Please wait a minute...
Journal of Arid Land  2025, Vol. 17 Issue (7): 933-957    DOI: 10.1007/s40333-025-0023-9     CSTR: 32276.14.JAL.02500239
Research article     
Health risk assessment of heavy metals in coal mine soils of Northwest China
LI Yun1,2, ZHUANG Zhong3, XIA Qianrou4,*(), SHI Qingdong1,2, ZHU Jiawei1,2, WANG Peijuan1,2, LI Dinghao1,2, Yryszhan ZHAKYPBEK5, Serik TURSBEKOV5
1College of Ecology and Environment, Xinjiang University, Urumqi 830046, China
2Key Laboratory of Oasis Ecology, Ministry of Education (Xinjiang University), Urumqi 830046, China
3College of Resources and Environment Sciences, China Agricultural University, Beijing 100193, China
4Xinjiang Academy of Ecological and Environmental Sciences, Urumqi 830011, China
5Department of Mine Surveying and Geodesy, Institute Mining and Metallurgical Institute named after O.A. Baikonurov, Satbayev University, Almaty 050013, Kazakhstan
Download: HTML     PDF(6323KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Coal mining predisposes soils to heavy metal (HM) accumulation, which adversely affects the ecological environment and human health, particularly in extremely arid and vulnerable areas. In this study, soil samples were gathered from the Black Mountain Open Pit Coal Mine in Turpan City, Northwest China to determine the health risk of heavy metals (HMs). Results showed that positive matrix factorization model divided the sources of soil HMs into four categories, i.e., natural and animal husbandry (43.46%), industrial transportation (22.87%), fossil fuel combustion (10.64%), and atmospheric deposition and domestic pollution (23.03%). All kinds of pollution evaluation indices showed that Cd (cadmium) and Pb (plumbum) pollution was evident. The Monte Carlo simulated health risk assessment results showed that 4.00% non-carcinogenic risk and 12.00% carcinogenic risk were posed to children, and the positive matrix factorization-based health risk assessment showed that fossil fuel combustion had the highest contribution to the health risks to adults and children, while industrial transportation was the lowest. In this study, the risks of HMs in the soil of mining area were analyzed using source analysis, which not only provides reliable data support for the prevention and control of HM pollution in the soil of this arid mining area, but also provides a theoretical basis for subsequent regional research.



Key wordsarid area      soil heavy metals      positive matrix factorization      Monte Carlo simulation      health risk assessment     
Received: 03 January 2025      Published: 31 July 2025
Corresponding Authors: *XIA Qianrou (E-mail: xqrqt@163.com)
Cite this article:

LI Yun, ZHUANG Zhong, XIA Qianrou, SHI Qingdong, ZHU Jiawei, WANG Peijuan, LI Dinghao, Yryszhan ZHAKYPBEK, Serik TURSBEKOV. Health risk assessment of heavy metals in coal mine soils of Northwest China. Journal of Arid Land, 2025, 17(7): 933-957.

URL:

http://jal.xjegi.com/10.1007/s40333-025-0023-9     OR     http://jal.xjegi.com/Y2025/V17/I7/933

Fig. 1 Overview and sample sites of the study area. DEM, digital elevation model.
Sample Cd Cr Cu Fe Mn Ni Pb Zn As pH
(mg/kg)
1 0.12 63.24 41.18 30,416.67 868.87 29.17 2.45 90.69 5.17 7.66
2 0.12 45.95 40.48 26,809.52 1024.29 22.62 3.57 88.57 6.76 8.16
3 0.17 49.01 36.14 22,898.52 623.52 22.53 7.43 70.30 7.40 8.60
4 0.12 53.68 41.67 27,034.31 1002.94 25.00 2.70 99.76 9.04 7.79
5 0.19 58.81 44.52 32,261.91 752.14 26.43 16.19 95.00 4.73 7.60
6 0.25 62.01 48.53 28,774.51 974.51 31.13 6.37 98.53 6.33 7.74
7 0.19 57.93 48.32 26,899.04 1070.91 31.73 0.72 107.93 9.03 7.85
8 0.15 34.31 21.08 11,875.00 804.90 12.75 1.47 70.59 13.71 8.13
9 0.12 60.44 48.54 24,135.92 784.95 28.16 3.88 88.35 13.04 7.20
10 0.08 64.00 42.75 32,500.00 956.50 29.75 9.50 104.00 12.26 7.88
11 0.12 70.71 64.52 35,571.43 916.91 33.10 10.95 111.43 19.93 8.36
12 0.38 66.75 43.25 29,275.00 749.25 28.50 9.50 89.75 14.57 8.06
13 0.62 71.29 42.33 32,450.50 814.36 27.97 12.87 103.96 13.19 8.04
14 0.12 57.77 37.38 30,194.18 695.63 27.18 18.45 104.61 8.58 7.85
15 0.15 56.86 48.28 31,568.63 734.31 25.98 10.29 99.02 13.08 7.89
16 0.12 48.81 28.81 23,523.81 422.38 21.67 1.91 75.71 6.50 7.98
