Please wait a minute...
Journal of Arid Land  2020, Vol. 12 Issue (2): 239-251    DOI: 10.1007/s40333-020-0123-5
Research article     
Community structure and carbon and nitrogen storage of sagebrush desert under grazing exclusion in Northwest China
DONG Yiqiang1,2,3, SUN Zongjiu1,2, AN Shazhou1,2,*(), JIANG Shasha1, WEI Peng1
1 College of Pratacultural and Environmental Science, Xinjiang Agricultural University, Urumqi 830052, China
2 Key Laboratory of Grassland Resources and Ecology of Xinjiang, Urumqi 830052, China
3 Post-doctoral Mobile Station of Xinjiang Agricultural University, Urumqi 830052, China
Download: HTML     PDF(363KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Overgrazing is regarded as one of the key factors of vegetation and soil degradation in the arid and semi-arid regions of Northwest China. Grazing exclusion (GE) is one of the most common pathways used to restore degraded grasslands and to improve their ecosystem services. Nevertheless, there are still significant controversies concerning GE's effects on grassland diversity as well as carbon (C) and nitrogen (N) storage. It remains poorly understood in the arid desert regions, whilst being essential for the sustainable use of grassland resources. To assess the effects of GE on community characteristics and C and N storage of desert plant community in the arid desert regions, we investigated the community structure and plant biomass, as well as C and N storage of plants and soil (0-100 cm depth) in short-term GE (three years) plots and adjacent long-term freely grazing (FG) plots in the areas of sagebrush desert in Northwest China, which are important both for spring-autumn seasonal pasture and for ecological conservation. Our findings indicated that GE was beneficial to the average height, coverage and aboveground biomass (including stems, leaves and inflorescences, and litter) of desert plant community, to the species richness and importance values of subshrubs and perennial herbs, and to the biomass C and N storage of aboveground parts (P<0.05). However, GE was not beneficial to the importance values of annual herbs, root/shoot ratio and total N concentration in the 0-5 and 5-10 cm soil layers (P<0.05). Additionally, the plant density, belowground biomass, and soil organic C concentration and C storage in the 0-100 cm soil layer could not be significantly changed by short-term GE (three years). The results suggest that, although GE was not beneficial for C sequestration in the sagebrush desert ecosystem, it is an effective strategy for improving productivity, diversity, and C and N storage of plants. As a result, GE can be used to rehabilitate degraded grasslands in the arid desert regions of Northwest China.



Key wordsgrazing exclusion      desert plant community      biomass      C storage      N storage      fencing      arid desert regions     
Received: 27 April 2018      Published: 10 March 2020
Corresponding Authors:
About author: *Corresponding author: AN Shazhou (E-mail: xjasz@126.com)
Cite this article:

DONG Yiqiang, SUN Zongjiu, AN Shazhou, JIANG Shasha, WEI Peng. Community structure and carbon and nitrogen storage of sagebrush desert under grazing exclusion in Northwest China. Journal of Arid Land, 2020, 12(2): 239-251.

