Please wait a minute...
Journal of Arid Land  2019, Vol. 11 Issue (6): 880-891    DOI: 10.1007/s40333-019-0029-2
Orginal Article     
Severe drought strongly reduces water use and its recovery ability of mature Mongolian Scots pine (Pinus sylvestris var. mongolica Litv.) in a semi-arid sandy environment of northern China
DANG Hongzhong1,*(), ZHANG Lizhen2, YANG Wenbin1, FENG Jinchao1, HAN Hui3, CHEN Yiben4
1 Institute of Desertification Studies, Chinese Academy of Forestry, Beijing 100091, China
2 Institute of Resources and Environment, China Agricultural University, Beijing 100094, China
3 Institute of Sand Fixation and Afforestation of Liaoning Province, Fuxin 123000, China
4 Beijing Forestry University, Beijing 100083, China
Download: HTML     PDF(930KB)
Export: BibTeX | EndNote (RIS)      


Trees growing in a semi-arid sandy environment are often exposed to drought conditions due to seasonal variations in precipitation, low soil water retention and deep groundwater level. However, adaptability and plasticity of individuals to the changing drought conditions greatly vary among tree species. In this study, we estimated water use (Ts) of Mongolian Scots pine (MSP; Pinus sylvestris var. mongolica Litv.) based on sap flux density measurements over four successive years (2013-2016) that exhibited significant fluctuations in precipitation in a semi-arid sandy environment of northern China. The results showed that fluctuations in daily Ts synchronously varied with dry-wet cycles of soil moisture over the study period. The daily ratio of water use to reference evapotranspiration (Ts/ET0) on sunny days in each year showed a negative linear relationship with the severity of drought in the upper soil layer (0-1 m; P<0.01). The decrease in Ts induced by erratic drought during the growing season recovered due to precipitation. However, this recovery ability failed under prolonged and severe droughts. The Ts/ET0 ratio significantly declined with the progressive reduction in the groundwater level (gw) over the study period (P<0.01). We concluded that the upper soil layer contributed the most to the Ts of MSP during the growing season. The severity and duration of droughts in this layer greatly reduced Ts. Nevertheless, gw determined whether the Ts could completely recover after the alleviation of long-term soil drought. These results provide practical information for optimizing MSP management to stop ongoing degradation in the semi-arid sandy environments.

Key wordsgroundwater      soil water availability      water stress      sap flow      reference evapotranspiration     
Received: 07 February 2018      Published: 10 December 2019
Corresponding Authors: Hongzhong DANG     E-mail:
Cite this article:

DANG Hongzhong, ZHANG Lizhen, YANG Wenbin, FENG Jinchao, HAN Hui, CHEN Yiben. Severe drought strongly reduces water use and its recovery ability of mature Mongolian Scots pine (Pinus sylvestris var. mongolica Litv.) in a semi-arid sandy environment of northern China. Journal of Arid Land, 2019, 11(6): 880-891.

URL:     OR

1 Allen R G, Pereira L S, Raes D, et al. 1998. Crop evapotranspiration: Guidelines for computing crop water requirements. FAO irrigation and drainage paper 56. Rome: Food and Agriculture Organization of the United Nations.
2 Arneth A, Veenendaal E M, Best C, et al. 2006. Water use strategies and ecosystem-atmosphere exchange of CO2 in two highly seasonal environments. Biogeosciences, 3(4): 421-437.
3 Barbeta A, Mejía-Chang M, Ogaya R, et al. 2015. The combined effects of a long-term experimental drought and an extreme drought on the use of plant-water sources in a Mediterranean forest. Global Change Biology, 21(3): 1213-1225.
4 Bovard B D, Curtis P S, Vogel C S, et al. 2005. Environmental controls on sap flow in a northern hardwood forest. Tree Physiology, 25(1): 31-38.
5 Clausnitzer F, K?stner B, Schw?rzel K, et al. 2011. Relationships between canopy transpiration, atmospheric conditions and soil water availability-Analyses of long-term sap-flow measurements in an old Norway spruce forest at the Ore Mountains/Germany. Agricultural and Forest Meteorology, 151(8): 1023-1034.
