupane N, Murthy M S R, Rasul G, et al. 2013. Integrated biophysical and socioeconomic model for adaptation to climate change for agriculture and water in the Koshi Basin. In: Leal Filho W. Handbook of Climate Change Adaptation. Berlin: Springer, 1-77.
[66]   Nijssen B, O'Donnell G M, Hamlet A F, et al. 2001. Hydrologic sensitivity of global rivers to climate change. Climatic Change, 50(1-2):143-175.
doi: 10.1023/A:1010616428763
[67]   Norbu N. 2004. Invasion success of Chromolaena odorata in the Terai of Nepal. Enschede: Geo-Information Science, International Institute for Geo-information and Earth Observation(ITC), 41.
[68]   Pai D, Sridhar L, Guhathakurta P, et al. 2011. District-wide drought climatology of the southwest monsoon season over India based on standardized precipitation index (SPI). Natural Hazards, 59(3):1797-1813.
doi: 10.1007/s11069-011-9867-8
[69]   Palmer W C. 1965. Meteorological Drought, Research Paper No. 45. Washington, DC: Office of Climatology, US Weather Bureau, 58.
[70]   Palmer W C. 1968. Keeping track of crop moisture conditions, nationwide: The New Crop Moisture Index. Weatherwise, 21(4):156-161.
doi: 10.1080/00431672.1968.9932814
[71]   Paudyal K R, Ransom J K, Adhikari K, et al. 2001. Maize in Nepal: Production Systems, Constraints, and Priorities for Research. Kathmandu: Nepal Agricultural Research Council, International Maize and Wheat Improvement Center, 48.
[72]   Pei Z, Fang S, Wang L, et al. 2020. Comparative analysis of drought indicated by the SPI and SPEI at various timescales in inner Mongolia, China. Water, 12(7):1925, doi: 10.3390/w12071925.
doi: 10.3390/w12071925
[73]   Penton D, Neumann L, Doody T, et al.. 2016. Preliminary analysis of hydroclimate and streamflow modelling in the Koshi Basin: Climate, hydrology, ecology and institutional setting. In: Sustainable Development Investment Portfolio (SDIP) Project. Canberra: CSIRO, 68.
[74]   Peterson T C, Stott P A, Herring S. 2012. Explaining extreme events of 2011 from a climate perspective. Bulletin of the American Meteorological Society, 93(7):1041-1067.
doi: 10.1175/BAMS-D-12-00021.1
[75]   Portela M, Silva A, Santos J, et al. 2017. Assessing the use of SPI in detecting agricultural and hydrological droughts and their temporal cyclicity: some Slovakian case studies. European Water, 60:233-239.
[76]   Potop V, Boroneanţ C, Možný M, et al. 2014. Observed spatiotemporal characteristics of drought on various time scales over the Czech Republic. Theoretical and Applied Climatology, 115(3-4):563-581.
doi: 10.1007/s00704-013-0908-y
[77]   Prabnakorn S, Maskey S, Suryadi F, et al. 2018. Rice yield in response to climate trends and drought index in the Mun River Basin, Thailand. Science of the Total Environment, 621:108-119.
doi: 10.1016/j.scitotenv.2017.11.136
[78]   Salmi T, Määttä A, Anttila P, et al. 2002. Detecting trends of annual values of atmospheric pollutants by the Mann-Kendall test and Sen's slope estimates-the excel template application MAKESENS. Helsinki: Finnish Meteorological Institute, 35.
[79]   Sapkota P, Keenan R J, Paschen J A, et al. 2016. Social production of vulnerability to climate change in the rural middle hills of Nepal. Journal of Rural Studies, 48:53-64.
doi: 10.1016/j.jrurstud.2016.09.007
[80]   Saravi M M, Safdari A, Malekian A. 2009. Intensity-duration-frequency and spatial analysis of droughts using the standardized precipitation index. Hydrology & Earth System Sciences Discussions, 6(2), doi: 10.5194/hessd-6-1347-2009.
doi: 10.5194/hessd-6-1347-2009
[81]   Shafer B, Dezman L. 1982. Development of a surface water supply index (SWSI) to assess the severity of drought conditions in snowpack runoff areas. In: Proceeding of the Western Snow Conference. Reno, NV: Colorado State University, 164-175.
[82]   Sharma E, Molden D, Rahman A, et al.. 2019. Introduction to the Hindu Kush Himalaya assessment. In: Wester P, Mishra A, Mukherji A, et al. The Hindu Kush Himalaya Assessment. Switzerland: Spring Nature, 1-16.
