Please wait a minute...
Journal of Arid Land  2020, Vol. 12 Issue (2): 227-238    DOI: 10.1007/s40333-019-0020-y
Research article     
Relationship between ecological stoichiometry and plant community diversity in the upper reaches of Tarim River, northwestern China
ZHAO Jingjing1,2, GONG Lu1,2,*(), CHEN Xin1,2
1 College of Resources and Environment Science, Xinjiang University, Urumqi 830046, China
2 Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi 830046, China
Download: HTML     PDF(367KB)
Export: BibTeX | EndNote (RIS)      


Changes in ecological stoichiometry reflect nitrogen (N), phosphorus (P) and both N and P limitations in a plant community, which in turn affect plant diversity of the community. However, the relationship between plant community diversity and ecological stoichiometry has not yet been fully researched in arid and semi-arid regions. Ecological stoichiometry and plant community diversity indices of eighteen communities in the upper reaches of Tarim River, northwestern China, were analyzed by multivariate analysis of variance in 2016. The correlation between ecological stoichiometry and plant community diversity was assessed by redundancy analysis (RDA). Results indicated that the Margalef index was significantly correlated with carbon (C) and P concentrations, the Simpson index and Shannon-Weaner index were significantly correlated with plant C concentration, and the Pielou index was significantly correlated with plant C and N concentrations. Moreover, C:N and C:P ratios had significant impacts on plant community diversity. Our results highlight the importance of ecological stoichiometry in driving plant community diversity in the upper reaches of Tarim River, northwestern China.

Key wordsMargalef index      Simpson index      Shannon-Weaner index      redundancy analysis      Tarim River     
Received: 25 December 2018      Published: 10 March 2020
Corresponding Authors: Lu GONG     E-mail:
About author: *Corresponding author: GONG Lu (E-mail:
Cite this article:

ZHAO Jingjing, GONG Lu, CHEN Xin. Relationship between ecological stoichiometry and plant community diversity in the upper reaches of Tarim River, northwestern China. Journal of Arid Land, 2020, 12(2): 227-238.

URL:     OR

Fig. 1 Location of sampling zones in the upper reaches of Tarim River, northwestern China. T1, T2 and T3 are the sampling zones with six plant communities.
Dominant species Total
Fre Cov Soil C
Soil N
Soil P
Soil water
content (%)
T11 Populus euphratica,
Halostachys caspica
168 1.39 0.69 6.58 0.59 0.63 12.57
T12 P. euphratica, Tamarix chinensis 524 1.77 0.31 4.75 0.52 0.57 13.11
T13 P. euphratica, Lycium ruthenicum,
Glycyrrhiza uralensis
769 1.77 0.38 6.99 0.56 0.53 14.23
T14 T. chinensis 363 1.33 0.31 6.87 0.54 0.61 14.19
T15 P. euphratica, T. chinensis,
G. uralensis
109 1.33 0.38 1.19 0.22 0.58 12.86
T16 P. euphratica 110 0.67 0.23 0.89 0.20 0.65 12.08
T21 T. chinensis,
Phragmites communis

1.16 0.03 0.54 0.16 0.66 9.77
T22 T. chinensis,
