Please wait a minute...
Journal of Arid Land  2023, Vol. 15 Issue (8): 975-988    DOI: 10.1007/s40333-023-0022-7     CSTR: 32276.14.s40333-023-0022-7
Research article     
Arbuscular mycorrhizal fungi improve biomass, photosynthesis, and water use efficiency of Opuntia ficus-indica (L.) Miller under different water levels
Teame G KEBEDE1,2,*(), Emiru BIRHANE1,3, Kiros-Meles AYIMUT4, Yemane G EGZIABHER4
1Department of Land Resource Management and Environmental Protection, College of Dryland Agriculture and Natural Resource, Mekelle University, Mekelle 231, Ethiopia
2Department of Animal Production and Technology, College of Agriculture and Environmental Science, Adigrat University, Adigrat 50, Ethiopia
3Institute of Climate and Society, Mekelle University, Mekelle 231, Ethiopia
4Department of Dryland Crop and Horticultural Science, College of Dryland Agriculture and Natural Resource, Mekelle University, Mekelle 231, Ethiopia
Download: HTML     PDF(901KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Opuntia ficus-indica (L.) Miller is a CAM (crassulacean acid metabolism) plant with an extraordinary capacity to adapt to drought stress by its ability to fix atmospheric CO2 at nighttime, store a significant amount of water in cladodes, and reduce root growth. Plants that grow in moisture-stress conditions with thick and less fine root hairs have a strong symbiosis with arbuscular mycorrhizal fungi (AMF) to adapt to drought stress. Water stress can limit plant growth and biomass production, which can be rehabilitated by AMF association through improved physiological performance. The objective of this study was to investigate the effects of AMF inoculations and variable soil water levels on the biomass, photosynthesis, and water use efficiency of the spiny and spineless O. ficus-indica. The experiment was conducted in a greenhouse with a full factorial experiment using O. ficus-indica type (spiny or spineless), AMF (presence or absence), and four soil water available (SWA) treatments through seven replications. Water treatments applied were 0%-25% SWA (T1), 25%-50% SWA (T2), 50%-75% SWA (T3), and 75%-100% SWA (T4). Drought stress reduced biomass and cladode growth, while AMF colonization significantly increased the biomass production with significant changes in the physiological performance of O. ficus-indica. AMF presence significantly increased biomass of both O. ficus-indica plant types through improved growth, photosynthetic water use efficiency, and photosynthesis. The presence of spines on the surface of cladodes significantly reduced the rate of photosynthesis and photosynthetic water use efficiency. Net photosynthesis, photosynthetic water use efficiency, transpiration, and stomatal conductance rate significantly decreased with increased drought stress. Under drought stress, some planted mother cladodes with the absence of AMF have not established daughter cladodes, whereas AMF-inoculated mother cladodes fully established daughter cladodes. AMF root colonization significantly increased with the decrease of SWA. AMF caused an increase in biomass production, increased tolerance to drought stress, and improved photosynthesis and water use efficiency performance of O. ficus-indica. The potential of O. ficus-indica to adapt to drought stress is controlled by the morpho-physiological performance related to AMF association.



Key wordsbiomass      cactus pear      cladode growth      photosynthesis      water stress      water use efficiency     
Received: 18 March 2023      Published: 31 August 2023
Corresponding Authors: * Teame G KEBEDE (E-mail: teame2004@gmail.com)
Cite this article:

Teame G KEBEDE, Emiru BIRHANE, Kiros-Meles AYIMUT, Yemane G EGZIABHER. Arbuscular mycorrhizal fungi improve biomass, photosynthesis, and water use efficiency of Opuntia ficus-indica (L.) Miller under different water levels. Journal of Arid Land, 2023, 15(8): 975-988.

