Please wait a minute...
Journal of Arid Land  2021, Vol. 13 Issue (7): 730-743    DOI: 10.1007/s40333-021-0010-8     CSTR: 32276.14.s40333-021-0010-8
Research article     
Effects of water and nitrogen on growth and relative competitive ability of introduced versus native C4 grass species in the semi-arid Loess Plateau of China
DING Wenli1, XU Weizhou2, GAO Zhijuan1, XU Bingcheng1,3,*()
1State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China
2College of Life Science, Yulin University, Yulin 719000, China
3Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, China
Download: HTML     PDF(736KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Switchgrass is an introduced C4 grass in the semi-arid Loess Plateau of China, but there is a lack of information to assess its ecological invasive risk. In this study, Old World bluestems (native C4 grass) and switchgrass were sowed at five mixture ratios (8:0, 6:2, 4:4, 2:6 and 0:8) under two soil water levels (80% field capacity (FC) and 40% FC) and two nitrogen (N) treatments (0 and 100 mg N/kg dry soil, termed N0-unfertilized and N1-fertilized treatments, respectively) in a pot experiment in 2012. Biomass, root morphological traits and relative competitive abilities of these two species were analyzed. Results showed that biomass of both species was significantly greater under 80% FC or N fertilization, and switchgrass had a relatively larger root:shoot ratio (RSR). Total root length (TRL) and root surface area (RSA) of switchgrass were significantly higher under 80% FC irrespective of N treatment, while those of Old World bluestems were only significantly higher under N fertilization. N had no significant effect on TRL and RSA of switchgrass, while RSA of Old World bluestems significantly increased under 80% FC and N fertilization. Under 40% FC and N0-unfertilized treatment, the aggressivity of Old World bluestems was larger than zero at 2:6 and 4:4 mixture ratios of two species, whereas it was close to zero at 6:2 mixture ratio. Root competitive ability of switchgrass significantly increased under 80% FC or N fertilization. The aggressivity of Old World bluestems was negative at 6:2 mixture ratio under 80% FC and N fertilization, while it was positive at 2:6 mixture ratio. Switchgrass may become more aggressive when N deposition or rainfall increases, while a proper mixture ratio with appropriate water and N management could help with grassland management in the semi-arid Loess Plateau.



Key wordsaggressivity      nitrogen deposition      relative competitive ability      root trait      water stress     
Received: 04 January 2021      Published: 10 July 2021
Corresponding Authors:
About author: *XU Bingcheng (E-mail: Bcxu@ms.iswc.ac.cn)
Cite this article:

DING Wenli, XU Weizhou, GAO Zhijuan, XU Bingcheng. Effects of water and nitrogen on growth and relative competitive ability of introduced versus native C4 grass species in the semi-arid Loess Plateau of China. Journal of Arid Land, 2021, 13(7): 730-743.

URL:

http://jal.xjegi.com/10.1007/s40333-021-0010-8     OR     http://jal.xjegi.com/Y2021/V13/I7/730

Fig. 1 Schematic diagram of the experimental design. Open and filled circles represent Old World bluestems and switchgrass, respectively.
Index Species Water (W) Nitrogen (N) Mixture ratio (MR) W×N W×MR N×MR W×N×MR
Shoot biomass B <0.001 <0.001 <0.001 <0.001 0.422 0.001 0.776
P <0.001 <0.001 <0.001 <0.001 0.257 <0.001 0.402
B+P <0.001 <0.001 <0.001 <0.001 0.031 <0.001 0.492
Root biomass B 0.001 <0.001 <0.001 0.007 0.218 <0.001 0.782
P 0.003 <0.001 <0.001 0.045 0.176 0.356 0.285
B+P <0.001 <0.001 <0.001 0.002 0.291 <0.001 0.477
Total biomass B <0.001 <0.001 <0.001 0.470 0.914 <0.001 0.264
P <0.001 <0.001 <0.001 0.386 0.529 0.321 0.744
B+P <0.001 <0.001 0.160 0.870 0.434 0.691 0.724
RSR B <0.001 <0.001 <0.001 <0.001 0.670 <0.001 0.588
P <0.001 <0.001 <0.001 <0.001 0.346 <0.001 0.660
B+P <0.001 <0.001 <0.001 <0.001 0.378 <0.001 0.673
WUE B+P <0.001 <0.001 <0.001 0.020 0.646 0.727 0.863
Table 1 Analysis of variance of the effects of soil water, nitrogen, mixture ratio and their interactions on shoot, root and total biomass, root:shoot ratio (RSR) and water use efficiency (WUE) of Old World bluestems (B) and switchgrass (P)
Fig. 2 Shoot (a-f) and root biomass (g-l) of Old World bluestems (Bothriochloa ischaemum) and switchgrass (Panicum virgatum) under different soil water levels (40% FC and 80% FC), nitrogen (N) treatments (0 and 100 mg N/kg dry soil, termed N0-unfertilized and N1-fertilized treatments, respectively) and mixture ratios of two species. Bars are standard errors. Different uppercase letters indicate significant differences between two soil water levels within each mixture ratio and N treatment, while different lowercase letters indicate significant differences among different mixture ratios within each soil water level and N treatment. * indicates significant differences between two N treatments within each mixture ratio and soil water level (based on Tukey's post hoc analysis, P<0.05 level). B8P0, B6P2, B4P4, B2P6 and B0P8 indicate 8:0, 6:2, 4:4, 2:6 and 0:8 mixture ratios of Old World bluestems to switchgrass, respectively. The abbreviations are the same as in Figures 3-6.