17 0.19 50.49 32.04 22,237.86 648.30 22.82 6.55 77.18 12.41 7.68
18 0.13 69.25 47.75 31,150.00 827.75 26.50 11.75 113.25 12.40 7.87
19 0.36 72.82 60.44 29,733.01 848.54 28.16 10.92 98.06 19.49 7.56
20 0.12 54.05 43.10 24,047.62 541.43 23.33 13.81 93.33 17.50 7.76
21 0.10 65.00 48.81 32,928.57 763.81 26.67 7.38 94.52 14.80 8.40
22 0.36 183.89 90.39 46,177.89 1287.02 79.81 8.89 56.25 10.26 8.41
23 0.12 48.52 46.54 29,133.66 875.50 23.27 17.33 112.38 9.31 7.96
24 0.07 59.62 38.94 27,019.23 699.76 27.64 6.25 122.12 12.14 7.55
25 0.12 60.29 67.65 27,867.65 1005.15 24.76 7.60 128.92 9.93 7.76
26 0.20 67.75 123.25 35,750.00 2208.25 32.25 21.75 125.25 12.63 8.66
27 0.12 54.81 31.49 26,875.00 589.42 19.71 8.41 66.83 15.38 8.49
28 0.20 50.74 58.82 27,573.53 1157.11 22.55 28.68 171.81 10.61 7.05
29 0.12 67.14 50.24 34,023.81 941.19 31.19 27.14 113.81 15.11 8.09
30 0.15 44.66 35.44 21,089.81 646.36 21.36 8.50 68.20 16.95 7.83
31 0.10 52.43 53.16 29,441.75 1063.59 18.93 15.05 108.50 12.71 8.50
32 0.12 56.49 55.77 29,615.39 1212.74 29.57 10.82 91.11 12.52 7.55
33 0.12 55.83 64.81 29,733.01 1215.29 27.67 12.38 87.62 12.87 7.44
34 0.25 76.25 59.25 28,500.00 1075.00 34.75 4.75 82.00 12.45 8.12
35 0.12 70.30 58.91 25,792.08 885.64 33.66 2.48 91.09 15.60 7.21
36 0.07 52.70 70.83 28,137.26 1054.90 31.13 1.96 90.44 13.89 8.28
37 1.24 53.22 65.84 26,584.16 1109.16 28.47 1.24 84.41 12.20 8.26
38 0.26 32.65 15.31 7882.65 193.88 6.63 5.61 34.18 8.78 8.02
39 0.12 57.52 62.86 28,058.25 772.09 32.04 12.38 102.91 22.44 8.25
40 0.18 54.75 34.50 21,902.50 521.00 31.25 25.00 76.50 17.17 8.13
41 0.13 59.85 36.11 24,853.54 599.24 30.81 16.92 93.94 15.57 8.18
42 0.17 61.88 61.63 32,846.54 661.88 32.43 14.60 93.56 25.91 8.19
43 0.12 67.57 27.97 26,782.18 445.30 28.47 18.32 100.74 5.17 8.25
44 0.22 65.93 45.34 24,102.94 379.17 25.98 34.56 80.64 9.44 8.13
45 0.12 70.39 48.30 29,223.30 706.55 32.28 16.02 71.60 10.60 8.51
46 0.15 66.50 49.25 24,990.00 711.75 34.50 2.25 74.75 11.38 8.40
47 0.18 58.75 49.75 27,675.00 779.25 33.75 7.50 74.50 9.60 8.37
48 0.15 53.75 34.50 25,950.00 635.75 26.50 16.75 87.75 6.25 7.83
49 0.12 59.90 43.81 28,267.33 699.51 30.45 14.60 91.34 10.35 7.74
50 0.27 52.21 32.35 24,470.59 540.44 25.49 13.24 108.09 10.04 8.41
51 0.12 46.12 32.77 24,514.56 478.40 23.30 18.69 72.57 8.44 7.62
52 0.19 49.52 24.29 24,261.91 305.71 24.29 25.48 66.67 4.50 8.48
53 0.12 39.11 18.56 19,608.91 307.92 19.06 18.07 54.70 2.27 8.34
54 0.20 49.25 27.50 23,455.00 309.50 22.75 16.25 77.75 3.99 8.09
55 0.12 55.69 36.63 24,950.50 324.75 28.47 28.71 74.51 6.86 7.92
56 0.13 50.50 29.00 23,627.50 452.75 24.25 28.25 81.25 6.34 8.33
57 0.19 44.18 48.06 20,179.61 231.80 21.60 25.00 74.03 10.88 8.22
58 0.10 33.65 18.27 14,887.02 260.34 15.87 22.12 56.49 4.94 7.94
59 0.10 26.21 21.36 16,844.66 513.84 13.35 16.02 77.67 7.90 7.91
60 0.17 61.63 38.37 26,287.13 163.61 16.58 40.84 44.06 0.90 9.15
61 0.05 52.21 67.89 28,750.00 1061.77 28.68 14.22 85.05 10.59 8.35
Table S1 Heavy metal (HM) concentration and pH value in soil samples
Strength of correlation Range Type of exploratory factor analysis indicator Range Result of exploratory factor analysis
No or very weak r<0.2 KMO value KMO<0.6 Unsuitable
Weak 0.2≤r<0.4 0.6≤KMO<0.7 Feasible
Moderate 0.4≤r<0.6 0.7≤KMO<0.8 Moderately suitable
Strong 0.6≤r<0.8 KMO≥0.8 Highly suitable
Very strong r≥0.8 Bartlett test P≥0.050 No
P<0.050 Yes
Table 1 Classification of correlation coefficient and exploratory factor analysis
Type Cd Cr Cu Fe Mn Ni Pb Zn As
(mg/kg)
MDL 0.01 0.05 0.20 1.50 0.05 0.15 0.10 0.10 0.50
Table 2 Method detection limit (MDL) for the nine heavy metals (HMs)
NIPI criteria Range Igeo criteria Range EF criteria Range
Clean (safe) NIPI<0.7 No pollution Igeo<0.0 No enrichment EF≤1
Still clean (cautionary) 0.7≤NIPI<1.0 No pollution-medium pollution 0.0≤Igeo<1.0 Slight enrichment 1<EF≤2
Mildly contaminated 1.0≤NIPI<2.0 Medium pollution 1.0≤Igeo<2.0 Moderate enrichment 2<EF≤5
Moderately contaminated 2.0≤NIPI<3.0 Medium pollution-strong pollution 2.0≤Igeo<3.0 Significant enrichment 5<EF≤20
Heavily contaminated NIPI≥3.0 Strong pollution 3.0≤Igeo<4.0 Strong enrichment 20<EF≤40