[83]   Sheffield J, Wood E F. 2007. Characteristics of global and regional drought, 1950-2000: Analysis of soil moisture data from off-line simulation of the terrestrial hydrologic cycle. Journal of Geophysical Research: Atmospheres, 112(D17), doi: 10.1029/2006JD008288.
doi: 10.1029/2006JD008288
[84]   Shrestha A B, Wake C P, Mayewski P A, et al. 1999. Maximum temperature trends in the Himalaya and its vicinity: an analysis based on temperature records from Nepal for the period 1971-94. Journal of Climate, 12(9):2775-2786.
doi: 10.1175/1520-0442(1999)012<2775:MTTITH>2.0.CO;2
[85]   Shrestha A B, Wake C P, Dibb J E, et al. 2000. Precipitation fluctuations in the Nepal Himalaya and its vicinity and relationship with some large scale climatological parameters. International Journal of Climatology, 20(3):317-327.
doi: 10.1002/(ISSN)1097-0088
[86]   Shrestha A B, Bajracharya S R, Sharma A R, et al. 2017. Observed trends and changes in daily temperature and precipitation extremes over the Koshi river basin 1975-2010. International Journal of Climatology, 37(2):1066-1083.
doi: 10.1002/joc.4761
[87]   Shrestha N K, Qamer F M, Pedreros D, et al. 2017. Evaluating the accuracy of Climate Hazard Group (CHG) satellite rainfall estimates for precipitation based drought monitoring in Koshi basin, Nepal. Journal of Hydrology: Regional Studies, 13:138-151.
doi: 10.1016/j.ejrh.2017.08.004
[88]   Sigdel M, Ikeda M. 2010. Spatial and temporal analysis of drought in Nepal using standardized precipitation index and its relationship with climate indices. Journal of Hydrology and Meteorology, 7(1):59-74.
doi: 10.3126/jhm.v7i1.5617
[89]   Sigdel M, Ikeda M. 2012. Seasonal contrast in precipitation mechanisms over Nepal deduced from relationship with the large-scale climate patterns. Nepal Journal of Science and Technology, 13(1):115-123.
[90]   Spinoni J, Naumann G, Carrao H, et al. 2014. World drought frequency, duration, and severity for 1951-2010. International Journal of Climatology, 34(8):2792-2804.
doi: 10.1002/joc.3875
[91]   Stagge J H, Tallaksen L M, Xu C Y, et al.. 2014. Standardized precipitation-evapotranspiration index (SPEI): Sensitivity to potential evapotranspiration model and parameters. In: Hydrology in a Changing World. Montpellier: International Association of Hydrological Sciences, 367-373.
[92]   Tam B Y, Szeto K, Bonsal B, et al. 2019. CMIP5 drought projections in Canada based on the Standardized Precipitation Evapotranspiration Index. Canadian Water Resources Journal, 44(1):90-107.
doi: 10.1080/07011784.2018.1537812
[93]   Tan C, Yang J, Li M. 2015. Temporal-spatial variation of drought indicated by SPI and SPEI in Ningxia Hui Autonomous Region, China. Atmosphere, 6(10):1399-1421.
doi: 10.3390/atmos6101399
[94]   Thornthwaite C W. 1948. An approach toward a rational classification of climate. Geographical Review, 38(1):55-94.
doi: 10.2307/210739
[95]   Touma D, Ashfaq M, Nayak M A, et al. 2015. A multi-model and multi-index evaluation of drought characteristics in the 21st century. Journal of Hydrology, 526:196-207.
doi: 10.1016/j.jhydrol.2014.12.011
[96]   Trenberth K, Meehl J, Masters J, et al. 2011. Current Extreme Weather and Climate Change. Colorado: Climate Communication Science and Outreach, 28.
[97]   Trenberth K E. 2011. Changes in precipitation with climate change. Climate Research, 47(1-2):123-138.
doi: 10.3354/cr00953
[98]   van Rooy M. 1965. A rainfall anomaly index independent of time and space. Notos, 14:43-48.
[99]   Vicente-Serrano S M, Beguería S, López-Moreno J I. 2010. A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. Journal of Climate, 23(7):1696-1718.
doi: 10.1175/2009JCLI2909.1
[100]   Vicente-Serrano S M, Beguería S, Lopez-Moreno J I. 2011. Comment on ''Characteristics and trends in various forms of the Palmer Drought Severity Index (PDSI) during 1900-2008'' by Aiguo Dai. Atmosphere, 116(D19), doi: 10.1029/2010JD015541.
doi: 10.1029/2010JD015541
[101]   Vicente-Serrano S M, Beguería S, Lorenzo-Lacruz J, et al. 2012. Performance of drought indices for ecological, agricultural, and hydrological applications. Earth Interactions, 16(10):1-27.