Fig. 3 Total biomass (a-f) and root:shoot ratio (g-l) of Old World bluestems (Bothriochloa ischaemum) and switchgrass (Panicum virgatum) under different soil water levels (40% FC and 80% FC), nitrogen (N) treatments (0 and 100 mg N/kg dry soil, termed N0-unfertilized and N1-fertilized treatments, respectively) and mixture ratios. Bars are standard errors.
Source of variation df Total root length Root surface area Root average diameter
B P B P B P
Water (W) 1 <0.001 0.036 <0.001 0.009 0.263 0.001
Nitrogen (N) 1 <0.001 0.012 0.232 0.073 <0.001 <0.001
Mixture ratio (MR) 3 <0.001 0.060 <0.001 0.022 0.313 0.030
W×N 1 <0.001 0.294 <0.001 0.271 0.014 0.958
W×MR 3 0.142 0.160 0.212 0.140 0.020 0.057
N×MR 3 0.531 0.109 0.507 0.091 0.667 0.519
W×N×MR 3 0.775 0.203 0.742 0.191 0.070 0.847
Table 2 Analysis of variance of the effects of soil water, nitrogen, mixture ratio and their interactions on total root length, root surface area and root average diameter of Old World bluestems (B) and switchgrass (P)
Fig. 4 Total root length (a-d) and root surface area (e-h) of Old World bluestems (Bothriochloa ischaemum) and switchgrass (Panicum virgatum) under different soil water levels (40% FC and 80% FC), nitrogen (N) treatments (0 and 100 mg N/kg dry soil, termed N0-unfertilized and N1-fertilized treatments, respectively) and mixture ratios. Bars are standard errors.
Fig. 5 Root average diameter (RAD) of Old World bluestems (Bothriochloa ischaemum, a and b) and switchgrass (Panicum virgatum, c and d) under different soil water levels (40% FC and 80% FC), nitrogen (N) treatments (0 and 100 mg N/kg dry soil, termed N0-unfertilized and N1-fertilized treatments, respectively) and mixture ratios. Bars are standard errors.