Hexinia polydichotoma
36 1.00 0.03 1.04 0.20 0.52 11.76
T23 Alhagi sparsifolia,
Karelinia caspia
81 0.55 0.28 0.56 0.22 0.45 9.51
T24 T. chinensis, A sparsifolia 72 1.17 0.36 1.75 0.22 0.52 11.84
T25 P. euphratica, T. chinensis,
A. sparsifolia, K. caspia
219 1.72 0.28 2.04 0.19 0.52 11.66
T26 A. sparsifolia,
P. euphratica
43 0.56 0.04 1.82 0.22 0.50 9.70
T31 Halostachys caspica,
Kalidium foliatum
80 1.11 0.63 4.66 0.38 0.50 6.24
T32 H. caspica 8 1.05 0.25 7.39 0.59 0.56 8.38
T33 T. chinensis, H. polydichotoma 45 1.00 0.25 7.33 0.68 0.49 9.19
T34 H. caspica, A. sparsifolia,
K. caspia
336 1.61 0.28 4.28 0.62 0.51 5.05
T35 T. chinensis, A. sparsifolia,
K. caspia
30 1.39 0.07 3.27 0.19 0.54 8.61
T36 T. chinensis, K. caspia 10 1.17 0.12 2.66 0.26 0.53 8.19
Table 1 Vegetation composition and soil characteristics of different communities
C:N ratio C:P ratio N:P ratio
T11 428.33±1.04Bb 16.74±0.06Ad 1.32±0.07Aa 26.05±1.94Bbc 326.04±19.39Cc 12.53±0.34Bd
T12 447.70±11.76Aa 18.58±0.96Aab 1.10±0.04Ab 24.12±0.62Bbc 408.51±9.94Cb 16.94±0.58Bc
T13 453.39±3.43Aa 19.59±0.92Aa 1.09±0.02Ab 23.18±1.28Bc 414.34±5.02ABb 17.92±1.16Ac
T14 448.11±7.47Aa 10.42±0.85Bd 1.30±0.06Aa 43.18±2.86Aa 344.59±9.98Bbc 7.99±0.33Be
T15 434.91±2.33Ab 17.47±1.01Abc 0.67±0.09Bc 24.95±1.30Abc 653.89±89.28Aa 26.14±2.35ABa
T16 449.92±5.48Aa 16.85±1.23Abc 0.76±0.05Bc 26.78±1.71Bb 596.76±39.12Aa 22.39±2.59Ab
T21 451.39±1.00Aa 11.40±1.17Bb 0.95±0.01Bc 39.87±4.01Aa 474.62±4.67Bcd 11.99±1.30Bb
T22 420.51±1.05Bb 14.64±1.04Bb 0.59±0.01Ce 28.82±1.20ABbc 714.55±17.64Aa 24.89±2.26Aa
T23 441.61±10.29ABa 20.67±2.26Aa 0.92±0.10Bc 21.51±2.02Bd 486.68±59.06Ac 22.93±4.94Aa
T24 445.35±9.88Aa 13.13±1.64Ab 1.07±0.06Bb 34.24±4.07Bab 418.7±32.72Ad 12.34±1.65Ab
T25 435.52±13.37Aab 18.76±2.57Aa 0.69±0.02ABd 23.56±3.81Acd 629.96±34.95ABb 27.07±3.11Aa
T26 400.73±10.03Bc 14.51±1.92ABb 1.36±0.03Aa 27.97±4.21Bbcd 295.74±13.95Be 10.70±1.33Bb
T31 391.05±1.46Cc 11.35±0.84Bc 0.69±0.01Cc 34.58±2.66Aa 562.76±4.96Aa 16.07±0.73Abc
T32 405.37±5.95Bbc 11.62±2.00Cbc 0.71±0.02Bc 35.67±6.84Aa 567.44±16.64Ba 16.05±0.72Bbc
T33 432.19±11.33Ba 14.07±1.59Bbc 1.26±0.11Ab 35.22±4.88Aab 345.24±24.51Bc 11.31±2.23Bc
T34 433.15±22.08Aa 14.58±0.02Ab 1.46±0.10Aa 29.72±1.54Bab 297.79±6.26Cc 10.05±0.72Bc
T35 419.32±11.91Aab 17.93±2.81Aa 0.83±0.08Ac 23.80±3.93Ab 507.29±52.38Bb 21.50±2.34Ba
T36 443.39±18.88Aa 12.84±0.45Bbc 1.37±0.02Aab 34.53±0.52Aa 323.74±19.57Bc 9.37±0.49Bc
Table 2 Characteristics of C, N and P concentrations and their ratios in different communities
Fig. 2 Correlations among C, N and P concentrations and their ratios
Fig. 3 Simpson’s index (D; a), Shannon-Wiener index (H’; b), Margalef index (Ma; c) and Pielou index (E; d) in different plant communities. Different uppercase letters indicate significant differences among plant community diversity indices in T1, T2 and T3 zones at P<0.05 level. Bars indicate standard errors. T11-T16, T21-T26 and T31-T36 mean the six plant communities in T1, T2 and T3 zones, respectively.