Strong pollution-very strong pollution 4.0≤Igeo<5.0 Very strong enrichment EF40
Very strong pollution Igeo≥5.0
Table 3 Nemerow integrated pollution index (NIPI), geoaccumulation index (Igeo), and enrichment factor (EF) classification criteria
Criteria RI range Ei r range
Low risk RI<150 Ei r<40
Moderate risk 150≤RI<300 40≤Ei r<80
Elevated risk 300≤RI<600 80≤Ei r<160
High risk RI≥600 160≤Ei r<320
Very high risk - Ei r320
Table 4 Integrated potential ecological hazard index (RI) and potential ecological risk index of the ith HM (Ei r) classification criteria
Parameter Unit Adults Children Reference
Ring (ingestion) mg/d 100 200 Liu et al. (2023)
Rinh (inhalation rate) m3/d 14.5 7.5
EF' (exposure frequency) d/a 350
BW (body weight) kg 56.8 15.9
ED (exposure duration) a 24 6
AT (averaging time) (non-carcinogenic) d 8760 2190 Liu et al. (2023)
AT (averaging time) (carcinogenic) 25,550
PEF (particulate emission factor) m3/kg 1.36×109 Liu et al. (2023)
Zhou et al. (2024)
AF (adherence factor) mg/cm2 0.07 0.2
SA (skin surface area) cm2 5075 2448
ABS (absorption factor) 0.001 Yang et al. (2019);
Wu et al. (2023)
Zhou et al. (2024)
ABS (absorption factor) (As) 0.030
Table S2 Health risk assessment model parameters
Element RfD SF Reference
Ring
(mg/d)
Rinh
(m3/d)
Dermal
(mg/cm2)
Ring
Rinh Dermal
Cd 1.00×10‒3 1.00×10‒5 1.00×10‒5 6.10×100 6.30×100 2.00×101 Yang et al. (2019)
Cr 3.00×10‒3 2.86×10‒5 6.00×10‒5 5.00×10‒1 4.20×101 2.00×101 Liu et al. (2023)
Cu 4.00×10‒2 4.02×10‒2 1.20×10‒2 - - - Liu et al. (2023)
Mn 4.60×10‒2 - 1.84×10‒3 - - - Liu et al. (2023)
Ni 2.00×10‒2 9.00×10‒5 5.40×10‒3 1.70×100 8.40×10‒1 4.25×101 Liu et al. (2023)
Pb 3.50×10‒3 3.52×10‒3 5.25×10‒4 8.50×10‒3 4.20×10‒2 - Zhou et al. (2024)
Zn 3.00×10‒1 3.00×10‒1 6.00×10‒2 - - - Zhou et al. (2024)
As 3.00×10‒4 1.23×10‒4 1.23×10‒4 1.50×100 1.51×101 3.66×100 Zhou et al. (2024)
Table S3 Daily reference doses (RfD) and carcinogenicity slope factor (SF) for heavy metals (HMs)
Item Cd Cr Cu Fe Mn Ni Pb Zn As
(mg/kg)
Maximum 1.24 183.89 123.25 46,177.88 2208.25 79.81 40.84 171.81 25.91
Minimum 0.05 26.21 15.31 7882.65 163.61 6.63 0.72 34.18 0.90
Mean 0.18 58.32 45.67 26,876.42 752.60 26.99 13.17 89.02 11.06
Median 0.13 56.86 43.81 27,019.23 749.25 27.18 12.38 89.75 10.61
SD 0.16 19.34 17.89 5746.04 337.03 8.91 8.89 21.83 4.78
SE 0.02 2.48 2.29 735.70 43.15 1.14 1.14 2.79 0.61
CV (%) 90.40 33.17 39.18 21.45 44.78 33.03 67.54 24.52 43.20
Kurtosis 29.70 29.92 4.99 3.24 4.47 20.44 0.56 2.73 0.81
Skewness 4.97 4.52 1.48 -0.32 1.16 3.19 0.84 0.61 0.52
Local background value 0.13 73.65 34.51 30,650.63 654.79 32.12 8.34 88.86 10.58
Xinjiang background valuea 0.12 49.30 26.70 27,800.00 666.00 26.60 19.40 68.80 11.20
Chinese soil criteria (Grade 2)b 65.00 - 18,000.00 - - 900.00 800.00 - 60.00
Industrial areas of Chinac 23.77 100.19 - - - - 707.16 - 155.78
Table 5 Soil HM concentration in the study area
Sample Longitude Latitude Cd Cr Cu Fe Mn Ni Pb Zn As
(mg/kg)
A 87°50′35″E 42°49′27″N 0.12 78.43 32.11 31,838.24 679.90 32.84 12.99 88.24 8.92
B 87°32′15″E 42°51′39″N 0.12 77.48 28.71 34,603.96 574.75 32.92 6.68 85.40 8.02
C 87°38′28″E 42°50′28″N 0.14 65.05 42.72 25,509.71 709.71 30.58 5.34 92.96 14.81
Mean 0.13 73.65 34.51 30,650.63 654.79 32.12 8.34 88.86 10.58
Table S4 Three HM concentrations in soil samples from the vicinity of the Alagou reservoir
Fig. 2 Spatial distribution of concentrations of nine HMs. (a), Cd (cadmium); (b), Cr (chromium); (c), Cu (copper); (d), Fe (ferrum); (e), Mn (manganese); (f), Ni (nickel); (g), Pb (plumbum); (h), Zn (zinc); (i), As (arsenic).
Fig. 3 Multivariate statistical analysis and PMF (positive matrix factorization) model analysis results of nine HMs (heavy metals.) (a), EFA (exploratory factor analysis); (b), correlation analysis between HMs; (c), contributions of nine HMs to Factor 1; (d), spatial contribution distribution of Factor 1; (e), contributions of nine HMs to Factor 2; (f), spatial contribution distribution of Factor 2; (g), contributions of nine HMs to Factor 3; (h), spatial contribution distribution of Factor 3; (i), contributions of nine HMs to Factor 4; (j), spatial contribution distribution of Factor 4. *, P<0.050 level; **, P<0.010 level.