Source of variation df Aggressivity (A) Relative yield total (RYT)
Shoot Root Total biomass Shoot Root Total biomass
Water (W) 1 0.002 0.543 <0.001 <0.001 0.035 <0.001
Nitrogen (N) 1 0.019 <0.001 <0.001 <0.001 <0.001 <0.001
Mixture ratio (MR) 2 <0.001 <0.001 <0.001 <0.001 0.398 0.104
W×N 1 0.056 <0.001 0.002 <0.001 0.414 0.414
W×M 2 0.045 0.290 0.080 0.099 0.275 0.275
N×M 2 <0.001 <0.001 0.142 0.133 0.264 0.264
W×N×MR 2 0.007 0.032 0.059 0.557 0.804 0.804
Table 3 Analysis of variance for the effects of soil water, nitrogen, mixture ratio and their interactions on the aggressivity and relative yield total
Treatment Mixture ratio Shoot Root Total biomass
N0-unfertilized+80% FC B6P2 -0.23±0.12aA* -0.14±0.02aA* -0.17±0.01aA*
B4P4 -0.26±0.25abA* 0.32±0.01b* -0.03±0.25aA
B2P6 0.36±0.06bA* 1.07±0.30c 0.48±0.01bA*
N1-fertilized+80% FC B6P2 -0.79±0.20a* -0.93±0.17aA* -1.25±0.02aA*
B4P4 1.16±0.22bB* -0.01±0.08bA* 0.01±0.16b
B2P6 4.45±1.47bB 1.06±0.43b 1.32±0.44cB*
N0-unfertilized+40% FC B6P2 0.06±0.07aB* 0.02±0.10aB* 0.05±0.05aB*
B4P4 0.34±0.18abB 0.13±0.04a 0.24±0.07aB
B2P6 1.08±0.25bB 1.11±0.34b* 1.10±0.21bB*
N1-fertilized+40% FC B6P2 -0.59±0.17a* -0.43±0.11aB* -0.51±0.11aB*
B4P4 0.30±0.27bA 0.25±0.04bB 0.28±0.14b
B2P6 0.56±0.11bA 0.49±0.17b* 0.53±0.11bA*
Table 4 Aggressivity values of shoot, root and total biomass of Old World bluestems (B) to switchgrass (P) under different water and nitrogen (N) treatments
Treatment Mixture ratio Shoot Root Total biomass
N0-unfertilized+80% FC B6P2 0.83±0.02bA* 0.72±0.06B* 0.79±0.03bB*
B4P4 0.89±0.05bA* 0.75±0.06B* 0.86±0.03bB*
B2P6 0.74±0.01aA* 0.82±0.06B* 0.70±0.02aB*
N1-fertilized+80% FC B6P2 2.31±0.12bB* 0.93±0.06B* 1.09±0.07aB*
B4P4 2.37±0.12bB* 0.96±0.06B* 1.17±0.08aB*
B2P6 2.22±0.12aB* 1.02±0.06B* 1.43±0.09bB*
N0-unfertilized+40% FC B6P2 0.91±0.03bB* 0.60±0.06A* 0.72±0.05bA*
B4P4 0.97±0.05bB* 0.63±0.06A* 0.78±0.06bA*
B2P6 0.81±0.02aB* 0.69±0.06A* 0.63±0.05aA*
N1-fertilized+40% FC B6P2 1.06±0.11bA* 0.81±0.06A* 0.81±0.06aA*
B4P4 1.11±0.11bA* 0.84±0.06A* 0.89±0.06aA*
B2P6 0.96±0.11aA* 0.90±0.06A* 1.15±0.05bA*
Table 5 Relative yield total of shoot, root and total biomass of Old World bluestem (B) and switchgrass (P) under different water and nitrogen (N) treatments
Fig. 6 Water use efficiency (WUE; a and b) of Old World bluestems (Bothriochloa ischaemum) and switchgrass (Panicum virgatum) together under different soil water levels (40% FC and 80% FC), nitrogen (N) treatments (0 and 100 mg N/kg dry soil, termed N0-unfertilized and N1-fertilized treatments, respectively) and mixture ratios. Bars are standard errors.
[1]   Abid M, Tian Z, Ata-Ul-Karim S T, et al. 2016. Nitrogen nutrition improves the potential of wheat (Triticum aestivum L.) to alleviate the effects of drought stress during vegetative growth periods. Frontiers in Plant Science, 7:981.
[2]   Aerts R, Boot R G A, van der Aart P J M. 1991. The relation between above- and belowground biomass allocation patterns and competitive ability. Oecologia, 87(4):551-559.
doi: 10.1007/BF00320419 pmid: 28313698
[3]   Ashworth A J, Moore Jr P A, King R, et al. 2019. Switchgrass forage yield and compositional response to phosphorus and potassium. Agrosystems, Geosciences & Environment, 2(1):1-8.