Fig. 4 Biplot diagram of redundancy analysis (RDA) for ecological stoichiometry and plant community diversity indices. In this biplot diagram, longer lines indicate stronger associations, and shorter lines indicate weaker associations. When the angle is between 0° and 90°, there is a positive correlation between two variables; when the angle is between 90° and 180°, there is a negative correlation between two variables; when the angle is 90°, no correlation is observed between two variables. C, carbon; N, nitrogen; P, phosphorus; N, nitrogen; D, Simpson index; H’, Shannon-Wiener index; Ma, Margalef index; E, Pielou index.
Parameter Sequence Explanation F P
N 1 0.624 14.632 0.002
C:N ratio 2 0.571 13.302 0.002
C:P ratio 3 0.539 12.583 0.002
P 4 0.498 11.941 0.002
C 5 0.258 4.532 0.041
N:P ratio 6 0.103 1.524 0.235
Table 3 Sequence of importance and Duncan's test of carbon (C), nitrogen (N) and phosphorous (P) concentrations and their ratios
Fig. 5 t-value results from RDA for single stoichiometrical factor influencing plant community diversity indices. (a), N concentration; (b), P concentration; (c), C:N ratio; (d), C:P ratio. The solid circle indicates positive correlation and the dotted circle indicates negative correlation. Plant community diversity indices fall into the solid circle, indicating a positive correlation with the elemental concentration or ratio. Plant community diversity indices fall into the dotted circle indicating a negative correlation with the elemental concentration or ratio. C, carbon; N, nitrogen; P, phosphorus; N, nitrogen; D, Simpson index; H’, Shannon-Wiener index; Ma, Margalef index; E, Pielou index.
[1]   Allen A P, Gillooly J F. 2009. Towards an integration of ecological stoichiometry and the metabolic theory of ecology to better understand nutrient cycling. Ecology Letter, 12(5): 369-384.
doi: 10.1111/j.1461-0248.2009.01302.x pmid: 19379132
[2]   Bao S N. 2000. Soil Agrochemical Analysis. Beijing: China Agricultural Press, 20-38. (in Chinese)
[3]   Behera S K, Mishra A K, Sahu N, et al. 2012. The study of microclimate in response to different plant community association in tropical moist deciduous forest from northern India. Biodiversity and Conservation, 21(5): 1159-1176.
doi: 10.1007/s10531-012-0230-5
[4]   Bell D W, Denham S, Smith E M, et al. 2018. Temporal variability in ecological stoichiometry and material exchange in a tidally dominated estuary (North Inlet, South Carolina) and the impact on community nutrient status. Estuaries and Coasts, 41(8): 2223-2239.
doi: 10.1007/s12237-018-0430-7
[5]   Bu C N, Wang Y, Ge C H, et al. 2017. Dissimilatory nitrate reduction to ammonium in the Yellow River Estuary: Rates, abundance, and community diversity. Scientific Reports, 7(1): 6830-6853.
doi: 10.1038/s41598-017-06404-8 pmid: 28754970
[6]   Bustos-Segura C, Poelman E H, Reichelt M, et al. 2017. Intraspecific chemical diversity among neighbouring plants correlates positively with plant size and herbivore load but negatively with herbivore damage. Ecology Letters, 20(1): 87-97.
doi: 10.1111/ele.12713 pmid: 28000435
[7]   Cao Y, Chen Y M. 2017. Ecosystem C:N:P stoichiometry and carbon storage in plantations and a secondary forest on the Loess Plateau, China. Ecological Engineering, 105: 125-132.