URL:

http://jal.xjegi.com/10.1007/s40333-020-0123-5     OR     http://jal.xjegi.com/Y2020/V12/I2/239

Experimental site Plot Dominant species Location Altitude (m) AMT (°C) MAP (mm)
MNS FG Seriphidium transiliense, Petrosimonia sibirica 44°01′N, 86°09′E 1033 8.18 172
GE S. transiliense,
Carex turkestanica
HTB FG S. transiliense,
P. sibirica
43°58′N, 86°32′E 978 6.79 224
GE S. transiliense,
C. turkestanica
Table 1 Summary conditions of the experimental sites
Experimental site Plot Average height
(cm)
Total coverage
(%)
Total density
(plants/m2)
Richness
index
Diversity
index
Evenness
index
MNS FG 18.41±1.10b 29.22±2.48b 93.11±43.70a 2.44±0.18a 0.53±0.07b 0.61±0.08a
GE 31.16±3.29a 61.00±4.26a 82.33±25.63a 2.67±0.53a 0.85±0.10a 0.82±0.04a
HTB FG 11.04±1.05b 21.33±1.95b 98.78±33.29a 1.56±0.18b 0.44±0.06a 0.63±0.08a
GE 40.14±3.94a 81.89±21.43a 58.78±13.19a 2.78±1.20a 0.70±0.11a 0.65±0.04a
Table 2 Desert plant community structure characteristics in the FG and GE plots in MNS and HTB
Experimental site Index Plot Subshrubs Perennial herbs Annual herbs
MNS Average height (cm) FG 30.54±2.49b 1.57±1.06b 6.39±1.33a
GE 42.44±3.66a 5.20±1.37a 6.22±2.22a
Coverage (%) FG 23.47±3.07b 0.28±0.19b 4.33±2.23a
GE 51.78±4.43a 8.44±3.31a 0.78±0.01b
Density (plants/m2) FG 26.17±2.41a 2.33±1.98b 63±4.11a
GE 21.78±2.09a 59.67±6.60a 0.89±0.02b
Importance value FG 0.74±0.06a 0.08±0.02b 0.18±0.06a
GE 0.78±0.06a 0.19±0.06a 0.03±0.02b
HTB Average height (cm) FG 20.71±1.53b 0.70±0.47b 3.11±0.75
GE 43.76±2.12a 16.83±8.41a -
Coverage (%) FG 18.00±1.53b 0.33±0.24b 2.78±0.69
GE 79.44±1.94a 2.44±1.12a -
Density (plants/m2) FG 24.33±2.23b 0.44±0.34b 73.44±34.95
GE 44.56±7.08a 14.22±2.24a -
Importance value FG 0.76±0.05b 0.01±0.01b 0.21±0.05
GE 0.91±0.03a 0.09±0.03a -
Table 3 Average plant height, coverage, density and importance values of different function groups in the FG and GE plots in MNS and HTB
Experimental
site
Plot Biomass (g/m2) Root/shoot
ratio
Stem Leaves and
inflorescences
Litter Aboveground
parts
Belowground
parts
MNS FG 96.0±12.7b 41.0±5.3b 12.0±3.0b 147.6±17.0b 1497.7±457.2a 13.8±2.1a
GE 150.3±9.4a 70.2±5.7a 29.8±16.1a 247.0±15.8a 1847.7±138.0a 5.8±1.8b
HTB FG 41.7±3.1b 29.7±1.5b 11.6±2.8b 81.8±4.6b 718.2±69.6a 9.6±0.5a
GE 245.4±28.4a 91.1±9.0a 19.7±1.8a 356.2±37.4a 685.6±7.7a 2.2±0.3b
Table 4 Biomass characteristics of desert plant community in the FG and GE plots in MNS and HTB
Fig. 1 Biomass carbon (C) and nitrogen (N) storage of aboveground and belowground parts of desert plant community in the FG and GE plots in MNS (a and b) and HTB (c and d). FG, freely grazing; GE, grazing exclusion; MNS, experiment site in the sagebrush desert region of Manas County; HTB, experiment site in the sagebrush desert region of Hutubi County. Different lowercase letters mean significant difference between FG and GE plots at P<0.05 level.
Fig. 2 Soil organic carbon (SOC) and soil total nitrogen (STN) concentrations in different soil layers in the FG and GE plots in MNS (a and b) and HTB (c and d). * means significant difference among different soil layers at P<0.05 level. Error bar means standard error.
Fig. 3 Soil C/N ratios in different soil layers in the FG and GE plots in MNS (a) and HTB (b). ns means significant difference among different soil layers at P<0.05 level. Error bar means standard error.