[4]   Barney J N, DiTomaso J M. 2008. Nonnative species and bioenergy: Are we cultivating the next invader? Bioscience, 58(1):64-70.
doi: 10.1641/B580111
[5]   Bennett J A, Riibak K, Tamme R, et al. 2016. The reciprocal relationship between competition and intraspecific trait variation. Journal of Ecology, 104(5):1410-1420.
doi: 10.1111/1365-2745.12614
[6]   Blumenthal D. 2005. Interrelated causes of plant invasion. Science, 310(5746):243-244.
pmid: 16224008
[7]   Blumenthal D, Chimner R A, Welker J M, et al. 2008. Increased snow facilitates plant invasion in mixed grass prairie. New Phytologist, 179(2):440-448.
doi: 10.1111/nph.2008.179.issue-2
[8]   Bobbink R, Hicks K, Galloway J, et al. 2010. Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecological Applications, 20(1):30-59.
doi: 10.1890/08-1140.1
[9]   Collins H P, Kimura E, Polley W, et al. 2020. Intercropping switchgrass with hybrid poplar increased carbon sequestration on a sand soil. Biomass and Bioenergy, 138:105558.
doi: 10.1016/j.biombioe.2020.105558
[10]   Cooney D, Kim H, Quinn L, et al. 2017. Switchgrass as a bioenergy crop in the Loess Plateau, China: potential lignocellulosic feedstock production and environmental conservation. Journal of Integrative Agriculture, 16(6):1211-1226.
doi: 10.1016/S2095-3119(16)61587-3
[11]   Daehler C C. 2003. Performance comparisons of co-occurring native and alien invasive plants: implications for conservation and restoration. Annual Review of Ecology, Evolution, and Systematics, 34(1):183-211.
doi: 10.1146/annurev.ecolsys.34.011802.132403
[12]   Davis M A, Grime J P, Thompson K. 2000. Fluctuating resources in plant communities: a general theory of invasibility. Journal of Ecology, 88(3):528-534.
doi: 10.1046/j.1365-2745.2000.00473.x
[13]   de Wit C T. 1960. On competition. Verslagen van Landbouwkundige Onderzoekingen, 66:1-82.
[14]   de Wit C T, van den Bergh J P. 1965. Competition between herbage plants. Journal of Agricultural Science, 13:212-221.
[15]   Drenovsky R E, Martin C E, Falasco M R, et al. 2008. Variation in resource acquisition and utilization traits between native and invasive perennial forbs. American Journal of Botany, 95(6):681-687.
doi: 10.3732/ajb.2007408 pmid: 21632393
[16]   Dziedek C, Härdtle W, von Oheimb G, et al. 2016. Nitrogen addition enhances drought sensitivity of young deciduous tree species. Frontiers in Plant Science, 7:1100.
[17]   Fowler N. 1982. Competition and coexistence in a North Carolina grassland: III. mixtures of component species. Journal of Ecology, 70(1):77-92.
doi: 10.2307/2259865
[18]   Funk J L, Vitousek P M. 2007. Resource-use efficiency and plant invasion in low-resource systems. Nature, 446(7139):1079-1081.
doi: 10.1038/nature05719
[19]   Galloway J N, Townsend A R, Erisman J W, et al. 2008. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science, 320(5878):889-892.
doi: 10.1126/science.1136674 pmid: 18487183
[20]   Goldberg D E, Rajaniemi T, Gurevitch J, et al. 1999. Empirical approaches to quantifying interaction intensity: competition and facilitation along productivity gradients. Ecology, 80(4):1118-1131.
doi: 10.1890/0012-9658(1999)080[1118:EATQII]2.0.CO;2
[21]   Grace J B. 1995. On the measurement of plant competition intensity. Ecology, 76(1):305-308.
doi: 10.2307/1940651
[22]   Guo J Y, Yang Y, Wang G X, et al. 2010. Ecophysiological responses of Abies fabri seedlings to drought stress and nitrogen supply. Physiologia Plantarum, 139(4):335-347.
[23]   He W M, Yu G L, Sun Z K. 2011. Nitrogen deposition enhances Bromus tectorum invasion: biogeographic differences in growth and competitive ability between China and North America. Ecography, 34(6):1059-1066.
doi: 10.1111/j.1600-0587.2011.06835.x
[24]   Hector A. 1998. The effect of diversity on productivity: detecting the role of species complementarity. Oikos, 82(3):597-599.
doi: 10.2307/3546380
[25]   Hooper D U, Johnson L. 1999. Nitrogen limitation in dryland ecosystems: responses to geographical and temporal variation in precipitation. Biogeochemistry, 46(1):247-293.