6 Dang H Z, Zha T S, Zhang J S, et al. 2014. Radial profile of sap flow velocity in mature Xinjiang poplar (Populus alba L. var. pyramidalis) in Northwest China. Journal of Arid Land, 6(5): 612-627.
7 D'Odorico P, Porporato A. 2006. Soil moisture dynamics in water-limited ecosystems. In: D'Odorico P, Porporato A. Dryland Ecohydrology. Netherlands: Springer, 31-46.
8 Fu S, Sun L, Luo Y. 2016. Combining sap flow measurements and modelling to assess water needs in an oasis farmland shelterbelt of Populus simonii Carr in Northwest China. Agricultural Water Management, 177: 172-180.
9 Gazol A, Camarero J J, Jiménez J J, et al. 2018. Beneath the canopy: Linking drought-induced forest die off and changes in soil properties. Forest Ecology and Management, 422(15): 294-302.
10 Granier A. 1987. Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree Physiology, 3(4): 309-320.
11 Hentschel R, Hommel R, Poschenrieder W, et al. 2016. Stomatal conductance and intrinsic water use efficiency in the drought year 2003: a case study of European beech. Trees, 30(1): 153-174.
12 Jiang F Q, Cao C Y, Zeng D H, et al. 2002. Degradation and Restoration of Ecosystems on Keerqin Sandy Land. Beijing: Chinese Forestry Press, 282. (in Chinese)
13 Jiao S R. 1989. Structure and Function of Forestry Ecosystem for Sand-fixation in Zhanggutai Area. Shenyang: Liaoning Science and Technology Press, 114. (in Chinese)
14 Jiao S R. 2001. Report on the causes of the early decline of Pinus slyvestris var. mongolica shelterbelt and its preventative and control measures in Zhanggutai of Liaoning Province. Scientia Silvae Sinicae, 37(2): 131-138. (in Chinese)
15 Kume T, Takizawa H, Yoshifuji N, et al. 2007. Impact of soil drought on sap flow and water status of evergreen trees in a tropical monsoon forest in northern Thailand. Forest Ecology and Management, 238(1): 220-230.
16 ?ab?dzki L, Kanecka-Geszke E. 2009. Standardized evapotranspiration as an agricultural drought index. Irrigation and Drainage, 58(5): 607-616.
17 Leo M, Oberhuber W, Schuster R, et al. 2014. Evaluating the effect of plant water availability on inner alpine coniferous trees based on sap flow measurements. European Journal of Forest Research, 133(4): 691-698.
18 Levitt J. 1982. Responses of Plants to Environmental Stresses. Volume II. Water, Radiation, Salt, and Other Stresses. New York, USA: Academic Press, 607.
19 Lu P, Urban L, Zhao P. 2004. Granier's thermal dissipation probe (TDP) method for measuring sap flow in trees: theory and practice. Acta Botanica Sinica, 46(6): 631-646. (in Chinese)
20 Meinzer F C, Brooks J R, Domec J C, et al. 2006. Dynamics of water transport and storage in conifers studied with deuterium and heat tracing techniques. Plant, Cell and Environment, 29(1): 105-114.
21 Mereu S, Salvatori E, Fusaro L, et al. 2009. An integrated approach shows different use of water resources from Mediterranean Maquis species in a coastal dune ecosystem. Biogeosciences, 6(11): 2599-2610.
22 Song L N, Zhu J J, Li M C, et al. 2014. Water utilization of Pinus sylvestris var. mongolica in a sparse wood grassland in the semiarid sandy region of Northeast China. Trees, 28(4): 971-982.
23 Song L N, Zhu J J, Li M C, et al. 2016a. Sources of water used by Pinus sylvestris var. mongolica trees based on stable isotope measurements in a semiarid sandy region of Northeast China. Agricultural Water Management, 164: 281-290.
24 Song L N, Zhu J J, Li M C, et al. 2016b. Water use patterns of Pinus sylvestris var. mongolica trees of different ages in a semi-arid sandy lands of Northeast China. Environmental and Experimental Botany, 129: 94-107.