URL:

http://jal.xjegi.com/10.1007/s40333-023-0022-7     OR     http://jal.xjegi.com/Y2023/V15/I8/975

Feature Unit Mother cladode type
F P
Fresh weight g 0.106 0.285
Height cm 0.047 0.860
Breadth cm 0.017 0.355
Thickness cm 2.704 0.256
Areoles per cladode number 8.666 0.203
Spines per cladode number 73.299 <0.001
Table 1 Mean fresh cladode weight, height, breadth, thickness, number of areoles, and spines per cladode of O. ficus-indica mother plants
Fig. 1 Effects of O. ficus-indica type (spiny (a) or spineless (b)), arbuscular mycorrhizal fungi (absent (c) or present (d)), and soil water available (SWA) on the height of O. ficus-indica cladodes after 18 months of growth in the greenhouse. T1, 0%-25% SWA; T2, 25%-50% SWA; T3, 50%-75% SWA; T4, 75%-100% SWA. Bars are standard errors.
Parameter Type AMF SWA Type×AMF Type×SWA AMF×SWA Type×AMF×
SWA
F P F P F P F P F P F P F P
Establish cladodes 0.572 0.451 0.006 0.936 3.235 0.025 0.507 0.478 0.264 0.768 0.508 0.603 0.244 0.912
Up-growing cladodes 0.089 0.766 0.064 0.801 103.553 0.000 18.262 0.000 21.940 0.000 18.291 0.000 8.192 0.000
Height 16.419 0.000 7.274 0.008 92.286 0.000 567.007 0.000 134.662 0.000 201.308 0.000 193.694 0.000
Breadth 27.280 0.000 9.937 0.002 31.964 0.000 29.045 0.000 7.117 0.001 55.666 0.000 118.953 0.000
Thickness 0.006 0.941 18.539 0.000 63.724 0.000 0.889 0.348 2.638 0.077 6.983 0.001 2.491 0.048
Areoles 9.107 0.003 3.034 0.084 13.333 0.000 0.030 0.863 3.079 0.051 13.757 0.000 5.655 0.000
Spines
areole
1445.969 0.000 1.012 0.317 0.623 0.602 13.667 0.000 14.218 0.000 71.583 0.000 51.853 0.000
Total spine cladodes 864.609 0.000 1.764 0.187 1.064 0.368 5.858 0.017 13.316 0.000 33.127 0.000 19.709 0.000
Area 20.550 0.000 9.383 0.003 79.637 0.000 0.037 0.848 0.116 0.734 0.970 0.327 0.080 0.779
Biomass 4.286 0.041 6.737 0.011 283.564 0.000 583.038 0.000 641.902 0.000 596.762 0.000 243.113 0.000
Growth rate at 15 d 3.012 0.086 0.880 0.350 230.445 0.000 69.751 0.000 51.694 0.000 71.937 0.000 29.878 0.000
Growth rate at 30 d 11.700 0.001 1.666 0.200 172.523 0.000 303.051 0.000 166.322 0.000 139.648 0.000 112.233 0.000
Growth rate at 45 d 6.447 0.013 1.516 0.221 332.090 0.000 323.051 0.000 214.124 0.000 223.398 0.000 118.398 0.000
Growth rate at 60 d 3.735 0.056 0.941 0.334 432.003 0.000 64.105 0.000 65.707 0.000 37.848 0.000 25.453 0.000
Growth rate at 75 d 1.043 0.310 0.447 0.505 1091.426 0.000 278.154 0.000 271.614 0.000 185.975 0.000 98.690 0.000
Growth rate at 90 d 0.634 0.428 0.355 0.553 1484.897 0.000 318.049 0.000 328.463 0.000 236.695 0.000 122.449 0.000
Growth rate at 105 d 0.309 0.579 0.043 0.835 2350.277 0.000 423.336 0.000 418.416 0.000 305.089 0.000 147.558 0.000
Growth rate at 120 d 0.400 0.641 0.041 0.840 3000.697 0.000 560.374 0.000 541.501 0.000 414.367 0.000 195.538 0.000
Photosynthesis at day time 5.333 0.020 1.877 0.174 358.918 0.000 2.074 0.153 0.548 0.461 0.011 0.915 0.009 0.926