Fig. 4 Pollution index assessment results. (a), NIPI (Nemerow integrated pollution index); (b), Igeo (geoaccumulation index); (c1-c9), EF (enrichment factor); (d), Er (potential ecological risk index); (e), RI (integrated potential ecological risk index). In Figure 4b and d, boxes indicate the IQR (interquartile range, 75th to 25th of the data). The median value is shown as a line within the box. Black triangle is shown as mean. Whiskers extend to the most extreme value within 1.5×IQR.
Group HMs NCR CR
NCRing NCRinh NCRder TNCR CRing CRinh CRder TCR
Adults Cd 4.35×100 4.63×10‒2 3.04×10‒4 4.39×100 9.09×10‒3 1.00×10‒6 2.09×10‒8 9.09×10‒3
Cr 5.44×10‒2 6.08×10‒4 1.90×10‒6 5.50×10‒2 2.80×10‒5 2.50×10‒7 7.83×10‒10 2.82×10‒5
Cu 1.70×10‒2 1.81×10‒6 3.97×10‒8 1.70×10‒2 - - - -
Mn 2.57×10‒3 - 4.50×10‒8 2.57×10‒3 - - - -
Ni 2.16×10‒2 5.12×10‒4 5.60×10‒8 2.21×10‒2 2.52×10‒4 1.33×10‒8 4.41×10‒9 2.52×10‒4
Pb 2.32×10‒1 2.46×10‒5 1.08×10‒6 2.32×10‒1 2.37×10‒6 1.25×10‒9 - 2.37×10‒6
Zn 3.44×10‒4 3.67×10‒8 1.20×10‒9 3.44×10‒4 - - - -
As 4.44×10‒1 1.16×10‒4 2.28×10‒5 4.44×10‒1 6.85×10‒5 7.36×10‒8 3.51×10‒9 6.86×10‒5
Children Cd 3.10×101 8.56×10‒2 3.10×10‒3 3.11×101 1.62×10‒2 4.62×10‒7 5.32×10‒8 1.62×10‒2
Cr 3.88×10‒1 1.12×10‒3 1.94×10‒5 3.90×10‒1 4.99×10‒5 1.16×10‒7 2.00×10‒9 5.01×10‒5
Cu 1.22×10‒1 3.34×10‒6 4.06×10‒7 1.22×10‒1 - - - -
Mn 1.84×10‒2 - 4.60×10‒7 1.84×10‒2 - - - -
Ni 1.54×10‒1 9.46×10‒4 5.72×10‒7 1.55×10‒1 4.50×10‒4 6.13×10‒9 1.13×10‒8 4.50×10‒4
Pb 1.66×100 4.55×10‒5 1.11×10‒5 1.66×100 4.23×10‒6 5.77×10‒10 - 4.23×10‒6
Zn 2.46×10‒3 6.77×10‒8 1.23×10‒8 2.46×10‒3 - - - -
As 3.17×100 2.13×10‒4 2.32×10‒4 3.17×100 1.22×10‒4 3.40×10‒8 8.96×10‒9 1.22×10‒4
Table 6 Conventional health risk assessment result
Element Unit Distribution Reference
Adults Children
Cd mg/kg Triangular (0.05, 0.12, 1.24) This study
Cr mg/kg Triangular (26.21, 55.8, 183.89)
Cu mg/kg Normal (45.67±17.89)
Mn mg/kg Normal (752.60±337.03)
Ni mg/kg Triangular (6.63, 28.47, 79.81)
Pb mg/kg Normal (13.17±8.90)
Zn mg/kg Normal (89.02±21.83)
As mg/kg Normal (11.06±4.78)
Ring mg/d Triangular (4, 30, 52) Triangular (66, 103, 161) Wu et al. (2023)
Rinh m3/d Point (14.5) Point (7.5) Liu et al. (2023)
EF d/a Triangular (180, 345, 365) Triangular (180, 345, 365) Zhou et al. (2024)
ED years Point (24) Point (6) Wu et al. (2023)
BW kg Point (56.8) Point (15.9) Liu et al. (2023)
AT (Non-carcinogenic) d Point (8760) Point (2190) Liu et al. (2023)
Zhou et al. (2024)
AT (Carcinogenic) Point (25,550)
PEF m3/kg Point (1.36×109) Zhou et al. (2024)
AF mg/cm2 Point (0.07) Point (0.20) Wu et al. (2023)
SA cm2 Point (5075) Point (2448) Zhou et al. (2024)
ABS Point (0.001) Wu et al. (2023)
ABS (As) Point (0.030)
Table S5 Distribution pattern of each parameter in Monte Carlo simulation
Fig. 5 Results of health risk assessment based on Monte Carlo simulation and PMF model. (a), total NCR (non-carcinogenic risk) result based on Monte Carlo simulation; (b), total CR (carcinogenic risk) result based on Monte Carlo simulation; (c), total NCR result based on PMF model; (d), total CR result based on PMF model. Dashed line in Figure 5a and b indicates the mean value.
Fig. S1 NCR (non-carcinogenic risk) of eight HMs (heavy metals) based on Monte Carlo simulation. (a), Cd; (b), Cr; (c), Cu; (d), Mn; (e), Ni; (f), Pb; (g), Zn; (h), As. Dashed line indicates the mean value.
Fig. S2 CR (carcinogenic risk) of five HMs based on Monte Carlo simulation. (a), Cd; (b), Cr; (c), Ni; (d), Pb; (e), As. Dashed line indicates the mean value.