Experimental site Soil layer
(cm)
Soil C storage (g/m2) Soil N storage (g/m2)
FG GE FG GE
MNS 0-5 6641.5±1778.6a 5088.1±1768.3a 804.9±190.7a 548.1±190.7a
5-10 3551.1±948.6a 3281.4±1417.7a 445.4±138.4a 329.4±126.5a
10-20 5810.3±2118.5a 6019.1±3348.5a 542.9±155.3a 590.2±292.5a
20-30 2937.7±904.1a 2275.9±959.0a 268.4±47.7a 269.9±101.0a
30-50 3580.2±1438.1a 5944.5±478.5a 407.7±196.7a 797.2±641.3a
50-70 1600.6±388.9a 1696.1±1122.1a 164.7±99.5a 215.3±125.7a
70-100 814.9±266.0a 329.9±221.4a 161.9±57.2a 67.2±22.6a
0-100 24,936.4±6540.4a 24,635.1±1,3029.2a 2795.8±645.9a 2817.4±1386.1a
HTB 0-5 3501.6±283.3a 3213.9±1465.7a 446.1±101.4a 253.0±105.6a
5-10 1267.8±48.9a 1861.4±593.1a 199.8±28.5a 219.7±118.3a
10-20 2239.0±604.4a 1616.7±310.5a 291.8±34.6a 182.9±17.5b
20-30 1174.3±284.6a 573.3±179.7a 143.0±29.5a 95.3±18.3a
30-50 1378.5±312.0a 886.0±180.3a 241.4±44.0a 152.9±7.1a
50-70 666.8±241.3a 329.2±161.8a 144.4±55.7a 63.4±22.5a
70-100 627.6±330.2a 429.5±242.2a 125.6±43.6a 70.7±20.6a
0-100 10,855.8±1310.3a 8910.1±1336.2a 1592.2±71.4a 1037.9±72.0b
Table 5 Soil C and N storage in different soil layers in the FG and GE plots in MNS and HTB
[1]   Bao S D. 2000. Soil and Agricultural Chemistry Analysis (3rd ed.). Beijing: China Agriculture Press, 263-270. (in Chinese)
[2]   Bi X, Li B, Fu Q, et al. 2018. Effects of grazing exclusion on the grassland ecosystems of mountain meadows and temperate typical steppe in a mountain-basin system in Central Asia's arid regions, China. Science of the Total Environment, 630: 254-263.
doi: 10.1016/j.scitotenv.2018.02.055 pmid: 29477823
[3]   Cheng J M, Jing G H, Wei L, et al. 2016. Long-term grazing exclusion effects on vegetation characteristics, soil properties and bacterial communities in the semi-arid grasslands of China. Ecological Engineering, 97: 170-178.
[4]   Deng L, Sweeney S, Shangguan Z P. 2014a. Long-term effects of natural enclosure: Carbon stocks, sequestration rates and potential for grassland ecosystems in the Loess Plateau. Clean-Soil, Air, Water, 42(5): 617-625.
[5]   Deng L, Zhang Z, Shangguan Z P. 2014b. Long-term fencing effects on plant diversity and soil properties in China. Soil and Tillage Research, 137(1): 7-15.
[6]   Dodd M B, Mackay A D. 2011. Effects of contrasting soil fertility on root mass, root growth, root decomposition and soil carbon under a New Zealand perennial ryegrass/white clover pasture. Plant and Soil, 349(1-2): 291-302.
[7]   Dong S K, Wen L, Liu S L, et al. 2011. Vulnerability of worldwide pastoralism to global changes and interdisciplinary strategies for sustainable pastoralism. Ecology and Society, 16(2): 85-99.
[8]   Dong S K, Wen L, Li Y Y, et al. 2012. Soil-quality effects of grassland degradation and restoration on the Qinghai-Tibetan Plateau. Soil Science Society of America Journal, 76(6): 2256-2264.
[9]   Dong Y Q, Sun Z J, An S Z, et al. 2016. Effect of grazing intensity on population characteristics and community diversity of Seriphidium transiliense. Acta Agrestia Sinica, 24(1): 22-24. (in Chinese)
[10]   Dong Y Q, Sun Z J, An S Z, et al. 2017. Natural restoration of degraded grassland on the northern Xinjiang, China: The restoration difference between lightly and moderately degraded deserts under grazing exclusion. Fresenius Environmental Bulletin, 26(6): 3845-3855.