Photosynthesis at night time 10.303 0.002 9.872 0.002 147.497 0.000 0.364 0.548 0.046 0.830 0.892 0.347 3.298 0.072
Transpiration at day time 0.046 0.831 0.380 0.539 1444.785 0.000 0.203 0.654 1.698 0.196 0.182 0.671 0.128 0.721
Transpiration at night time 0.707 0.402 0.474 0.493 192.021 0.000 0.132 0.717 0.124 0.726 0.078 0.780 0.408 0.524
Stomatal conductance at day time 4.438 0.038 1.017 0.316 534.654 0.000 0.339 0.562 1.635 0.204 0.000 0.993 0.136 0.713
Stomatal conductance at night time 3.726 0.056 0.390 0.539 798.901 0.000 0.973 0.326 0.001 0.977 0.540 0.464 0.218 0.642
Water use efficiency at day time 6.700 0.011 4.054 0.047 97.201 0.000 1.121 0.292 9.660 0.002 8.930 0.004 1.996 0.161
Water use efficiency at night time 14.203 0.000 13.829 0.000 100.683 0.000 1.167 0.283 0.496 0.483 1.091 0.161 1.797 0.183
Table 2 Effects of O. ficus-indica type, arbuscular mycorrhizal fungi (AMF), soil water available (SWA), and their interaction on the morphological traits of daughter cladodes (n=108)
Factor Treatment Hyphal Arbuscular Vesicular
Type Spiny (%) 66.67±1.00a 32.74±0.56a 29.93±0.63a
Spineless (%) 66.67±0.98a 33.94±0.60a 30.63±0.64a
F 0.000 0.355 0.306
P 1.000 0.671 0.806
SWA T1 (%) 88.89±0.00a 45.37±0.45a 41.33±0.52a
T2 (%) 77.78±0.00b 40.87±0.36b 39.10±0.29b
T3 (%) 55.56±0.00c 27.25±0.27c 24.54±0.23c
T4 (%) 44.44±0.00d 19.88±0.21d 16.18±0.13d
F 5.341 1207.443 1346.818
P 0.000 0.000 0.000
Type×SWA F 30.333 22.257 22.347
P 0.000 0.000 0.000
Table 3 Effects of O. ficus-indica type, soil water available (SWA), and their interaction on the root colonization
Fig. 2 Effect of interaction of O. ficus-indica type (spiny or spineless), arbuscular mycorrhizal fungi (AMF; absent or present), and soil water available (SWA) on biomass (a), area (b), height (c), thickness (d), breadth (e), and number of areoles (f) of O. ficus-indica cladodes after 18 months of growth in the greenhouse. T1, 0%-25% SWA; T2, 25%-50% SWA; T3, 50%-75% SWA; T4, 75%-100% SWA. Bars are standard errors.
Fig. 3 Effect of interaction of O. ficus-indica type (spiny or spineless), arbuscular mycorrhizal fungi (AMF; absent or present), and soil water available (SWA) on morphological traits both during night time (a, c, e, and g) and day time (b, d, f, and h) of O. ficus-indica cladodes after 18 months of growth in the greenhouse. PWUE, photosynthetic water use efficiency; T1, 0%-25% SWA; T2, 25%-50% SWA; T3, 50%-75% SWA; T4, 75%-100% SWA. Bars are standard errors.
Time Photosynthesis (μmol/(cm2•s)) Transpiration (mmol/(H2O m2•s)) stomatal conductance (mmol/(m2•s)) Water use efficiency (μmol/mmol)
Day 0.123±0.01b 9.72±0.48b 7.34±0.33b 0.01±0.00b
Night 6.65±0.27a 11.71±0.14a 31.72±1.00a 0.63±0.02a
F 306.980 167.319 251.990 305.366
P 0.000 0.000 0.000 0.000
Table 4 Effect of time on physiological traits of O. ficus-indica daughter cladodes
[1]   Aiqun C, Main G, Shuangshuang W, et al. 2017. Transport properties and regulatory roles of nitrogen in arbuscular mycorrhizal symbiosis. New Phytologist, 74: 80-88.