[1]   Anaman R, Peng C, Jiang Z C, et al. 2022. Identifying sources and transport routes of heavy metals in soil with different land uses around a smelting site by GIS based PCA and PMF. Science of the Total Environment, 823: 153759, doi: 10.1016/j.scitotenv.2022.153759.
[2]   Bourliva A, Kantiranis N, Papadopoulou L, et al. 2018. Seasonal and spatial variations of magnetic susceptibility and potentially toxic elements (PTEs) in road dusts of Thessaloniki city, Greece: A one-year monitoring period. Science of the Total Environment, 639: 417-427.
[3]   Bradl H B. 2004. Adsorption of heavy metal ions on soils and soils constituents. Journal of Colloid and Interface Science, 277(1): 1-18.
doi: 10.1016/j.jcis.2004.04.005 pmid: 15276031
[4]   Cao C C, Wang L, Li H R, et al. 2018. Temporal variation and ecological risk assessment of metals in soil nearby a Pb-Zn mine in southern China. International Journal of Environmental Research and Public Health, 15(5): 940, doi: 10.3390/ijerph15050940.
[5]   CEMS (China National Environmental Monitoring Centre). 1990. Natural Background Values of Soil Elements in China. Beijing: China Environmental Science Press. (in Chinese)
[6]   Chen H Y, Teng Y G, Lu S J, et al. 2016. Source apportionment and health risk assessment of trace metals in surface soils of Beijing metropolitan, China. Chemosphere, 144: 1002-1011.
doi: 10.1016/j.chemosphere.2015.09.081 pmid: 26439517
[7]   Dai Y C, Nasir M, Zhang Y L, et al. 2017. Comparison of DGT with traditional methods for assessing cadmium bioavailability to Brassica chinensis in different soils. Scientific Reports, 7(1): 14206, doi: 10.1038/s41598-017-13820-3.
[8]   Department of Ecology and Environment of Xinjiang Uygur Autonomous Region. 2022. Shenhua Xinjiang Energy limited liability company Toxon Black Mountain opencast mine Environmental impact statement. [2024-06-30].https://max.book118.com/html/2022/0629/7152025010004136.shtm.
[9]   Fei X F, Xiao R, Christakos G, et al. 2019. Comprehensive assessment and source apportionment of heavy metals in Shanghai agricultural soils with different fertility levels. Ecological Indicators, 106: 105508, doi: 10.1016/j.ecolind.2019.105508.
[10]   Guan Q Y, Wang F F, Xu C Q, et al. 2018. Source apportionment of heavy metals in agricultural soil based on PMF: A case study in Hexi Corridor, Northwest China. Chemosphere, 193: 189-197.
doi: S0045-6535(17)31736-8 pmid: 29131977
[11]   Hakanson L. 1980. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Research, 14(8): 975-1001.
[12]   Hossain Bhuiyan M A, Chandra Karmaker S, Bodrud-Doza M, et al. 2021. Enrichment, sources and ecological risk mapping of heavy metals in agricultural soils of Dhaka district employing SOM, PMF and GIS methods. Chemosphere, 263: 128339, doi: 10.1016/j.chemosphere.2020.128339.
[13]   Hu B F, Zhao R Y, Chen S C, et al. 2018a. Heavy metal pollution delineation based on uncertainty in a coastal industrial city in the Yangtze River Delta, China. International Journal of Environmental Research and Public Health, 15(4): 710, doi: 10.3390/ijerph15040710.
[14]   Hu W Y, Wang H F, Dong L R, et al. 2018b. Source identification of heavy metals in peri-urban agricultural soils of southeast China: An integrated approach. Environmental Pollution, 237: 650-661.
[15]   Jiao Y W, Liu Y T, Wang W, et al. 2023. Heavy metal distribution characteristics, water quality evaluation, and health risk evaluation of surface water in abandoned multi-year Pyrite mine area. Water, 15(17): 3138, doi: 10.3390/w15173138.
[16]   Karakas F, Imamoglu I, Gedik K. 2017. Positive matrix factorization dynamics in fingerprinting: A comparative study of PMF2 and EPA-PMF3 for source apportionment of sediment polychlorinated biphenyls. Environmental Pollution, 220: 20-28.
doi: S0269-7491(16)30641-8 pmid: 27743794
[17]   Kong F J, Chen Y C, Huang L, et al. 2021. Human health risk visualization of potentially toxic elements in farmland soil: A combined method of source and probability. Ecotoxicology and Environmental Safety, 211: 111922, doi: 10.1016/j.ecoenv.2021.111922.
[18]   Kubier A, Wilkin R T, Pichler T. 2019. Cadmium in soils and groundwater: A review. Applied Geochemistry, 108: 104388, doi: 10.1016/j.apgeochem.2019.104388.
[19]   Li F, Zhang J D, Huang J H, et al. 2016. Heavy metals in road dust from Xiandao District, Changsha City, China: Characteristics, health risk assessment, and integrated source identification. Environmental Science and Pollution Research, 23: 13100-13113.
[20]   Li H H, Chen L J, Yu L, et al. 2017. Pollution characteristics and risk assessment of human exposure to oral bioaccessibility of heavy metals via urban street dusts from different functional areas in Chengdu, China. Science of the Total Environment, 586: 1076-1084.
[21]   Li Y, Ye Z, Yu Y, et al. 2023. A combined method for human health risk area identification of heavy metals in urban environments. Journal of Hazardous Materials, 449: 131067, doi: 10.1016/j.jhazmat.2023.131067.
[22]   Li Z R, Deblon J, Zu Y Q, et al. 2019. Geochemical baseline values determination and evaluation of heavy metal contamination in soils of Lanping Mining Valley (Yunnan Province, China). International Journal of Environmental Research and Public Health, 16(23): 4686, doi: 10.3390/ijerph16234686.