[102]   Vicente-Serrano S M, Lopez-Moreno J I, Beguería S, et al. 2014. Evidence of increasing drought severity caused by temperature rise in southern Europe. Environmental Research Letters, 9(4):044001, doi: 10.1088/1748-9326/9/4/044001.
doi: 10.1088/1748-9326/9/4/044001
[103]   Wanders N, Wada Y. 2015. Human and climate impacts on the 21st century hydrological drought. Journal of Hydrology, 526:208-220.
doi: 10.1016/j.jhydrol.2014.10.047
[104]   Wang H, Vicente-Serrano S M, Tao F, et al. 2016. Monitoring winter wheat drought threat in Northern China using multiple climate-based drought indices and soil moisture during 2000-2013. Agricultural and Forest Meteorology, 228-229:1-12.
doi: 10.1016/j.agrformet.2016.06.004
[105]   Wang J, Lin H, Huang J, et al. 2019. Variations of drought tendency, frequency, and characteristics and their responses to climate change under CMIP5 RCP scenarios in Huai River Basin, China. Water, 11(10):2174, doi: 10.3390/w11102174.
doi: 10.3390/w11102174
[106]   Wang Q, Wu J, Lei T, et al. 2014. Temporal-spatial characteristics of severe drought events and their impact on agriculture on a global scale. Quaternary International, 349:10-21.
doi: 10.1016/j.quaint.2014.06.021
[107]   Wang S Y, Yoon J H, Gillies R R, et al. 2013. What caused the winter drought in western Nepal during recent years? Journal of Climate, 26(21):8241-8256.
doi: 10.1175/JCLI-D-12-00800.1
[108]   Wang Y, Quan Q, Shen B. 2019. Spatio-temporal variability of drought and effect of large scale climate in the source region of Yellow River. Geomatics, Natural Hazards and Risk, 10(1):678-698.
doi: 10.1080/19475705.2018.1541827
[109]   Wilhite D A, Glantz M H. 1985. Understanding: the drought phenomenon: the role of definitions. Water International, 10(3):111-120.
doi: 10.1080/02508068508686328
[110]   Wilhite D A. 2000. Drought as a natural hazard: Concepts and definitions. In: Wilhite D A. Drought: A Global Assessment. London:Routledge, 3-18.
[111]   Wilhite D A. 2005. Drought and Water Crises: Science, Technology, and Management Issues. Boca Raton: Taylor & Francis Group, 432.
[112]   WMO(World Meteorological Organization). 2012. Standardized Precipitation Index User Guide. WMO-No. 1090. Geneva: WMO, 16.
[113]   WMO (World Meteorological Organization), GWP (Global Water Partnership). 2016. Handbook of Drought Indicators and Indices. WMO/GWP Integrated Drought Management Programme (IDMP). WMO-No. 1173. Geneva, Switzerland: WMO, and Stockholm, Sweden: GWP.
[114]   Wu H, Xiong D, Liu B, et al. 2019. Spatio-temporal analysis of drought variability using CWSI in the Koshi River Basin (KRB). International Journal of Environmental Research and Public Health, 16(17):3100, doi: 10.3390/ijerph16173100.
doi: 10.3390/ijerph16173100
[115]   Xu C Y, Singh V P. 2001. Evaluation and generalization of temperature-based methods for calculating evaporation. Hydrological Processes, 15(2):305-319.
doi: 10.1002/(ISSN)1099-1085
[116]   Yang M J, Yan D H, Yu Y D, et al. 2016. SPEI-based spatiotemporal analysis of drought in Haihe River Basin from 1961 to 2010. Advances in Meteorology, 2016: 7658015, doi: 10.1155/2016/7658015.
doi: 10.1155/2016/7658015
[117]   Zuo D, Cai S, Xu Z, et al. 2018. Spatiotemporal patterns of drought at various time scales in Shandong Province of Eastern China. Theoretical and Applied Climatology, 131(1-2):271-284.
doi: 10.1007/s00704-016-1969-5
[1] LIU Shuangshuang, WANG Feiteng, XU Chunhai, WANG Lin, LI Huilin. Environmental significance and hydrochemical characteristics of rivers in the western region of the Altay Mountains, China[J]. Journal of Arid Land, 2023, 15(9): 1052-1066.