[2]   Alho L, Carvalho M, Brito I, et al. 2015. The effect of arbuscular mycorrhiza fungal propagules on the growth of subterranean clover (Trifolium subterraneum L.) under Mn toxicity in ex situ experiments. Soil Use and Management, 31(2): 337-344.
doi: 10.1111/sum.2015.31.issue-2
[3]   Andrade J L, Cervera J C, Graham E A. 2009. Microenvironments, water relations, and productivity of CAM plants. In: De la Barrera E, Smith W K. Perspectives in Biophysical Plant Ecophysiology: A Tribute to Park S. Nobel. Mexico: Universidad Nacional Autónoma de México, 95-120.
[4]   Andrino A, Guggenberger G, Sauheitl L, et al. 2020. Carbon investment into mobilization of mineral and organic phosphorus by arbuscular mycorrhiza. Journal of Biology and Fertility of Soils, 57: 47-64.
[5]   Astello-Garcia M G, Cervantes I, Nair V, et al. 2015. Chemical composition and phenolic compounds profile of cladodes from Opuntia spp. cultivars with different domestication gradient. Journal of Food Composition and Analysis, 43: 119-130.
doi: 10.1016/j.jfca.2015.04.016
[6]   Auge R M, Toler H D, Saxton A M. 2016. Mycorrhizal stimulation of leaf gas exchange in relation to root colonization, shoot size, leaf phosphorus and nitrogen: A quantitative analysis of the literature using meta-regression. Frontiers in Plant Science, 7: 1084, doi: 10.3389/fpls.2016.01084.
doi: 10.3389/fpls.2016.01084 pmid: 27524989
[7]   Belay T, Gebreselassie M, Abadi T. 2011. Description of cactus pear (Opuntia ficus-indica (L.) Mill) cultivars from Tigray, northern Ethiopia. In: Research Report No. 1. Tigray Agricultural Research Institute, Mekelle, Tigray, Ethiopia.
[8]   Berhe Y K, Portillo L, Vigueras A L. 2022. Resistance of Opuntia ficus-indica cv 'Rojo Pelon' to Dactylopius coccus (Hemiptera: Dactylopiidae) under greenhouse condition. Journal of the Professional Association for Cactus Development, 24: 290-306.
[9]   Birhane E, Sterck J F, Fetene M, et al. 2012. Arbuscular mycorrhizal fungi enhance photosynthesis, water use efficiency, and growth of frankincense seedlings under pulsed water availability conditions. Journal of Physiological Ecology, 169: 895-904.
[10]   Birhane E, Gebremedihin K M, Tadesse T, et al. 2017. Exclosures restored the density and root colonization of arbuscular mycorrhizal fungi in Tigray, northern Ethiopia. Ecological Processes, 6: 33, doi: 10.1184/s13717-017-0101-9.
doi: 10.1184/s13717-017-0101-9
[11]   Birhane E, Gebretsadik K F, Taye G, et al. 2020. Effects of forest composition and disturbance on arbuscular mycorrhizae spore density, arbuscular mycorrhizae root colonization and soil carbon stocks in a dry afromontane forest in northern Ethiopia. Diversity, 12(4): 133, doi: 10.3390/d12040133.
doi: 10.3390/d12040133
[12]   Brundrett M, Bougher N, Dell B, et al. 1996. Working with mycorrhizas in forestry and agriculture. AClAR Monograph, 32: 374.
[13]   Chen X B, Zhu D Q, Zhao C C, et al. 2019. Community composition and diversity of fungi in soils under different types of Pinus koraiensis forests. Acta Petrologica Sinica, 56(5): 1221-1234.
[14]   Cristina C, Alessandro R, Olubukola O B, et al. 2017. Soil: Do not disturb, mycorrhiza in action. In: Varma A, Prasad R, Tuteja N. Mycorrhiza-Function, Diversity, State of the Art (4th ed.). Berlin: Springer, 27-38.
[15]   Frew A, Powell J R, Hiltpold I, et al. 2017. Host plant colonisation by arbuscular mycorrhizal fungi stimulates immune function whereas high root silicon concentrations diminish growth in a soil-dwelling herbivore. Journal of Soil Biology and Biochemistry, 112: 117-126.
[16]   Garcia K, Chasman D, Roy S, et al. 2017. Physiological responses and gene co expression network of mycorrhizal roots under K+ deprivation. Journal of Plant Physiology, 173(3): 1811-1823.