[23]   Liang J, Feng C T, Zeng G M, et al. 2017. Spatial distribution and source identification of heavy metals in surface soils in a typical coal mine city, Lianyuan, China. Environmental Pollution, 225: 681-690.
doi: S0269-7491(17)30078-7 pmid: 28363446
[24]   Liao S Y, Jin G Q, Khan M A, et al. 2021. The quantitative source apportionment of heavy metals in peri-urban agricultural soils with UNMIX and input fluxes analysis. Environmental Technology & Innovation, 21: 101232, doi: 10.1016/j.eti.2020.101232.
[25]   Liu H W, Zhang Y, Yang J S, et al. 2021. Quantitative source apportionment, risk assessment and distribution of heavy metals in agricultural soils from southern Shandong Peninsula of China. Science of the Total Environment, 767: 144879, doi: 10.1016/j.scitotenv.2020.144879.
[26]   Liu Y, Guo H C, Yang P J. 2010. Exploring the influence of lake water chemistry on chlorophyll a: A multivariate statistical model analysis. Ecological Modelling, 221(5): 681-688.
[27]   Liu Z, Du Q Q, Guan Q Y, et al. 2023. A Monte Carlo simulation-based health risk assessment of heavy metals in soils of an oasis agricultural region in northwest China. Science of the Total Environment, 857: 159543, doi: 10.1016/j.scitotenv.2022.159543.
[28]   Luo H P, Guan Q Y, Pan N H, et al. 2020. Using composite fingerprints to quantify the potential dust source contributions in northwest China. Science of the Total Environment, 742: 140560, doi: 10.1016/j.scitotenv.2020.140560.
[29]   MEE(Ministry of Ecology and Environment of the People's Republic of China). 2018a. Soil-Determination of pH-Potentiometry. Beijing: MEE. (in Chinese)
[30]   MEE(Ministry of Ecology and Environment of the People's Republic of China). 2018b. Soil Environmental Quality Risk Control Standard for Soil Contamination of Development Land. Beijing: MEE. (in Chinese)
[31]   MEE(Ministry of Ecology and Environment of the People's Republic of China). 2023. Soil and Sediment-Determination of 19 Total Metal Elements-Inductively Coupled Plasma Mass Spectrometry. Beijing: MEE. (in Chinese)
[32]   Mei W, Liu S L, Yuan Y Y, et al. 2023. Optimization of potential ecological risk index method for soil heavy metals-A case study of Chengkou County, Chongqing City. Chinese Journal of Soil Science, 54(2): 473-480. (in Chinese)
[33]   Mi Y Z, Zhou J, Liu M L, et al. 2023. Machine learning method for predicting cadmium concentrations in rice near an active copper smelter based on chemical mass balance. Chemosphere, 319: 138028, doi: 10.1016/j.chemosphere.2023.138028.
[34]   Mokhtari A R, Feiznia S, Jafari M, et al. 2018. Investigating the role of wind in the dispersion of heavy metals around mines in arid regions (a case study from Kushk Pb-Zn Mine, Bafgh, Iran). Bulletin of Environmental Contamination and Toxicology, 101: 124-130.
doi: 10.1007/s00128-018-2319-3 pmid: 29549457
[35]   Mukherjee I, Singh U K, Singh R P, et al. 2020. Characterization of heavy metal pollution in an anthropogenically and geologically influenced semi-arid region of east India and assessment of ecological and human health risks. Science of the Total Environment, 705: 135801, doi: 10.1016/j.scitotenv.2019.135801.
[36]   Müller G, Förstner U. 1976. Heavy Metals in Sediments of Elbe near Stade: Changes Since 1973. Naturwissenschaften, 63(5): 242-243. (in German)
[37]   Napoletano P, Guezgouz N, Di Iorio E, et al. 2023. Anthropic impact on soil heavy metal contamination in riparian ecosystems of northern Algeria. Chemosphere, 313: 137522, doi: 10.1016/j.chemosphere.2022.137522.
[38]   National Energy Xinjiang Toksun Energy Co.,Ltd. 2022. Environmental impact assessment of the 13 million tons per year production capacity verification project of Heishan Open-pit Coal Mine in Toksun County, Xinjiang Energy Co., Ltd. of National Energy Group. [2024-03-28].https://sthjt.xinjiang.gov.cn/xjepd/gwwjhpyb/202309/b703ad647d64471193702040df62d90a.shtml
[39]   Navarro M C, Pérez-Sirvent C, Martínez-Sánchez M J, et al. 2008. Abandoned mine sites as a source of contamination by heavy metals: A case study in a semi-arid zone. Journal of Geochemical Exploration, 96(2-3): 183-193.
[40]   Nemerow N L. 1974. Scientific Stream Pollution Analysis. Washington DC: Scripta Book Company.
[41]   Norris G, Duvall R, Brown S, et al. 2014. EPA Positive Matrix Factorization (PMF) 5.0 Fundamentals and User Guide. Washington DC: United States Environmental Protection Agency (US EPA).
[42]   Qi R, Xue N N, Wang S Z, et al. 2022. Heavy metal(loid)s shape the soil bacterial community and functional genes of desert grassland in a gold mining area in the semi-arid region. Environmental Research, 214: 113749, doi: 10.1016/j.envres.2022.113749.
[43]   Qing X, Zong Y T, Lu S G. 2015. Assessment of heavy metal pollution and human health risk in urban soils of steel industrial city (Anshan), Liaoning, Northeast China. Ecotoxicology and Environmental Safety, 120: 377-385.
doi: 10.1016/j.ecoenv.2015.06.019 pmid: 26114257
[44]   Shen C, Huang S F, Wang M, et al. 2024. Source-oriented health risk assessment and priority control factor analysis of heavy metals in urban soil of Shanghai. Journal of Hazardous Materials, 480: 135859, doi: 10.1016/j.jhazmat.2024.135859.
[45]   Song H, Liu J C, Cao Z P, et al. 2019. Analysis of disease profile, and medical burden by lead exposure from hospital information systems in China. BMC Public Health, 19(1): 1170, doi: 10.1186/s12889-019-7515-5.