[11]   Ebrahimi M, Khosravi H, Rigi M. 2016. Short-term grazing exclusion from heavy livestock rangelands affects vegetation cover and soil properties in natural ecosystems of southeastern Iran. Ecological Engineering, 95: 10-18.
[12]   El-Keblawy A. 2017. Impact of fencing and irrigation on species composition and diversity of desert plant communities in the United Arab Emirates. Land Degradation & Development, 28(4): 1354-1362.
[13]   Fan Y J, Hou X Y, Shi H X. 2013. Effects of grazing and fencing on carbon and nitrogen reserves in plants and soils of alpine meadow in the three headwater resource regions. Russian Journal of Ecology, 44(1): 80-88.
[14]   Fang J Y, Guo Z D, Piao S L, et al. 2007. Terrestrial vegetation carbon sinks in China, 1981-2000. Science in China Series D: Earth Sciences, 50(9): 1341-1350. (in Chinese)
[15]   Feng R Z, Long R J, Shang Z H, et al. 2010. Establishment of Elymus natans improves soil quality of a heavily degraded alpine meadow in Qinghai-Tibetan Plateau, China. Plant and Soil, 327(1-2): 403-411.
doi: 10.1007/s11104-009-0065-3
[16]   Fu G, Zhang X Z, Yu C Q, et al.2014. Response of soil respiration to grazing in an alpine meadow at three elevations in Tibet. Scientific World Journal, 2014: 265142, doi: 10.1155/2014/265142.
doi: 10.1155/2014/265142 pmid: 24790558
[17]   Fu G, Shen Z X. 2017. Clipping has stronger effects on plant production than does warming in three alpine meadow sites on the Northern Tibetan Plateau. Scientific Reports, 7(1): 16330, doi: 10.1038/s41598-017-16645-2.
doi: 10.1038/s41598-017-16645-2 pmid: 29180638
[18]   Fu G, Shen Z X, Zhang X Z. 2018. Increased precipitation has stronger effects on plant production of an alpine meadow than does experimental warming in the northern Tibetan Plateau. Agricultural and Forest Meteorology, 249: 11-21.
doi: 10.1016/j.agrformet.2017.11.017
[19]   Gallego L, Distel R A, Camina R. 2004. Soil phytoliths as evidence for species replacement in grazed rangelands of central Argentina. Ecography, 27(6): 725-732.
[20]   Gao Y H, Schumann M, Chen H, et al. 2009. Impacts of grazing intensity on soil carbon and nitrogen in an alpine meadow on the eastern Tibetan Plateau. Journal of Food, Agriculture & Environment, 7(2): 749-754.
[21]   Golodets C, Kigel J, Sternberg M. 2010. Recovery of plant species composition and ecosystem function after cessation of grazing in a Mediterranean grassland. Plant and Soil, 329(1-2): 365-378.
doi: 10.1007/s11104-009-0164-1
[22]   Guo Q F. 2007. The diversity-biomass-productivity relationships in grassland management and restoration. Basic and Applied Ecology, 8(3): 199-208.
doi: 10.1016/j.baae.2006.02.005
[23]   Hafner S, Unteregelsbacher S, Seeber E, et al. 2012. Effect of grazing on carbon stocks and assimilate partitioning in a Tibetan montane pasture revealed by 13CO2 pulse labeling. Global Change Biology, 18(2): 528-538.