[17]   Gou Q Q, Ma G L, Qi J J, et al. 2023. Diversity of soil bacteria and fungi communities in artificial forests of the sandy-hilly region of Northwest China. Journal of Arid Land, 15(1): 109-126.
doi: 10.1007/s40333-023-0003-x
[18]   Hailemariam H, Birhane E, Gebresamuel G, et al. 2017 Arbuscular mycorrhiza effects on Faidherbia albida (Del.) A. Chev. growth under varying soil water and phosphorus levels in Northern Ethiopia. Journal of Agroforestry Systems, 92(2): 485-498.
[19]   Hu Y, Xie W, Chen B. 2020. Arbuscular mycorrhiza improved drought tolerance of maize seedlings by altering photosystem II efficiency and the levels of key metabolites. Chemical and Biological Technologies in Agriculture, 7: 20, doi: 10.1186/s40538-020-00186-4.
doi: 10.1186/s40538-020-00186-4
[20]   Liguori G, Inglese G, Pernice F, et al. 2013. CO2 uptake of Opuntia ficus-indica (L.) Mill. whole trees and single cladodes, in relation to plant water status and cladode at Italian. Journal of Agronomy, 8: 14-20.
doi: 10.3923/ja.2009.14.20
[21]   Loik M E. 2008. The effect of cactus spines on light interception and photosystem II for three sympatric species of Opuntia from the Mojave Desert. Physiologia Plantarum, 134(1): 87-98.
doi: 10.1111/ppl.2008.134.issue-1
[22]   Mohammadi M H S, Etemadi N, Arab M M, et al. 2017. Molecular and physiological responses of Iranian perennial ryegrass as affected by trinexapac ethyl, paclobutrazol and abscisic acid under drought stress. Plant Physiology and Biochemistry, 111(1): 129-143.
doi: 10.1016/j.plaphy.2016.11.014
[23]   Nobel P S, De la Barrera E. 1999. Carbon and water balances for young fruits of platyopuntias. Physiologia Plantarum, 109(2): 160-166.
doi: 10.1034/j.1399-3054.2000.100208.x
[24]   Nobel P S, De la Barrera E. 2004. CO2uptake by the cultivated Hemiepiphytic cactus, Hylocereus undatus. Annals of Applied Biology, 144(1): 1-8.
[25]   Nobel P S. 2010. Desert Wisdom, Agaves and Cacti, CO2, Water, Climate Change. New York: iUniverse, 198.
[26]   Ochoa M J, Barbera G. 2017. History, economic and agro-ecological importance. In: Inglese P. Crop Ecology, Cultivation and Uses of Cactus Pear. Rome: Food and Agriculture Organization of the United Nations, 13-19.
[27]   Parniske M. 2008. Arbuscular mycorrhiza: The mother of plant root endosymbioses. Nature Reviews Microbiology, 6(10): 763-775.
doi: 10.1038/nrmicro1987 pmid: 18794914
[28]   Pena-Valdivia C B, Luna-Cavazos M, Carranza-Sabas J A, et al. 2007. Morphological characterization of Opuntia spp: A multivariate analysis. Journal of the Professional Association for Cactus Development, 10: 1-16.
[29]   Pereira S, Santos M, Leal I, et al. 2021. Arbuscular mycorrhizal inoculation increases drought tolerance and survival of Cenostigma microphyllum seedlings in a seasonally dry tropical forest. Forest Ecology and Management, 492: 119213, doi: 10.1016/j.foreco.2021.119213.
doi: 10.1016/j.foreco.2021.119213
[30]   Pimienta-Barrios E, del Castillo-Aranda M E G, Nobel P S. 2001. Ecophysiology of a wild platyopuntia exposed to prolonged drought. Environmental and Experimental Botany, 47(1): 77-86.
doi: 10.1016/S0098-8472(01)00114-9
[31]   Pimienta-Barrios E, Zañudo-Hernàndez J, Nobel P S. 2005. Effects of young cladodes on the gas exchange of basal cladodes of Opuntia ficus-indica (Cactaceae) under wet and dry conditions. International Journal of Plant Sciences, 166(6): 961-968.