doi: 10.1016/j.ecoleng.2017.04.024
[8]   Castellanos A E, Llano-Sotelo J M, Machado-Encinas L I, et al. 2018. Foliar C, N, and P stoichiometry characterize successful plant ecological strategies in the Sonoran Desert. Plant Ecology, 219(7): 775-788.
doi: 10.1007/s11258-018-0833-3
[9]   Chen Y. 2013. Habitat suitability modeling of amphibian species in southern and central China: environmental correlates and potential richness mapping. Science China Life Sciences, 56(5): 476-484.
doi: 10.1007/s11427-013-4475-3 pmid: 23633079
[10]   Conti G, Díaz S. 2013. Plant functional diversity and carbon storage-an empirical test in semi-arid forest ecosystems. Journal of Ecology, 101(1): 18-28.
doi: 10.1111/1365-2745.12012
[11]   Elser J J, Fagan W F, Denno R F, et al. 2000. Nutritional constraints in terrestrial and freshwater food webs. Nature, 408(6812): 578-580.
doi: 10.1038/35046058 pmid: 11117743
[12]   Elser J J, Bracken M E S, Cleland E E, et al. 2007. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters, 10(12): 1135-1142.
doi: 10.1111/j.1461-0248.2007.01113.x pmid: 17922835
[13]   Elser J J, Sterner R W, Gorokhova E, et al. 2010. Biological stoichiometry from genes to ecosystems. Ecology Letters, 3(6): 540-550.
doi: 10.1046/j.1461-0248.2000.00185.x
[14]   Frenken T, Wierenga J, Gsell A S, et al. 2017. Changes in N:P supply ratios affect the ecological stoichiometry of a toxic cyanobacterium and its fungal parasite. Frontiers in Microbiology, 8(1015): 115-126.
doi: 10.3389/fmicb.2017.01015 pmid: 28634476
[15]   Freudenberger L, Hobson P R, Schluck M, et al. 2012. A global map of the functionality of terrestrial ecosystems. Ecological Complexity, 12(1): 13-22.
doi: 10.1016/j.ecocom.2012.08.002
[16]   Frost P C, Stelzer R S, Lamberti G A, et al. 2002. Ecological stoichiometry of trophic interactions in the benthos: Understanding the role of C:N:P ratios in lentic and lotic habitats. Journal of the North American Benthological Society, 21(4): 515-528.
doi: 10.2307/1468427
[17]   Gong L, He G, Liu W G. 2016. Long-term cropping effects on agricultural sustainability in Alar Oasis of Xinjiang, China. Sustainability, 8(1): 61-78.
doi: 10.3390/su8010061
[18]   Grażyna P, Ostrowska A. 2018. Nutrient demand and elemental stoichiometry of plants in wetland ecosystems in the Biebrza Valley, Poland. Journal of Elementology, 23(3): 887-899.
[19]   Haddad N M, Crutsinger G M, Gross K, et al. 2011. Plant diversity and the stability of foodwebs. Ecology Letters, 14(1): 42-46.
doi: 10.1111/j.1461-0248.2010.01548.x
[20]   Halvorson H M, Sperfeld E, Evans-White M A. 2017. Quantity and quality limit detritivore growth: mechanisms revealed by ecological stoichiometry and co-limitation theory. Ecology, 98(12): 2995-3002.
doi: 10.1002/ecy.2026 pmid: 28902394
[21]   Heyburn J, Mckenzie P, Crawley M J, et al. 2017. Effects of grassland management on plant C:N:P stoichiometry: implications for soil element cycling and storage. Ecosphere, 8(10): 156-177.
[22]   Hsu J C. 1996. Multiple Comparisons. New York: Springer, 56-66.