[24]   Hu Z M, Li S G, Guo Q, et al. 2016. A synthesis of the effect of grazing exclusion on carbon dynamics in grasslands in China. Global Change Biology, 22(4): 1385-1393.
doi: 10.1111/gcb.13133 pmid: 26485056
[25]   Jing Z B, Cheng J M, Su J H, et al. 2014. Changes in plant community composition and soil properties under 3-decade grazing exclusion in semiarid grassland. Ecological Engineering, 64(3): 171-178.
doi: 10.1016/j.ecoleng.2013.12.023
[26]   Li Q, Zhou D W, Jin Y H, et al. 2014. Effects of fencing on vegetation and soil restoration in a degraded alkaline grassland in Northeast China. Journal of Arid Land, 6(4): 478-487.
doi: 10.1007/s40333-013-0207-6
[27]   Li Y Q, Zhao X Y, Zhang F X, et al. 2015. Accumulation of soil organic carbon during natural restoration of desertified grassland in China's Horqin Sandy Land. Journal of Arid Land, 7(3): 328-340.
doi: 10.1007/s40333-014-0045-1
[28]   Lu X Y, Yan Y, Jian S, et al. 2015. Carbon, nitrogen, and phosphorus storage in alpine grassland ecosystems of Tibet: Effects of grazing exclusion. Ecology & Evolution, 5(19): 4492-4504.
doi: 10.1002/ece3.1732 pmid: 26664694
[29]   Luan J W, Cui L J, Xiang C H, et al. 2014. Different grazing removal exclosures effects on soil C stocks among alpine ecosystems in east Qinghai-Tibet Plateau. Ecological Engineering, 64(3): 262-268.
doi: 10.1016/j.ecoleng.2013.12.057
[30]   Marriott C A, Hood K, Fisher J M, et al. 2009. Long-term impacts of extensive grazing and abandonment on the species composition, richness, diversity and productivity of agricultural grassland. Agriculture, Ecosystem and Environment, 134(3-4): 190-200.
[31]   Mcsherry M E, Ritchie M E. 2013. Effects of grazing on grassland soil carbon: A global review. Global Change Biology, 19(5): 1347-1357.
doi: 10.1111/gcb.12144 pmid: 23504715
[32]   Medinaroldán E, Pazferreiro J, Bardgett R D. 2012. Grazing exclusion affects soil and plant communities, but has no impact on soil carbon storage in an upland grassland. Agriculture Ecosystems & Environment, 149: 118-123.
[33]   Mekuria W, Aynekulu E. 2013. Exclosure land management for restoration of the soils in degrade communal grazing lands in northern Ethiopia. Land Degradation and Development, 24(6): 528-538.
[34]   Nosetto M D, Jobbágy E G, Paruelo J M. 2006. Carbon sequestration in semi-arid rangelands: Comparison of Pinus ponderosa plantations and grazing exclusion in NW Patagonia. Journal of Arid Environments, 67(1): 142-156.
doi: 10.1016/j.jaridenv.2005.12.008
[35]   Pei S F, Fu H, Wan C G. 2008. Changes in soil properties and vegetation following exclosure and grazing in degraded Alxa desert steppe of Inner Mongolia, China. Agriculture Ecosystems & Environment, 124(1-2): 33-39.
[36]   Piñeiro G, Paruelo J M, Jobbágy E G, et al. 2009. Grazing effects on belowground C and N stocks along a network of cattle exclosures in temperate and subtropical grasslands of South America. Global Biogeochemical Cycles, 23(2): GB2003, doi: 10.1029/2007GB003168.
[37]   Piñeiro G, Paruelo J M, Oesterheld M. 2010. Potential long-term impacts of livestock introduction on carbon and nitrogen cycling in grasslands of southern South America. Global Change Biology, 12(7): 1267-1284.
[38]   Post W M, Kwon K C. 2010. Soil carbon sequestration and land-use change: Processes and potential. Global Change Biology, 6(3): 317-327.