doi: 10.1086/449317
[32]   Ranjan P, Ranjan J K, Misra R L, et al. 2016. Cacti: Notes on their uses and potential for climate change mitigation. Genetic Resources and Crop Evolution, 63: 901-917.
doi: 10.1007/s10722-016-0394-z
[33]   Salem-Fnayou A B, Zemni H, Nefzaoui A, et al. 2014. Micromorphology of cactus-pear (Opintia ficus-indica (L.) Mill.) cladodes based on scanning microscopies. Micron, 56: 68-72.
doi: 10.1016/j.micron.2013.10.010 pmid: 24210248
[34]   Scalisi A, Morandi B, Inglese P, et al. 2015. Cladode growth dynamics in Opuntia ficus-indica under drought. Environmental and Experimental Botany, 122: 158-167.
doi: 10.1016/j.envexpbot.2015.10.003
[35]   Snyman H A. 2004. Effect of various water application strategies on root development of Opuntia ficus-indica and O. robusta under greenhouse growth conditions. Journal of the Professional Association for Cactus Development, 34: 35-61.
[36]   Snyman H A. 2005. A greenhouse study on root dynamics of prickly pears, Opuntia ficus-indica and O. robusta. Journal of Arid Environments, 65(4): 529-542.
doi: 10.1016/j.jaridenv.2005.10.004
[37]   Snyman H A. 2013. Growth rate and water use efficiency of cactus pears Opuntia ficus-indica and O. robusta. Journal Arid Land Research and Management, 27(4): 337-348.
[38]   Stevenson A, Hallsworth J E. 2014. Water and temperature relations of soil Actinobacteria. Environmental Microbiology Report, 6(6): 744-755.
[39]   Stevens B M, Propster J R, Öpik M, et al. 2020. Arbuscular mycorrhizal fungi in roots and soil respond differently to biotic and abiotic factors in the Serengeti. Mycorrhiza, 30: 79-95.
doi: 10.1007/s00572-020-00931-5 pmid: 31970495
[40]   Taghizadeh M H, Farzam M, Nabati J. 2023. Rhizobacteria facilitate physiological and biochemical drought tolerance of Halimodendron halodendron (Pall.) Voss. Journal of Arid Land, 15(2): 205-217.
doi: 10.1007/s40333-023-0092-6
[41]   Tiznado-Hernández M E, Fortiz-Hernández J, Ojeda-Contreras Á J, et al. 2010. Use of the elliptical mathematical formula to estimate the surface area of cladodes in four varieties of Opuntia ficus-indica. Journal of the Professional Association for Cactus Development, 12: 98-109.
[42]   Trejo D, Barois I, Sangabriel-Conde W. 2016. Disturbance and land use effect on functional diversity of the arbuscular mycorrhizal fungi. Journal of Agroforest System, 90(2): 265-279.
[43]   Wang D D, Zhao W, Reyila M, et al. 2022. Diversity of microbial communities of Pinus sylvestris var. mongolica at spatial scale. Microorganisms, 10(2): 371, doi: 10.3390/microorganisms10020371.
doi: 10.3390/microorganisms10020371
[1] HAN Qifei, XU Wei, LI Chaofan. Effects of nitrogen deposition on the carbon budget and water stress in Central Asia under climate change[J]. Journal of Arid Land, 2024, 16(8): 1118-1129.
[2] ZHOU Jiqiong, GONG Jinchao, WANG Pengsen, SU Yingying, LI Xuxu, LI Xiangjun, LIU Lin, BAI Yanfu, MA Congyu, WANG Wen, HUANG Ting, YAN Yanhong, ZHANG Xinquan. Historical tillage promotes grass-legume mixtures establishment and accelerates soil microbial activity and organic carbon decomposition[J]. Journal of Arid Land, 2024, 16(7): 910-924.
[3] CHEN Yingying, LIN Yajun, ZHOU Xiaobing, ZHANG Jing, YANG Chunhong, ZHANG Yuanming. Effects of drought treatment on photosystem II activity in the ephemeral plant Erodium oxyrhinchum[J]. Journal of Arid Land, 2023, 15(6): 724-739.