25 Su F L, Liu M G, Guo C J, et al. 2006. Characteristics of vertical distribution of root system of Mongolian Scotch pine growing in sandy area and influence to the soil. Soil and Water Conservation, 286: 20-23. (in Chinese)
26 Su H, Li Y G, Liu W, et al. 2014. Changes in water use with growth in Ulmus pumila in semiarid sandy land of northern China. Trees, 28(1): 41-52.
27 Tang F D, Lin Y, Li Y. 2015. Impact of water stress photosynthesis characteristics of Mongolian pine seedlings and grafting Korean pine seedlings with stocks of Mongolian pine. Journal of Liaoning University, 42(3): 274-276. (in Chinese)
28 Vanguelova E I, Kennedy F. 2007. Morphology, biomass and nutrient status of fine roots of Scots pine (Pinus sylvestris) as influenced by seasonal fluctuations in soil moisture and soil solution chemistry. Plant and Soil, 270(1): 233-247.
29 Verbeeck H, Steppe K, Nadezhdina N, et al. 2007. Model analysis of the effects of atmospheric drivers on storage water use in Scots pine. Biogeosciences, 4(4): 657-671.
30 Vincke C, Thiry Y. 2008. Water table is a relevant source for water uptake by a Scots pine (Pinus sylvestris L.) stand: Evidences from continuous evapotranspiration and water table monitoring. Agricultural and Forest Meteorology, 148(10): 1419-1432.
31 Wei Y F, Fang J, Liu S, et al. 2013. Stable isotopic observation of water use sources of Pinus sylvestris var. mongolica in Horqin Sandy Land, China. Trees, 27(5): 1249-1260.
32 Wesche K, Walther D, Wehrden H V, et al. 2011. Trees in the desert: Reproduction and genetic structure of fragmented Ulmus pumila forests in Mongolian drylands. Flora, 206(2): 91-99.
33 Whitley R, Zeppel M, Armstrong N, et al. 2008. A modified Jarvis-Stewart model for predicting stand-scale transpiration of an Australian native forest. Plant and Soil, 305(1-2): 35-47.
34 Yan M J, Zhang J G, He Q Y, et al. 2016. Sapflow-based stand transpiration in a semiarid natural oak forest on China's Loess Plateau. Forests, 7(10): 227-240.
35 Zhang J H, Wang N A, Niu Z M, et al. 2018. Stable isotope analysis of water sources for Tamarix laxa in the mega-dunes of the Badain Jaran Desert, China. Journal of Arid Land, 10(6): 821-831.
36 Zheng X, Zhu J J, Yan Q L, et al. 2012. Effects of land use changes on the groundwater table and the decline of Pinus sylvestris var. mongolica plantations in southern Horqin Sandy Land, Northeast China. Agricultural Water Management, 109(9): 94-106.
37 Zhu J J, Kang H Z, Li Z H, et al. 2005. Impact of water stress on survival and photosynthesis of Mongolian pine seedlings on sandy land. Acta Ecologica Sinica, 25: 2527-2533. (in Chinese)
38 Zhu J J, Li F Q, Xu M L, et al. 2008. The role of ectomycorrhizal fungi in alleviating pine decline in semiarid sandy soil of northern China: an experimental approach. Annals of Forest Science, 65(3): 304-304.
[1] CHEN Shumin, JIN Zhao, ZHANG Jing, YANG Siqi. Soil quality assessment in different dammed-valley farmlands in the hilly-gully mountain areas of the northern Loess Plateau, China[J]. Journal of Arid Land, 2021, 13(8): 777-789.
[2] DING Wenli, XU Weizhou, GAO Zhijuan, XU Bingcheng. Effects of water and nitrogen on growth and relative competitive ability of introduced versus native C4 grass species in the semi-arid Loess Plateau of China[J]. Journal of Arid Land, 2021, 13(7): 730-743.
[3] WANG Yuejian, GU Xinchen, YANG Guang, YAO Junqiang, LIAO Na. Impacts of climate change and human activities on water resources in the Ebinur Lake Basin, Northwest China[J]. Journal of Arid Land, 2021, 13(6): 581-598.