[39]   Qiu L P, Wei X R, Zhang X C, et al. 2013. Ecosystem carbon and nitrogen accumulation after grazing exclusion in semiarid grassland. PloS ONE, 8(1): e55433, doi: 10.1371/journal.pone.0055433.
doi: 10.1371/journal.pone.0055433 pmid: 23383191
[40]   Sasaki T, Okayasu T, Jamsran U, et al. 2011. Indicator species and functional groups as predictors of proximity to ecological thresholds in Mongolian rangelands. Plant Ecology, 212(2): 327-342.
doi: 10.1007/s11258-010-9825-7
[41]   Schönbach P, Wan H W, Gierus M. 2011. Grassland responses to grazing: Effects of grazing intensity and management system in an inner Mongolian steppe ecosystem. Plant and Soil, 340(1-2): 103-115.
doi: 10.1007/s11104-010-0366-6
[42]   Shao H Y, Sun X F, Wang H X, et al. 2016. A method to the impact assessment of the returning grazing land to grassland project on regional eco-environmental vulnerability. Environmental Impact Assessment Review, 56: 155-167.
doi: 10.1016/j.eiar.2015.10.006
[43]   Shen Z X, Zhou N, Fu G, et al. 2016. Comparison of community carbon and nitrogen contents under fencing and grazing in an alpine meadow at three elevations in the northern Tibet. Ecology and Environmental Sciences, 25(3): 372-376.
[44]   Shi X M, Li X G, Li C T, et al. 2013. Grazing exclusion decreases soil organic C storage at an alpine grassland of the Qinghai-Tibetan Plateau. Ecological Engineering, 57(3): 183-187.
doi: 10.1016/j.ecoleng.2013.04.032
[45]   Shi Y, Wang Y C, Ma Y M, et al. 2014. Field-based observations of regional-scale, temporal variation in net primary production in Tibetan alpine grasslands. Biogeosciences Discussions, 10(10): 16843-16878.
doi: 10.5194/bgd-10-16843-2013
[46]   Shrestha G, Stahl P D. 2008. Carbon accumulation and storage in semi-arid sagebrush steppe: Effects of long-term grazing exclusion. Agriculture, Ecosystems & Environment, 125(1-4): 173-181.
[47]   Sigcha F, Pallavicini Y, Camino M J, et al. 2018. Effects of short-term grazing exclusion on vegetation and soil in early succession of a subhumid Mediterranean reclaimed coal mine. Plant and Soil, 426(1-2): 197-209.
doi: 10.1007/s11104-018-3629-2
[48]   Sternberg M, Gutman M, Perevolotsky A, et al. 2000. Vegetation response to grazing management in a Mediterranean herbaceous community: A functional group approach. Journal of Applied Ecology, 37(2): 224-237.
doi: 10.1046/j.1365-2664.2000.00491.x
[49]   Wang D, Wu G L, Zhu Y J, et al. 2014. Grazing exclusion effects on above- and below-ground C and N pools of typical grassland on the Loess Plateau (China). Catena, 123: 113-120.
doi: 10.1016/j.catena.2014.07.018
[50]   Wang K B, Deng L, Ren Z P, et al. 2016. Grazing exclusion significantly improves grassland ecosystem C and N pools in a desert steppe of Northwest China. Catena, 137: 441-448.
doi: 10.1016/j.catena.2015.10.018
[51]   Wang X, Yang X G, Wang L, et al. 2018. A six-year grazing exclusion changed plant species diversity of a Stipa breviflora desert steppe community, northern China. PeerJ, 6(6): e4359, doi: 10.7717/peerj.4359.
doi: 10.7717/peerj.4359 pmid: 29456890
[52]   Wu G L, Du G Z, Liu Z H, et al. 2009. Effect of fencing and grazing on a Kobresia-dominated meadow in the Qinghai-Tibetan Plateau. Plant and Soil, 319(1-2): 115-126.
doi: 10.1007/s11104-008-9854-3
[53]   Wu G L, Liu Z H, Zhang L, et al. 2010. Long-term fencing improved soil properties and soil organic carbon storage in an alpine swamp meadow of western China. Plant and Soil, 332(1-2): 331-337.