[23]   Huang J, Yu H, Liu J, et al. 2018. Phosphorus addition changes belowground biomass and C:N:P stoichiometry of two desert steppe plants under simulated N deposition. Scientific Reports, 8: 3400.
doi: 10.1038/s41598-018-21565-w pmid: 29467375
[24]   Kerkhoff A J, Enquist B J, Elser J J, et al. 2005. Plant allometry, stoichiometry and the temperature-dependence of primary productivity. Global Ecology and Biogeography, 14(6): 585-598.
doi: 10.1111/j.1466-822X.2005.00187.x
[25]   Li Y G, Zhou X B, Zhang Y M. 2019. Shrub modulates the stoichiometry of moss and soil in desert ecosystems, China. Journal of Arid Land, 11(4): 579-594.
doi: 10.1007/s40333-019-0057-y
[26]   Liu J, Liang S C, Liu F H, et al. 2005. Invasive alien plant species in China: regional distribution patterns. Diversity and Distributions, 11(4): 341-347.
doi: 10.1016/j.jenvman.2019.03.061 pmid: 30927576
[27]   Liu Z F, Fu B J, Zheng X X, et al. 2010. Plant biomass, soil water content and soil N:P ratio regulating soil microbial functional diversity in a temperate steppe: A regional scale study. Soil Biology and Biochemistry, 42(3): 445-450.
doi: 10.1016/j.soilbio.2009.11.027
[28]   Liu Z Y, Baoyin T, Sun J, et al. 2018. Plant sizes mediate mowing-induced changes in nutrient stoichiometry and allocation of a perennial grass in semi-arid grassland. Ecology and Evolution, 8(6): 3109-3118.
doi: 10.1002/ece3.3866 pmid: 29607010
[29]   Makino W, Cotner J B, Sterner R W, et al. 2003. Are bacteria more like plants or animals? Growth rate and resource dependence of bacterial C:N:P stoichiometry. Functional Ecology, 17(1): 121-130.
doi: 10.1046/j.1365-2435.2003.00712.x
[30]   Merritt D M, Nilsson C, Jansson R. 2010. Consequences of propagule dispersal and river fragmentation for riparian plant community diversity and turnover. Ecological Monographs, 80(4): 609-626.
doi: 10.1890/09-1533.1
[31]   Moorthi S D, Schmitt J A, Ryabov A, et al. 2016. Unifying ecological stoichiometry and metabolic theory to predict production and trophic transfer in a marine planktonic food web. Philosophical Transactions of the Royal Society B Biological Sciences, 371(1694): 1-10.
doi: 10.1098/rstb.2015.0270 pmid: 27114573
[32]   Naeem S, Li S. 1997. Biodiversity enhances ecosystem reliability. Nature, 390(6659): 507-509.
doi: 10.1038/37348
[33]   Pelini S L, Diamond S E, Nichols L M, et al. 2014. Geographic differences in effects of experimental warming on ant species diversity and community composition. Ecosphere, 5(10): 1-12.
[34]   Plach J M, Macrae M L, Ali G A, et al. 2017. Supply and transport limitations on phosphorus losses from agricultural fields in the lower great lakes region, Canada. Journal of Environmental Quality, 47(1): 96-105.
doi: 10.2134/jeq2017.06.0234 pmid: 29415113
[35]   Qu F Z, Meng L, Yu J B, et al. 2017. Influences of micro-geomorphology on the stoichiometry of C, N and P in chenier island soils and plants in the Yellow River Delta, China. PloS ONE, 12(12): e0189431.
doi: 10.1371/journal.pone.0189431 pmid: 29236766
[36]   Reich P B, Hobbie S E, Lee T, et al. 2006. Nitrogen limitation constrains sustainability of ecosystem response to CO2. Nature, 440(7086): 922-925.
doi: 10.1038/nature04486 pmid: 16612381
[37]   Saitta A, Anslan S, Bahram M, et al. 2018. Tree species identity and diversity drive fungal richness and community composition along an elevational gradient in a Mediterranean ecosystem. Mycorrhiza, 28(1): 39-47.
doi: 10.1007/s00572-017-0806-8 pmid: 29110091
[38]   Sardans J, Rivas-Ubach A, Peñuelas J. 2011. Factors affecting nutrient concentration and stoichiometry of forest trees in Catalonia (NE Spain). Forest Ecology and Management, 262(11): 2024-2034.
doi: 10.1016/j.foreco.2011.08.019
[39]   Seastedt T R, Vaccaro L. 2001. Plant species richness, productivity, and nitrogen and phosphorus limitations across a snowpack gradient in alpine tundra, Colorado, U.S.A. Arctic Antarctic & Alpine Research, 33(1): 100-106.