[4] JIA Wuhui, YIN Lihe, ZHANG Maosheng, ZHANG Xinxin, ZHANG Jun, TANG Xiaoping, DONG Jiaqiu. Quantification of groundwater recharge and evapotranspiration along a semi-arid wetland transect using diurnal water table fluctuations[J]. Journal of Arid Land, 2021, 13(5): 455-469.
[5] HUANG Xiaotao, LUO Geping, CHEN Chunbo, PENG Jian, ZHANG Chujie, ZHOU Huakun, YAO Buqing, MA Zhen, XI Xiaoyan. How precipitation and grazing influence the ecological functions of drought-prone grasslands on the northern slopes of the Tianshan Mountains, China?[J]. Journal of Arid Land, 2021, 13(1): 88-97.
[6] DONG Zhengwu, LI Shengyu, ZHAO Ying, LEI Jiaqiang, WANG Yongdong, LI Congjuan. Stable oxygen-hydrogen isotopes reveal water use strategies of Tamarix taklamakanensis in the Taklimakan Desert, China[J]. Journal of Arid Land, 2020, 12(1): 115-129.
[7] Rashid KULMATOV, Jasur MIRZAEV, Jilili ABUDUWAILI, Bakhtiyor KARIMOV. Challenges for the sustainable use of water and land resources under a changing climate and increasing salinization in the Jizzakh irrigation zone of Uzbekistan[J]. Journal of Arid Land, 2020, 12(1): 90-103.
[8] Yunfei GAO, Chuanyan ZHAO, W ASHIQ Muhammad, Qingtao WANG, Zhanlei RONG, Junjie LIU, Yahua MAO, Zhaoxia GUO, Wenbin WANG. Actual evapotranspiration of subalpine meadows in the Qilian Mountains, Northwest China[J]. Journal of Arid Land, 2019, 11(3): 371-384.
[9] Peng ZHAO, Jianjun QU, Xianying XU, Qiushi YU, Shengxiu JIANG, Heran ZHAO. Desert vegetationdistribution and species-environment relationshipsinan oasis-desert ecotone ofnorthwestern China[J]. Journal of Arid Land, 2019, 11(3): 461-476.
[10] Yakun TANG, Xu WU, Yunming CHEN. Sap flow characteristics and physiological adjustments of two dominant tree species in pure and mixed plantations in the semi-arid Loess Plateau of China[J]. Journal of Arid Land, 2018, 10(6): 833-849.
[11] Hui RAN, Shaozhong KANG, Fusheng LI, Taisheng DU, Risheng DING, Sien LI, Ling TONG. Responses of water productivity to irrigation and N supply for hybrid maize seed production in an arid region of Northwest China[J]. Journal of Arid Land, 2017, 9(4): 504-514.
[12] Xiaodong BO, Taisheng DU, Risheng DING, COMAS Louise. Time lag characteristics of sap flow in seed-maize and their implications for modeling transpiration in an arid region of Northwest China[J]. Journal of Arid Land, 2017, 9(4): 515-529.
[13] Xuewen GONG, Hao LIU, Jingsheng SUN, Yang GAO, Xiaoxian ZHANG, K JHA Shiva, Hao ZHANG, Xiaojian MA, Wanning WANG. A proposed surface resistance model for the Penman-Monteith formula to estimate evapotranspiration in a solar greenhouse[J]. Journal of Arid Land, 2017, 9(4): 530-546.
[14] ESCALANTE-SANDOVAL Carlos, NU?EZ-GARCIA Pedro. Meteorological drought features in northern and northwestern parts of Mexico under different climate change scenarios[J]. Journal of Arid Land, 2017, 9(1): 65-75.
[15] Donghui CHENG, Jibo DUAN, Kang QIAN, Lijun QI, Hongbin Yang, Xunhong CHEN. Groundwater evapotranspiration under psammophilous vegetation covers in the Mu Us northern China[J]. Journal of Arid Land, 2017, 9(1): 98-108.