doi: 10.1007/s11104-010-0299-0
[54]   Wu J S, Shen Z X, Shi P L, et al. 2014. Effects of grazing exclusion on plant functional group diversity of alpine grasslands along a precipitation gradient on the northern Tibetan Plateau. Arctic Antarctic and Alpine Research, 46(2): 419-429.
doi: 10.1657/1938-4246-46.2.419
[55]   Wu X, Li Z S, Fu B J, et al. 2014a. Effects of grazing exclusion on soil carbon and nitrogen storage in semi-arid grassland in Inner Mongolia, China. Chinese Geographical Science, 24(4): 479-487.
doi: 10.1371/journal.pone.0096604 pmid: 24819162
[56]   Wu X, Li Z S, Fu B J, et al. 2014b. Restoration of ecosystem carbon and nitrogen storage and microbial biomass after grazing exclusion in semi-arid grasslands of Inner Mongolia. Ecological Engineering, 73(1): 395-403.
doi: 10.1016/j.ecoleng.2014.09.077
[57]   Xiong D P, Shi P L, Sun Y L, et al. 2014. Effects of grazing exclusion on plant productivity and soil carbon, nitrogen storage in alpine meadows in northern Tibet, China. Chinese Geographical Science, 24(4): 488-498.
doi: 10.1007/s11769-014-0697-y
[58]   Xiong D P, Shi P L, Zhang X Z, et al. 2016. Effects of grazing exclusion on carbon sequestration and plant diversity in grasslands of China: A meta-analysis. Ecological Engineering, 94: 647-655.
doi: 10.1016/j.ecoleng.2016.06.124
[59]   Yan Y, Lu X Y. 2015. Is grazing exclusion effective in restoring vegetation in degraded alpine grasslands in Tibet, China? PeerJ, 3(6): e1020, doi: 10.7717/peerj.1020.
doi: 10.7717/peerj.1020
[60]   Yayneshet T, Eik L O, Moe S R. 2009. The effects of exclosures in restoring degraded semi-arid vegetation in communal grazing lands in northern Ethiopia. Journal of Arid Environments, 73(4-5): 542-549.
doi: 10.1016/j.jaridenv.2008.12.002
[61]   Zhang X Z, Shen Z X, Fu G. 2015. A meta-analysis of the effects of experimental warming on soil carbon and nitrogen dynamics on the Tibetan Plateau. Applied Soil Ecology, 87: 32-38.
doi: 10.1016/j.apsoil.2014.11.012
[62]   Zhang Y Y, Zhao W Z. 2015. Vegetation and soil property response of short-time fencing in temperate desert of the Hexi Corridor, northwestern China. Catena, 133: 43-51.
doi: 10.1016/j.catena.2015.04.019
[63]   Zhao L P, Su J S, Wu G L, et al. 2011. Long-term effects of grazing exclusion on aboveground and belowground plant species diversity in a steppe of the Loess Plateau, China. Plant Ecology and Evolution, 144(3): 313-320.
doi: 10.5091/plecevo.2011.617
[1] LIN Yanmin, HU Zhirui, LI Wenhui, CHEN Haonan, WANG Fang, NAN Xiongxiong, YANG Xuelong, ZHANG Wenjun. Response of ecosystem carbon storage to land use change from 1985 to 2050 in the Ningxia Section of Yellow River Basin, China[J]. Journal of Arid Land, 2024, 16(1): 110-130.
[2] Teame G KEBEDE, Emiru BIRHANE, Kiros-Meles AYIMUT, Yemane G EGZIABHER. Arbuscular mycorrhizal fungi improve biomass, photosynthesis, and water use efficiency of Opuntia ficus-indica (L.) Miller under different water levels[J]. Journal of Arid Land, 2023, 15(8): 975-988.
[3] LIU Yulin, LI Jiwei, HAI Xuying, WU Jianzhao, DONG Lingbo, PAN Yingjie, SHANGGUAN Zhouping, WANG Kaibo, DENG Lei. Carbon inputs regulate the temperature sensitivity of soil respiration in temperate forests[J]. Journal of Arid Land, 2022, 14(9): 1055-1068.