[2] GAO Xiang, WEN Ruiyang, Kevin LO, LI Jie, YAN An. Heterogeneity and non-linearity of ecosystem responses to climate change in the Qilian Mountains National Park, China[J]. Journal of Arid Land, 2023, 15(5): 508-522.
[3] ZHANG Wensheng, AN Chengbang, LI Yuecong, ZHANG Yong, LU Chao, LIU Luyu, ZHANG Yanzhen, ZHENG Liyuan, LI Bing, FU Yang, DING Guoqiang. Modern pollen assemblages and their relationships with vegetation and climate on the northern slopes of the Tianshan Mountains, Xinjiang, China[J]. Journal of Arid Land, 2023, 15(3): 327-343.
[4] TONG Shan, CAO Guangchao, ZHANG Zhuo, ZHANG Jinhu, YAN Xin. Soil microbial community diversity and distribution characteristics under three vegetation types in the Qilian Mountains, China[J]. Journal of Arid Land, 2023, 15(3): 359-376.
[5] YANG Jingyi, LUO Weicheng, ZHAO Wenzhi, LIU Jiliang, WANG Dejin, LI Guang. Soil seed bank is affected by transferred soil thickness and properties in the reclaimed coal mine in the Qilian Mountains, China[J]. Journal of Arid Land, 2023, 15(12): 1529-1543.
[6] ZHANG Shubao, LEI Jun, TONG Yanjun, ZHANG Xiaolei, LU Danni, FAN Liqin, DUAN Zuliang. Temporal and spatial responses of ecological resilience to climate change and human activities in the economic belt on the northern slope of the Tianshan Mountains, China[J]. Journal of Arid Land, 2023, 15(10): 1245-1268.
[7] WEI Tianfeng, SHANGGUAN Donghui, TANG Xianglong, QIN Yu. The role of glacial gravel in community development of vascular plants on the glacier forelands of the Third Pole[J]. Journal of Arid Land, 2022, 14(9): 1022-1037.
[8] ZHANG Yin, GULIMIRE Hanati, SULITAN Danierhan, HU Keke. Monitoring and analysis of snow cover change in an alpine mountainous area in the Tianshan Mountains, China[J]. Journal of Arid Land, 2022, 14(9): 962-977.
[9] LI Hongliang, WANG Puyu, LI Zhongqin, JIN Shuang, XU Chunhai, MU Jianxin, HE Jie, YU Fengchen. Effect of topography on the changes of Urumqi Glacier No. 1 in the Chinese Tianshan Mountains[J]. Journal of Arid Land, 2022, 14(7): 719-738.
[10] WANG Fengjiao, FU Bojie, LIANG Wei, JIN Zhao, ZHANG Liwei, YAN Jianwu, FU Shuyi, GOU Fen. Assessment of drought and its impact on winter wheat yield in the Chinese Loess Plateau[J]. Journal of Arid Land, 2022, 14(7): 771-786.
[11] ABAY Peryzat, GONG Lu, CHEN Xin, LUO Yan, WU Xue. Spatiotemporal variation and correlation of soil enzyme activities and soil physicochemical properties in canopy gaps of the Tianshan Mountains, Northwest China[J]. Journal of Arid Land, 2022, 14(7): 824-836.
[12] WANG Ziyi, LIU Xiaohong, WANG Keyi, ZENG Xiaomin, ZHANG Yu, GE Wensen, KANG Huhu, LU Qiangqiang. Tree-ring δ15N of Qinghai spruce in the central Qilian Mountains of China: Is pre-treatment of wood samples necessary?[J]. Journal of Arid Land, 2022, 14(6): 673-690.
[13] SU Yuan, GONG Yanming, HAN Wenxuan, LI Kaihui, LIU Xuejun. Dependency of litter decomposition on litter quality, climate change, and grassland type in the alpine grassland of Tianshan Mountains, Northwest China[J]. Journal of Arid Land, 2022, 14(6): 691-703.
[14] HUANG Xiaoran, BAO Anming, GUO Hao, MENG Fanhao, ZHANG Pengfei, ZHENG Guoxiong, YU Tao, QI Peng, Vincent NZABARINDA, DU Weibing. Spatiotemporal changes of typical glaciers and their responses to climate change in Xinjiang, Northwest China[J]. Journal of Arid Land, 2022, 14(5): 502-520.
[15] PENG Jiajia, LI Zhongqin, XU Liping, MA Yuqing, LI Hongliang, ZHAO Weibo, FAN Shuang. Glacier mass balance and its impacts on streamflow in a typical inland river basin in the Tianshan Mountains, northwestern China[J]. Journal of Arid Land, 2022, 14(4): 455-472.