[40]   Shang B, Feng Z, Li P, et al. 2018. Elevated ozone affects C, N and P ecological stoichiometry and nutrient resorption of two poplar clones. Environmental Pollution, 234: 136-144.
doi: 10.1016/j.envpol.2017.11.056 pmid: 29175475
[41]   Snyder W E, Snyder G B, Finke D L, et al. 2006. Predator biodiversity strengthens herbivore suppression. Ecology Letters, 9(7): 789-796.
doi: 10.1111/j.1461-0248.2006.00922.x pmid: 16796568
[42]   Soufbaf M, Fathipour Y, Hui C. 2017. Artificial diversity of plant-insect communities and modern crop stoichiometry in small closed patches in greenhouse. Journal of Agricultural Science and Technology, 19(6): 1291-1302.
[43]   Sperfeld E, Wagner N D, Halvorson H M, et al. 2017. Bridging ecological stoichiometry and nutritional geometry with homeostasis concepts and integrative models of organism nutrition. Functional Ecology, 31(2): 286-296.
doi: 10.1111/fec.2017.31.issue-2
[44]   Sures B, Knopf K, Würtz J, et al. 1999. Richness and diversity of parasite communities in European eels Anguilla anguilla of the River Rhine, Germany, with special reference to helminth parasites. Parasitology, 119(3): 323-330.
doi: 10.1017/s0031182099004655 pmid: 10503258
[45]   Tao Y, Wu G L, Zhang Y M, et al. 2016. Leaf N and P stoichiometry of 57 plant species in the Karamori Mountain Ungulate Nature Reserve, Xinjiang, China. Journal of Arid Land, 8(6): 935-947.
doi: 10.1007/s40333-016-0019-6
[46]   Tilman D, Wedin D, Knops J. 1996. Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature, 379(6567): 718-720.
doi: 10.1038/379718a0
[47]   Tuboi C, Hussain S A. 2018. Plant community structure of the floating meadows of a hypereutrophic wetland in the Indo-Burma biodiversity hotspot. Aquatic Botany, 150: 71-81.
doi: 10.1016/j.aquabot.2018.06.006
[48]   Vilela D S, Ferreira R G, Del-Claro K. 2016. The Odonata community of a Brazilian vereda: seasonal patterns, species diversity and rarity in a palm swamp environment. Bioscience Journal, 32(2): 486-495.
doi: 10.1002/1521-4141(200202)32:2&amp;lt;486::AID-IMMU486&amp;gt;3.0.CO;2-U pmid: 11828365
[49]   Xiang Y L, Xiang Y X, Wang L P, et al. 2018. Effects of sewage sludge modified by coal gasification slag and electron beam irradiation on the growth of Alhagi sparsifolia Shap. and transfer of heavy metals. Environmental Science and Pollution Research, 25(12): 11636-11645.
doi: 10.1007/s11356-018-1253-6 pmid: 29429113
[50]   Yachi S, Loreau M. 1999. Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 96(4): 1463-1471.
[51]   Yan E R, Wang X H. 2008. N:P stoichiometry in secondary succession in evergreen broad-leaved forest, Tiantong, East China. Journal of Plant Ecology, 32(1): 13-22. (in Chinese)
[52]   Yan W, Zhong Y, Zheng S, et al. 2016. Linking plant leaf nutrients/stoichiometry to water use efficiency on the Loess Plateau in China. Ecological Engineering, 87(12): 124-131.
doi: 10.1016/j.ecoleng.2015.11.034
[53]   Yan Z B, Kim N, Han X W, et al. 2015. Effects of nitrogen and phosphorus supply on growth rate, leaf stoichiometry, and nutrient resorption of Arabidopsis thaliana. Plant and Soil, 388(1-2): 147-155.