[46]   Song S, Li Y J, Li L, et al. 2018. Arsenic and heavy metal accumulation and risk assessment in soils around mining areas: The Urad Houqi Area in arid northwest china as an example. International Journal of Environmental Research and Public Health, 15(11): 2410, doi: 10.3390/ijerph15112410.
[47]   Specht A J, Lindsay I C, Wells E M, et al. 2025. Spatial distribution of heavy metal contamination in soils of Fallujah, Iraq. Exposure and Health, 17: 31-39.
[48]   Tawinteung N, Parkpian P, DeLaune R D, et al. 2005. Evaluation of extraction procedures for removing lead from contaminated soil. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 40: 385-407.
[49]   Tian S H, Liang T, Li K X, et al. 2018. Source and path identification of metals pollution in a mining area by PMF and rare earth element patterns in road dust. Science of the Total Environment, 633: 958-966.
[50]   US EPA (United States Environmental Protection Agency). 2013. Framework for Human Health Risk Assessment to Inform Decision Making. Washington DC: US EPA.
[51]   US EPA (United States Environmental Protection Agency). 2015. Positive Matrix Factorization Model for Environmental Data Analyses. Washington DC: US EPA.
[52]   Vidu R, Matei E, Predescu A M, et al. 2020. Removal of heavy metals from wastewaters: A Challenge from current treatment methods to nanotechnology applications. Toxics, 8(4): 101, doi: 10.3390/toxics8040101.
[53]   Wang X Y, Liu E F, Yan M X, et al. 2023. Contamination and source apportionment of metals in urban road dust (Jinan, China) integrating the enrichment factor, receptor models (FA-NNC and PMF), local Moran's index, Pb isotopes and source-oriented health risk. Science of the Total Environment, 878: 163211, doi: 10.1016/j.scitotenv.2023.163211.
[54]   Wu L J, Yue W F, Wu J, et al. 2023. Metal-mining-induced sediment pollution presents a potential ecological risk and threat to human health across China: A meta-analysis. Journal of Environmental Management 329: 117058, doi: 10.1016/j.jenvman.2022.117058.
[55]   Wu S, Xia X H, Lin C Y, et al. 2010. Levels of arsenic and heavy metals in the rural soils of Beijing and their changes over the last two decades (1985-2008). Journal of Hazardous Materials, 179(1-3): 860-868.
doi: 10.1016/j.jhazmat.2010.03.084 pmid: 20388584
[56]   Xu Y, Shi H D, Fei Y, et al. 2021. Identification of soil heavy metal sources in a large-scale area affected by industry. Sustainability, 13(2): 511, doi: 10.3390/su13020511.
[57]   Xu Z Q, Ni S J, Tuo X G, et al. 2008. Calculation of heavy metal's toxicity coefficient in the evaluation of potential ecological risk index. Environmental Science & Technology, 31(2): 112-115.
[58]   Yang Q Q, Li Z Y, Lu X N, et al. 2018. A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment. Science of the Total Environment, 642: 690-700.
[59]   Yang S Y, Zhao J, Chang S X, et al. 2019. Status assessment and probabilistic health risk modeling of metals accumulation in agriculture soils across China: A synthesis. Environment International, 128: 165-174.
doi: S0160-4120(19)30177-1 pmid: 31055203
[60]   Yang S Y, Sun L J, Sun Y F, et al. 2023. Towards an integrated health risk assessment framework of soil heavy metals pollution: Theoretical basis, conceptual model, and perspectives. Environmental Pollution, 316: 120596, doi: 10.1016/j.envpol.2022.120596.
[61]   Yang Y, Yang X, He M J, et al. 2020. Beyond mere pollution source identification: Determination of land covers emitting soil heavy metals by combining PCA/APCS, GeoDetector and GIS analysis. CATENA, 185: 104297, doi: 10.1016/j.catena.2019.104297.
[62]   Yuanan H, He K L, Sun Z H, et al. 2020. Quantitative source apportionment of heavy metal(loid)s in the agricultural soils of an industrializing region and associated model uncertainty. Journal of Hazardous Materials, 391: 122244, doi: 10.1016/j.jhazmat.2020.122244.
[63]   Zeng S Y, Ma Y, Yang Y J, et al. 2019. Spatial assessment of farmland soil pollution and its potential human health risks in China. Science of the Total Environment, 687: 642-653.
[64]   Zhang H W, Zhang F, Song J, et al. 2021a. Pollutant source, ecological and human health risks assessment of heavy metals in soils from coal mining areas in Xinjiang, China. Environmental Research, 202: 111702, doi: 10.1016/j.envres.2021.111702.
[65]   Zhang W H, Yan Y, Yu R L, et al. 2021b. The sources-specific health risk assessment combined with APCS/MLR model for heavy metals in tea garden soils from south Fujian Province, China. CATENA, 203: 105306, doi: 10.1016/j.catena.2021.105306.
[66]   Zhang X, Song X Y, Zhang H Y, et al. 2024a. Source apportionment and risk assessment of heavy metals in typical greenhouse vegetable soils in Shenyang, China. Environmental Monitoring and Assessment, 196: 72, doi: 10.1007/s10661-023-12250-1.
[67]   Zhang X J, Zhang S W, Wei X Y, et al. 2024b. Identification of sources and analysis of spatial distribution of soil heavy metals in northern China coal mining areas. Environmental Geochemistry and Health, 46(3): 94, doi: 10.1007/s10653-024-01877-9.
[68]   Zhao J Y, Cao C Y, Chen X, et al. 2024. Source-specific ecological risk analysis and critical source identification of heavy metal(loid)s in the soil of typical abandoned coal mining area. Science of the Total Environment, 947: 174506, doi: 10.1016/j.scitotenv.2024.174506.