[4] HUI Rong, TAN Huijuan, LI Xinrong, WANG bingyao. Variation of soil physical-chemical characteristics in salt-affected soil in the Qarhan Salt Lake, Qaidam Basin[J]. Journal of Arid Land, 2022, 14(3): 341-355.
[5] Laura B RODRIGUEZ, Silvia S TORRES ROBLES, Marcelo F ARTURI, Juan M ZEBERIO, Andrés C H GRAND, Néstor I GASPARRI. Plant cover as an estimator of above-ground biomass in semi-arid woody vegetation in Northeast Patagonia, Argentina[J]. Journal of Arid Land, 2021, 13(9): 918-933.
[6] WANG Lei, FAN Lianlian, JIANG Li, TIAN Changyan. Elevated CO2 increases shoot growth but not root growth and C:N:P stoichiometry of Suaeda aralocaspica plants[J]. Journal of Arid Land, 2021, 13(11): 1155-1162.
[7] HUANG Xiaotao, LUO Geping, CHEN Chunbo, PENG Jian, ZHANG Chujie, ZHOU Huakun, YAO Buqing, MA Zhen, XI Xiaoyan. How precipitation and grazing influence the ecological functions of drought-prone grasslands on the northern slopes of the Tianshan Mountains, China?[J]. Journal of Arid Land, 2021, 13(1): 88-97.
[8] JIN Xiaoming, YANG Xiaogang, ZHOU Zhen, ZHANG Yingqi, YU Liangbin, ZHANG Jinghua, LIANG Runfang. Ecological stoichiometry and biomass response of Agropyron michnoi Roshev. under simulated N deposition in a sandy grassland, China[J]. Journal of Arid Land, 2020, 12(5): 741-751.
[9] Ali MAHDAVI, Soghra SAIDI, Yaghob IRANMANESH, Mostafa NADERI. Biomass and carbon stocks in three types of Persian oak (Quercus brantii var. persica) of Zagros forests in a semi-arid area, Iran[J]. Journal of Arid Land, 2020, 12(5): 766-774.
[10] PEI Yanwu, HUANG Laiming, SHAO Ming'an, ZHANG Yinglong. Responses of Amygdalus pedunculata Pall. in the sandy and loamy soils to water stress[J]. Journal of Arid Land, 2020, 12(5): 791-805.
[11] ZHANG Zhenchao, LIU Miao, SUN Jian, WEI Tianxing. Degradation leads to dramatic decrease in topsoil but not subsoil root biomass in an alpine meadow on the Tibetan Plateau, China[J]. Journal of Arid Land, 2020, 12(5): 806-818.
[12] WEN Jing, QIN Ruimin, ZHANG Shixiong, YANG Xiaoyan, XU Manhou. Effects of long-term warming on the aboveground biomass and species diversity in an alpine meadow on the Qinghai-Tibetan Plateau of China[J]. Journal of Arid Land, 2020, 12(2): 252-266.
[13] YANG Yuling, LI Minfei, MA Jingjing, CHENG Junhui, LIU Yunhua, JIA Hongtao, LI Ning, WU Hongqi, SUN Zongjiu, FAN Yanmin, SHENG Jiandong, JIANG Ping'an. Changes in the relationship between species richness and belowground biomass among grassland types and along environmental gradients in Xinjiang, Northwest China[J]. Journal of Arid Land, 2019, 11(6): 855-865.
[14] Lianlian FAN, Junxiang DING, Xuexi MA, Yaoming LI. Ecological biomass allocation strategies in plant species with different life forms in a cold desert, China[J]. Journal of Arid Land, 2019, 11(5): 729-739.
[15] Yuanyuan LI, Qijing LIU, Shengwang MENG, Guang ZHOU. Allometric biomass equations of Larix sibirica in the Altay Mountains, Northwest China[J]. Journal of Arid Land, 2019, 11(4): 608-622.