doi: 10.1007/s11104-014-2316-1
[54]   Yan Z, Han W X, Peñuelas J, et al. 2016. Phosphorus accumulates faster than nitrogen globally in freshwater ecosystems under anthropogenic impacts. Ecology Letters, 19(10): 1237-1246.
doi: 10.1111/ele.12658 pmid: 27501082
[55]   Yang Y, Liu B R, An S S. 2018. Ecological stoichiometry in leaves, roots, litters and soil among different plant communities in a desertified region of Northern China. Catena, 166: 328-338.
doi: 10.1016/j.catena.2018.04.018
[56]   Yang Y H, Chen Y N, Li W L. 2009. Relationship between soil properties and plant diversity in a desert riparian forest in the lower reaches of the Tarim River, Xinjiang, China. Arid Land Research and Management, 23(4): 283-296.
doi: 10.1080/15324980903231991
[57]   Yang Y H, Luo Y. 2011. Carbon: nitrogen stoichiometry in forest ecosystems during stand development. Global Ecology and Biogeography, 20(2): 354-361.
doi: 10.1111/j.1466-8238.2010.00602.x
[58]   Yu H, Fan J, Harris W, et al. 2017a. Relationships between below-ground biomass and foliar N:P stoichiometry along climatic and altitudinal gradients of the Chinese grassland transect. Plant Ecology, 218(6): 661-667.
doi: 10.1007/s11258-017-0719-9
[59]   Yu H, Fan J, Li Y. 2017b. Foliar carbon, nitrogen, and phosphorus stoichiometry in a grassland ecosystem along the Chinese grassland transect. Acta Ecologica Sinica, 37(3): 133-139. (in Chinese)
doi: 10.1016/j.chnaes.2017.06.005
[60]   Zechmeister-Boltenstern S, Keiblinger K M, Mooshammer M, et al. 2015. The application of ecological stoichiometry to plant-microbial-soil organic matter transformations. Ecological Monographs, 85(2): 133-155.
doi: 10.1890/14-0777.1
[61]   Zeng Q, Lal R, Chen Y, et al. 2017. Soil, leaf and root ecological stoichiometry of Caragana korshinskii on the Loess Plateau of China in relation to plantation age. PloS ONE, 12(1): e0168890.
doi: 10.1371/journal.pone.0168890 pmid: 28076357
[62]   Zhang B, Gui D W, Gao X P, et al. 2018. Controlling soil factor in plant growth and salt tolerance of leguminous plant Alhagi sparsifolia Shap. in saline deserts, Northwest China. Contemporary Problems of Ecology, 11(1): 111-121.
doi: 10.1134/S199542551801002X
[63]   Zhang C H, Willis C G, Klein J A, et al. 2017. Recovery of plant species diversity during long-term experimental warming of a species-rich alpine meadow community on the Qinghai-Tibet Plateau. Biological Conservation, 213: 218-224.
doi: 10.1016/j.biocon.2017.07.019
[64]   Zhang J, Zhao N, Liu C, et al. 2017. C:N:P stoichiometry in China's forests: From organs to ecosystems. Functional Ecology, 55(10): 33-68.
doi: 10.1371/journal.pone.0116391 pmid: 25664764
[65]   Zhang Q, Bell L W, Shen Y, et al. 2018. Indices of forage nutritional yield and water use efficiency amongst spring-sown annual forage crops in north-west China. European Journal of Agronomy, 93(5): 1-10.
doi: 10.1016/j.eja.2017.11.003
[66]   Zhao Y J, Liu B, Zhang W G, et al. 2010. Effects of plant and influent C:N:P ratio on microbial diversity in pilot-scale constructed wetlands. Ecological Engineering, 36(4): 441-449.
doi: 10.1016/j.ecoleng.2009.11.011
[1] BAI Jie, LI Junli, BAO Anmin, CHANG Cun. Spatial-temporal variations of ecological vulnerability in the Tarim River Basin, Northwest China[J]. Journal of Arid Land, 2021, 13(8): 814-834.