[26]   Jolliffe P A. 2000. The replacement series. Journal of Ecology, 88(3):371-385.
doi: 10.1046/j.1365-2745.2000.00470.x
[27]   Keane R M, Crawley M J. 2002. Exotic plant invasions and the enemy release hypothesis. Trends in Ecology & Evolution, 17(4):164-170.
doi: 10.1016/S0169-5347(02)02499-0
[28]   Keshwani D R, Cheng J J. 2009. Switchgrass for bioethanol and other value-added applications: A review. Bioresource Technology, 100(4):1515-1523.
doi: 10.1016/j.biortech.2008.09.035 pmid: 18976902
[29]   Kiær L P, Weisbach A N, Weiner J. 2013. Root and shoot competition: a meta-analysis. Journal of Ecology, 101(5):1298-1312.
doi: 10.1111/jec.2013.101.issue-5
[30]   Kunstler G, Falster D, Coomes D A, et al. 2016. Plant functional traits have globally consistent effects on competition. Nature, 529(7585):204-207.
doi: 10.1038/nature16476
[31]   Levine J M, Vilà M, Antonio C M D, et al. 2003. Mechanisms underlying the impacts of exotic plant invasions. Proceedings of the Royal Society of London Series B: Biological Sciences, 270(1517):775-781.
[32]   Li S Q, Tian X H, Li S G. 2000. Physiological compensation effects of nutrient on winter wheat in dryland. Acta Botanica Boreali-Occidentalia Sinica, 20(1):22-28. (in Chinese)
[33]   Li Z, Zheng F L, Liu W Z, et al. 2012. Spatially downscaling GCMs outputs to project changes in extreme precipitation and temperature events on the Loess Plateau of China during the 21st Century. Global and Planetary Change, 82-83:65-73.
doi: 10.1016/j.gloplacha.2011.11.008
[34]   Liu X J, Zhang Y, Han W X, et al. 2013. Enhanced nitrogen deposition over China. Nature, 494:459-462.
doi: 10.1038/nature11917
[35]   Liu Y J, Oduor A M O, Zhang Z, et al. 2017. Do invasive alien plants benefit more from global environmental change than native plants? Global Change Biology, 23(8):3363-3370.
doi: 10.1111/gcb.2017.23.issue-8
[36]   Lynch J P. 2013. Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems. Annals of Botany, 112(2):347-357.
doi: 10.1093/aob/mcs293
[37]   McGilchrist C A, Trenbath B R. 1971. A revised analysis of plant competition experiments. Biometrics, 27(3):659-671.
doi: 10.2307/2528603
[38]   Mitchell R, Vogel KP, Sarath G. 2008. Managing and enhancing switchgrass as a bioenergy feedstock. Biofuels, Bioproducts and Biorefining, 2(6):530-539.
doi: 10.1002/bbb.v2:6
[39]   Muir J P, Sanderson M A, Ocumpaugh W R, et al. 2001. Biomass production of 'Alamo' switchgrass in response to nitrogen, phosphorus, and row spacing. Agronomy Journal, 93(4):896-901.
doi: 10.2134/agronj2001.934896x
[40]   R Core Team 2019 R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
[41]   Rajaniemi T K. 2002. Why does fertilization reduce plant species diversity? Testing three competition-based hypotheses. Journal of Ecology, 90(2):316-324.
doi: 10.1046/j.1365-2745.2001.00662.x
[42]   Rao L E, Allen E B. 2010. Combined effects of precipitation and nitrogen deposition on native and invasive winter annual production in California deserts. Oecologia, 162(4):1035-1046.
doi: 10.1007/s00442-009-1516-5
[43]   Ravenek J M, Mommer L, Visser E J W, et al. 2016. Linking root traits and competitive success in grassland species. Plant and Soil, 407(1):39-53.
doi: 10.1007/s11104-016-2843-z
[44]   Ren G Q, Li Q, Li Y, et al. 2019. The enhancement of root biomass increases the competitiveness of an invasive plant against a co-occurring native plant under elevated nitrogen deposition. Flora, 261:151486.
doi: 10.1016/j.flora.2019.151486
[45]   Roy J. 1990. In search of the characteristics of plant invaders. In: di Castri, Hansen A J, Debussche M. Biological Invasions in Europe and the Mediterranean Basin. Dordrecht: Kluwer Academic Publishers, 335-336.