[69]   Zhao R, Guan Q Y, Luo H P, et al. 2019. Fuzzy synthetic evaluation and health risk assessment quantification of heavy metals in Zhangye agricultural soil from the perspective of sources. Science of the Total Environment, 697: 134126, doi: 10.1016/j.scitotenv.2019.134126.
[70]   Zheng F, Guo X, Tang M Y, et al. 2023. Variation in pollution status, sources, and risks of soil heavy metals in regions with different levels of urbanization. Science of the Total Environment, 866: 161355, doi: 10.1016/j.scitotenv.2022.161355.
[71]   Zhong X, Chen Z W, Li Y Y, et al. 2020. Factors influencing heavy metal availability and risk assessment of soils at typical metal mines in Eastern China. Journal of Hazardous Materials, 400: 123289, doi: 10.1016/j.jhazmat.2020.123289.
[72]   Zhou H, Yue X M, Chen Y, et al. 2024. Source-specific probabilistic contamination risk and health risk assessment of soil heavy metals in a typical ancient mining area. Science of the Total Environment, 906: 167772, doi: 10.1016/j.scitotenv.2023.167772.
[73]   Zhuang Q F, Li G, Liu Z Y. 2018. Distribution, source and pollution level of heavy metals in river sediments from South China. CATENA, 170: 386-396.
[74]   Zoller W H, Gladney E S, Duce R A. 1974. Atmospheric concentrations and sources of trace metals at the South Pole. Science, 183(4121): 198-200.
pmid: 17777264
[1] NIU Jiqiang, LIU Zijian, CHEN Feiyan, LIU Gangjun, ZHOU Junli, ZHOU Peng, LI Hongrui, LI Mengyang. Variations of soil moisture and its influencing factors in arid and semi-arid areas, China[J]. Journal of Arid Land, 2025, 17(5): 624-643.
[2] YANG Jianhua, LI Yaqian, ZHOU Lei, ZHANG Zhenqing, ZHOU Hongkui, WU Jianjun. Effects of temperature and precipitation on drought trends in Xinjiang, China[J]. Journal of Arid Land, 2024, 16(8): 1098-1117.
[3] LU Haitian, ZHAO Ruifeng, ZHAO Liu, LIU Jiaxin, LYU Binyang, YANG Xinyue. Impact of climate change and human activities on the spatiotemporal dynamics of surface water area in Gansu Province, China[J]. Journal of Arid Land, 2024, 16(6): 798-815.
[4] TANG Xiaoyan, FENG Yongjiu, LEI Zhenkun, CHEN Shurui, WANG Jiafeng, WANG Rong, TANG Panli, WANG Mian, JIN Yanmin, TONG Xiaohua. Urban growth scenario projection using heuristic cellular automata in arid areas considering the drought impact[J]. Journal of Arid Land, 2024, 16(4): 580-601.
[5] LI Wenye, ZHANG Jianfeng, SONG Shuangshuang, LIANG Yao, SUN Baoping, WU Yi, MAO Xiao, LIN Yachao. Combination of artificial zeolite and microbial fertilizer to improve mining soils in an arid area of Inner Mongolia, China[J]. Journal of Arid Land, 2023, 15(9): 1067-1083.
[6] WANG Yuxia, ZHANG Jing, YU Xiaojun. Effects of mulch and planting methods on Medicago ruthenica seed yield and soil physical-chemical properties[J]. Journal of Arid Land, 2022, 14(8): 894-909.
[7] YAO Kaixuan, Abudureheman HALIKE, CHEN Limei, WEI Qianqian. Spatiotemporal changes of eco-environmental quality based on remote sensing-based ecological index in the Hotan Oasis, Xinjiang[J]. Journal of Arid Land, 2022, 14(3): 262-283.
[8] LI Feng, LI Yaoming, ZHOU Xuewen, YIN Zun, LIU Tie, XIN Qinchuan. Modeling and analyzing supply-demand relationships of water resources in Xinjiang from a perspective of ecosystem services[J]. Journal of Arid Land, 2022, 14(2): 115-138.
[9] LI Xiu, ZHAI Juntuan, LI Zhijun. Morphological and physiological differences in heteromorphic leaves of male and female Populus euphratica Oliv.[J]. Journal of Arid Land, 2022, 14(12): 1456-1469.
[10] WEI Yajuan, DANG Xiaohong, WANG Ji, GAO Junliang, GAO Yan. Response of C:N:P in the plant-soil system and stoichiometric homeostasis of Nitraria tangutorum leaves in the oasis-desert ecotone, Northwest China[J]. Journal of Arid Land, 2021, 13(9): 934-946.
[11] Benjamin DAVIDSON, Elli GRONER. An arthropod community beyond the dry limit of plant life[J]. Journal of Arid Land, 2021, 13(6): 629-638.
[12] Abdulrahim M AL-ISMAILI, Moustafa A FADEL, Hemantha JAYASURIYA, L H Janitha JEEWANTHA, Adel AL-MAHDOURI, Talal AL-SHUKEILI. Potential reduction in water consumption of greenhouse evaporative coolers in arid areas via earth-tube heat exchangers[J]. Journal of Arid Land, 2021, 13(4): 388-396.
[13] ZHANG Yongkun, HUANG Mingbin. Spatial variability and temporal stability of actual evapotranspiration on a hillslope of the Chinese Loess Plateau[J]. Journal of Arid Land, 2021, 13(2): 189-204.
[14] MU Le, LU Yixiao, LIU Minguo, YANG Huimin, FENG Qisheng. Characterizing the spatiotemporal variations of evapotranspiration and aridity index in mid-western China from 2001 to 2016[J]. Journal of Arid Land, 2021, 13(12): 1230-1243.
[15] LIU Zhaogang, CHEN Zhi, YU Guirui, ZHANG Tianyou, YANG Meng. A bibliometric analysis of carbon exchange in global drylands[J]. Journal of Arid Land, 2021, 13(11): 1089-1102.