[2] ZHANG Pei, DENG Mingjiang, LONG Aihua, DENG Xiaoya, WANG Hao, HAI Yang, WANG Jie, LIU Yundong. Coupling analysis of social-economic water consumption and its effects on the arid environments in Xinjiang of China based on the water and ecological footprints[J]. Journal of Arid Land, 2020, 12(1): 73-89.
[3] Qinli XIONG, Yang XIAO, Waseem A HALMY Marwa, A DAKHIL Mohammed, Pinghan LIANG, Chenggang LIU, Lin ZHANG, PANDEY Bikram, Kaiwen PAN, B EL KAFRAWAY Sameh, Jun CHEN. Monitoring the impact of climate change andhuman activities on grassland vegetation dynamics in the northeastern Qinghai-Tibet Plateauof China during 2000-2015[J]. Journal of Arid Land, 2019, 11(5): 637-651.
[4] Chunlei ZHAO, Ming'an SHAO, Xiaoxu JIA, Laiming HUANG, Yuanjun ZHU. Spatial distribution of water-activesoil layer along the south-north transect in the Loess Plateau of China[J]. Journal of Arid Land, 2019, 11(2): 228-240.
[5] Lin WU, Yuanming ZHANG. Precipitation and soil particle size co-determine spatial distribution of biological soil crusts in the Gurbantunggut Desert, China[J]. Journal of Arid Land, 2018, 10(5): 701-711.
[6] Yang YU, Xi CHEN, HUTTNER Philipp, HINNENTHAL Marie, BRIEDEN Andreas, Lingxiao SUN, DISSE Markus. Model based decision support system for land use changes and socio-economic assessments[J]. Journal of Arid Land, 2018, 10(2): 169-182.
[7] AISHAN Tayierjiang, HALIK ümüt, Florian BETZ, TIYIP Tashpolat, DING Jianli, NUERMAIMAITI Yiliyasijiang. Stand structure and height-diameter relationship of a degraded Populus euphratica forest in the lower reaches of the Tarim River, Northwest China[J]. Journal of Arid Land, 2015, 7(4): 544-554.
[8] Yue HUANG, Xi CHEN, YongPing LI, AnMing BAO, YongGang MA. A simulation-based two-stage interval-stochastic programming model for water resources management in Kaidu-Konqi watershed, China[J]. Journal of Arid Land, 2012, 4(4): 390-398.
[9] Li ZHUANG, YaNing CHEN, WeiHong LI, ZhongKe WANG. Anatomical and morphological characteristics of Populus euphratica in the lower reaches of Tarim River under extreme drought environment[J]. Journal of Arid Land, 2011, 3(4): 261-267.
[10] YuTing FAN, YaNing CHEN, WeiHong LI, HuaiJun WANG, XinGong LI. Impacts of temperature and precipitation on runoff in the Tarim River during the past 50 years[J]. Journal of Arid Land, 2011, 3(3): 220-230.
[11] Chao LENG, YaNing CHEN, XinGong LI, YanXia SUN. Evaluation of oasis stability in the lower reaches of the Tarim River[J]. Journal of Arid Land, 2011, 3(2): 123-131.
[12] HuaRong ZHOU, DuNing XIAO. Ecological function regionalization of fluvial corridor landscapes and measures for ecological regeneration in the middle and lower reaches of the Tarim River, Xinjiang of China[J]. Journal of Arid Land, 2010, 2(2): 123-132.
[13] ChangLong SUN, XiaoLei ZHANG, Nuo JIN, HongRu DU, WenWen MA. Spatial difference features and organization optimization of cities and towns in Tarim River Basin[J]. Journal of Arid Land, 2010, 2(1): 33-42.
[14] JieBin ZHANG, GuiHua WU, QiMeng WANG, XiaoYan LI. Restoring environmental flows and improving riparian ecosystem of Tarim River[J]. Journal of Arid Land, 2010, 2(1): 43-50.