[46]   Sanderson M A, Adler P R, Boateng A A, et al. 2006. Switchgrass as a biofuels feedstock in the USA. Canadian Journal of Plant Science, 86(Special Issue):1315-1325.
doi: 10.4141/P06-136
[47]   Semchenko M, Lepik A, Abakumova M, et al. 2018. Different sets of belowground traits predict the ability of plant species to suppress and tolerate their competitors. Plant and Soil, 424(1):157-169.
doi: 10.1007/s11104-017-3282-1
[48]   Shan L, Xu B C. 2009. Discuss about establishing stable artificial grassland in semi-arid Loess Plateau of China. Acta Prataculture Sinica, 2(18):1-2. (in Chinese)
[49]   Sheppard C S, Burns B R, Stanley M C. 2014. Predicting plant invasions under climate change: are species distribution models validated by field trials? Global Change Biology, 20(9):2800-2814.
doi: 10.1111/gcb.12531
[50]   Shui J, An Y, Ma Y, et al. 2010. Allelopathic potential of switchgrass (Panicum virgatum L.) on perennial ryegrass (Lolium perenne L.) and alfalfa (Medicago sativa L.). Environmental Management, 46(4):590-598.
doi: 10.1007/s00267-010-9454-x
[51]   Theoharides K A, Dukes J S. 2007. Plant invasion across space and time: factors affecting nonindigenous species success during four stages of invasion. New Phytologist, 176(2):256-273.
pmid: 17822399
[52]   Wang Z, Xu W Z, Chen Z F, et al. 2018. Soil moisture availability at early growth stages strongly affected root growth of Bothriochloa ischaemum when mixed with Lespedeza davurica. Frontiers in Plant Science, 9:1050.
doi: 10.3389/fpls.2018.01050 pmid: 30131814
[53]   Weigelt A, Jolliffe P. 2003. Indices of plant competition. Journal of Ecology, 91(5):707-720.
doi: 10.1046/j.1365-2745.2003.00805.x
[54]   White P, George T, Dupuy L, et al. 2013. Root traits for infertile soils. Frontiers in Plant Science, 4:193.
[55]   Wilson J B. 1988. Shoot competition and root competition. Journal of Applied Ecology, 25(1):279-296.
doi: 10.2307/2403626
[56]   Xu B C, Shan L, Huang J, et al. 2003. Comparison of water use efficiency and root/shoot ration in seedling stage of switchgrass (Panicum vigarum) and old world bluestems (Bothriochloa ischaemum). Acta Prataculturae Sinica, 12(4):73-77. (in Chinese)
[57]   Xu B C, Niu F R, Duan D P, et al. 2012. Root morphological characteristics of Lespedeza davurica (L.) intercropped with Bothriochloa ischaemum (L.) Keng under water stress and P application conditions. Pakistan Journal of Botany, 44(6):1857-1864.
[58]   Xu W Z, Deng X P, Xu B C. 2013. Effects of water stress and fertilization on leaf gas exchange and photosynthetic light-response curves of Bothriochloa ischaemum L. Photosynthetica, 51(4):603-612.
doi: 10.1007/s11099-013-0061-y
[59]   Yang H, Li Y, Wu M Y, et al. 2011. Plant community responses to nitrogen addition and increased precipitation: the importance of water availability and species traits. Global Change Biology, 17(9):2936-2944.
doi: 10.1111/gcb.v17.9
[60]   Yu G R, Jia Y L, He N P, et al. 2019. Stabilization of atmospheric nitrogen deposition in China over the past decade. Nature Geoscience, 12(6):424-429.
doi: 10.1038/s41561-019-0352-4
[61]   Zhang X H, Xu B C, Li F M. 2007. Effect of planting density on the productivity and WUE of three legumes in highland of Loess Plateau. Acta Agrestia Sinica, 1(16):593-598. (in Chinese)
[62]   Zhao Q, Chen Q Y, Jiao M Y, et al. 2018. The temporal-spatial characteristics of drought in the Loess Plateau using the remote-sensed TRMM precipitation data from 1998 to 2014. Remote Sensing, 10(6):838.
doi: 10.3390/rs10060838
[63]   Zuur A F, Leno E N, Walker N J, et al. 2009. Mixed Effects Models and Extensions in Ecology with R. New York: Spring Science and Business Media, 71-100.
[1] HAN Qifei, XU Wei, LI Chaofan. Effects of nitrogen deposition on the carbon budget and water stress in Central Asia under climate change[J]. Journal of Arid Land, 2024, 16(8): 1118-1129.