[4] Khouloud ZAGOUB, Khouloud KRICHEN, Mohamed CHAIEB, Lobna F MNIF. Morphological and physiological responses to drought stress of carob trees in Mediterranean ecosystems[J]. Journal of Arid Land, 2023, 15(5): 562-577.
[5] Mohamed K EL-GHANNAM, Fatma WASSAR, Sabah MORSY, Mohamed HAFEZ, Chiter M PARIHAR, Kent O BURKEY, Ahmed M ABDALLAH. Controlled drainage in the Nile River delta of Egypt: a promising approach for decreasing drainage off-site effects and enhancing yield and water use efficiency of wheat[J]. Journal of Arid Land, 2023, 15(4): 460-476.
[6] HAN Mengxue, ZHANG Lin, LIU Xiaoqiang. Subsurface irrigation with ceramic emitters improves wolfberry yield and economic benefits on the Tibetan Plateau, China[J]. Journal of Arid Land, 2023, 15(11): 1376-1390.
[7] LIU Yulin, LI Jiwei, HAI Xuying, WU Jianzhao, DONG Lingbo, PAN Yingjie, SHANGGUAN Zhouping, WANG Kaibo, DENG Lei. Carbon inputs regulate the temperature sensitivity of soil respiration in temperate forests[J]. Journal of Arid Land, 2022, 14(9): 1055-1068.
[8] HUI Rong, TAN Huijuan, LI Xinrong, WANG bingyao. Variation of soil physical-chemical characteristics in salt-affected soil in the Qarhan Salt Lake, Qaidam Basin[J]. Journal of Arid Land, 2022, 14(3): 341-355.
[9] Halimeh PIRI, Amir NASERIN, Ammar A ALBALASMEH. Interactive effects of deficit irrigation and vermicompost on yield, quality, and irrigation water use efficiency of greenhouse cucumber[J]. Journal of Arid Land, 2022, 14(11): 1274-1292.
[10] Laura B RODRIGUEZ, Silvia S TORRES ROBLES, Marcelo F ARTURI, Juan M ZEBERIO, Andrés C H GRAND, Néstor I GASPARRI. Plant cover as an estimator of above-ground biomass in semi-arid woody vegetation in Northeast Patagonia, Argentina[J]. Journal of Arid Land, 2021, 13(9): 918-933.
[11] DING Wenli, XU Weizhou, GAO Zhijuan, XU Bingcheng. Effects of water and nitrogen on growth and relative competitive ability of introduced versus native C4 grass species in the semi-arid Loess Plateau of China[J]. Journal of Arid Land, 2021, 13(7): 730-743.
[12] WANG Chunyuan, YU Minghan, DING Guodong, GAO Guanglei, ZHANG Linlin, HE Yingying, LIU Wei. Size- and leaf age-dependent effects on the photosynthetic and physiological responses of Artemisia ordosica to drought stress[J]. Journal of Arid Land, 2021, 13(7): 744-758.
[13] Ibtihal AL-MANTHRIA, Abdulrahim M AL-ISMAILIA, Hemesiri KOTAGAMAB, Mumtaz KHANC, L H Janitha JEEWANTHAD. Water, land, and energy use efficiencies and financial evaluation of air conditioner cooled greenhouses based on field experiments[J]. Journal of Arid Land, 2021, 13(4): 375-387.
[14] WANG Lei, FAN Lianlian, JIANG Li, TIAN Changyan. Elevated CO2 increases shoot growth but not root growth and C:N:P stoichiometry of Suaeda aralocaspica plants[J]. Journal of Arid Land, 2021, 13(11): 1155-1162.
[15] HUANG Xiaotao, LUO Geping, CHEN Chunbo, PENG Jian, ZHANG Chujie, ZHOU Huakun, YAO Buqing, MA Zhen, XI Xiaoyan. How precipitation and grazing influence the ecological functions of drought-prone grasslands on the northern slopes of the Tianshan Mountains, China?[J]. Journal of Arid Land, 2021, 13(1): 88-97.