[2] YE He, HONG Mei, XU Xuehui, LIANG Zhiwei, JIANG Na, TU Nare, WU Zhendan. Responses of plant diversity and soil microorganism diversity to nitrogen addition in the desert steppe, China[J]. Journal of Arid Land, 2024, 16(3): 447-459.
[3] MA Jinpeng, PANG Danbo, HE Wenqiang, ZHANG Yaqi, WU Mengyao, LI Xuebin, CHEN Lin. Response of soil respiration to short-term changes in precipitation and nitrogen addition in a desert steppe[J]. Journal of Arid Land, 2023, 15(9): 1084-1106.
[4] Teame G KEBEDE, Emiru BIRHANE, Kiros-Meles AYIMUT, Yemane G EGZIABHER. Arbuscular mycorrhizal fungi improve biomass, photosynthesis, and water use efficiency of Opuntia ficus-indica (L.) Miller under different water levels[J]. Journal of Arid Land, 2023, 15(8): 975-988.
[5] Khouloud ZAGOUB, Khouloud KRICHEN, Mohamed CHAIEB, Lobna F MNIF. Morphological and physiological responses to drought stress of carob trees in Mediterranean ecosystems[J]. Journal of Arid Land, 2023, 15(5): 562-577.
[6] Mohammad Hossein TAGHIZADEH, Mohammad FARZAM, Jafar NABATI. Rhizobacteria facilitate physiological and biochemical drought tolerance of Halimodendron halodendron (Pall.) Voss[J]. Journal of Arid Land, 2023, 15(2): 205-217.
[7] HUANG Xiaotao, LUO Geping, CHEN Chunbo, PENG Jian, ZHANG Chujie, ZHOU Huakun, YAO Buqing, MA Zhen, XI Xiaoyan. How precipitation and grazing influence the ecological functions of drought-prone grasslands on the northern slopes of the Tianshan Mountains, China?[J]. Journal of Arid Land, 2021, 13(1): 88-97.
[8] JIN Xiaoming, YANG Xiaogang, ZHOU Zhen, ZHANG Yingqi, YU Liangbin, ZHANG Jinghua, LIANG Runfang. Ecological stoichiometry and biomass response of Agropyron michnoi Roshev. under simulated N deposition in a sandy grassland, China[J]. Journal of Arid Land, 2020, 12(5): 741-751.
[9] DANG Hongzhong, ZHANG Lizhen, YANG Wenbin, FENG Jinchao, HAN Hui, CHEN Yiben. Severe drought strongly reduces water use and its recovery ability of mature Mongolian Scots pine (Pinus sylvestris var. mongolica Litv.) in a semi-arid sandy environment of northern China[J]. Journal of Arid Land, 2019, 11(6): 880-891.
[10] Hui RAN, Shaozhong KANG, Fusheng LI, Taisheng DU, Risheng DING, Sien LI, Ling TONG. Responses of water productivity to irrigation and N supply for hybrid maize seed production in an arid region of Northwest China[J]. Journal of Arid Land, 2017, 9(4): 504-514.
[11] ESCALANTE-SANDOVAL Carlos, NU?EZ-GARCIA Pedro. Meteorological drought features in northern and northwestern parts of Mexico under different climate change scenarios[J]. Journal of Arid Land, 2017, 9(1): 65-75.
[12] HaiNa ZHANG, PeiXi SU, ShanJia LI, ZiJuan ZHOU, TingTing XIE. Response of root traits of Reaumuria soongorica and Salsola passerina to facilitation[J]. Journal of Arid Land, 2014, 6(5): 628-636.
[13] GuangNa ZHANG, ZhenHua CHEN, AiMing ZHANG, LiJun CHEN, ZhiJie WU. Influence of climate warming and nitrogen deposition on soil phosphorus composition and phosphorus availability in a temperate grassland, China[J]. Journal of Arid Land, 2014, 6(2): 156-163.
[14] ShanShan DAI, LanHai LI, HongGang XU, XiangLiang PAN, XueMei LI. A system dynamics approach for water resources policy analysis in arid land: a model for Manas River Basin[J]. Journal of Arid Land, 2013, 5(1): 118-131.
[15] Li ZHUANG, YaNing CHEN, WeiHong LI, ZhongKe WANG. Anatomical and morphological characteristics of Populus euphratica in the lower reaches of Tarim River under extreme drought environment[J]. Journal of Arid Land, 2011, 3(4): 261-267.