Please wait a minute...
Journal of Arid Land  2021, Vol. 13 Issue (12): 1230-1243    DOI: 10.1007/s40333-021-0087-0
Original article     
Characterizing the spatiotemporal variations of evapotranspiration and aridity index in mid-western China from 2001 to 2016
MU Le, LU Yixiao, LIU Minguo, YANG Huimin(), FENG Qisheng()
State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
Download: HTML     PDF(1622KB)
Export: BibTeX | EndNote (RIS)      


Mid-western China is one of the most sensitive and fragile areas on the Earth. Evapotranspiration (ET) is a key part of hydrological cycle in these areas and is affected by both global climate change and human activities. The dynamic changes in ET and potential evapotranspiration (PET), which can reflect water consumption and demand, are still unclear, and there is a lack of predictive capacity on drought severity. In this study, we used global MODIS (moderate-resolution imaging spectroradiometer) terrestrial ET (MOD16) products, Morlet wavelet analysis, and simple linear regression to investigate the spatiotemporal variations of ET, PET, reference ET (ET0), and aridity index (AI) in mid-western pastoral regions of China (including Gansu Province, Qinghai Province, Ningxia Hui Autonomous Region, and part of Inner Mongolia Autonomous Region) from 2001 to 2016. The results showed that the overall ET gradually increased from east to southwest in the study area. Actual ET showed an increasing trend, whereas PET tended to decrease from 2001 to 2016. The change in ET was affected by vegetation types. During the study period, the average annual ET0 and AI tended to decrease. At the monthly scale within a year, AI value decreased from January to July and then increased. The interannual variations of ET0 and AI showed periodicity with a main period of 14 a, and two other periodicities of 11 and 5 a. This study showed that in recent years, drought in these pastoral regions of mid-western China has been alleviated. Therefore, it is foreseeable that the demand for irrigation water for agricultural production in these regions will decrease.

Key wordsevapotranspiration      aridity index      climate change      human activities      vegetation cover      arid areas     
Received: 23 January 2021      Published: 10 December 2021
Corresponding Authors: YANG Huimin, FENG Qisheng     E-mail:;
Cite this article:

MU Le, LU Yixiao, LIU Minguo, YANG Huimin, FENG Qisheng. Characterizing the spatiotemporal variations of evapotranspiration and aridity index in mid-western China from 2001 to 2016. Journal of Arid Land, 2021, 13(12): 1230-1243.

URL:     OR

Fig. 1 Distribution of vegetation types and location of meteorological stations in the study area
Fig. 2 Relationships between potential evapotranspiration (PET) calculated from the MOD16 products and evapotranspiration (ET) observed from meteorological stations along a chronosequence (a) and among sites (b) in mid-western China. The data from 192 time points and 94 meteorological stations were used to analyze the relationship between PET calculated from the MOD16 products and ET observed from meteorological stations from 2001 to 2016.
Fig. 3 Spatial variations of ET (a) and PET (b) as well as spatial variations of slopes of ET (c) and PET (d) in mid-western China. Note that due to the restriction of the MOD16 products, ET in areas without vegetation such as deserts was not calculated and these areas appeared to be blank (white).
Fig. 4 Average annual variations of ET and PET in mid-western China (a) as well as in the pastoral regions of Gansu (b), midwestern Inner Mongolia (c), Ningxia (d), and Qinghai (e) during 2001-2016
Fig. 5 Average monthly ET and PET changes in mid-western China (a) as well as in the pastoral regions of Gansu (b), midwestern Inner Mongolia (c), Ningxia (d), and Qinghai (e) during 2001-2016
Fig. 6 Interannual variations (a) and monthly changes (b) of ET in different vegetation types in mid-western China
Fig. 7 Interannual variations (a) and monthly changes (b) of average reference evapotranspiration (ET0), precipitation, and arid index (AI) in mid-western China
Fig. 8 Morlet wavelet analysis of periodic features of average ET0 (a, b) and AI (c, d) in mid-western China
[1]   Allen R G, Tasumi M, Morse A, et al. 2007. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)-Applications. Journal of Irrigation and Drainage Engineering, 133(4): 380-394.
doi: 10.1061/(ASCE)0733-9437(2007)133:4(380)
[2]   Baguis P, Roulin E, Willems P, et al. 2010. Climate change scenarios for precipitation and potential evapotranspiration over central Belgium. Theoretical and Applied Climatology, 99(3-4): 273-286.
doi: 10.1007/s00704-009-0146-5
[3]   Bazrafshan J. 2017. Effect of air temperature on historical trend of long-term droughts in different climates of Iran. Water Resources Management, 31: 4683-4698.
doi: 10.1007/s11269-017-1773-8
[4]   Burrus C S. 2005. Introduction to Wavelets and Wavelet Transforms:A Primer. Beijing: China Machine Press.
[5]   Chahine M T. 1992. The hydrological cycle and its influence on climate. Nature, 359: 373-380.
doi: 10.1038/359373a0
[6]   Chang Y P, Qin D H, Ding Y J, et al. 2018. A modified MOD16 algorithm to estimate evapotranspiration over alpine meadow on the Tibetan Plateau, China. Journal of Hydrology, 561: 16-30.
doi: 10.1016/j.jhydrol.2018.03.054
[7]   Chattopadhyay N, Hulme M. 1997. Evaporation and potential evapotranspiration in India under conditions of recent and future climate change. Agricultural and Forest Meteorology, 87(1): 55-73.
doi: 10.1016/S0168-1923(97)00006-3
[8]   Chen L X, Shao Y N, Zhang Q F, et al. 1991. Preliminary analysis of climatic change during the last 39 years in China. Quarterly Journal of Applied Meteorology, 2(2): 164-169. (in Chinese)
[9]   Chen R, Liu J, Kang E, et al. 2015. Precipitation measurement intercomparison in the Qilian Mountains, north-eastern Tibetan Plateau. The Cryosphere Discussions, 9(5): 1995-2008.
[10]   Chen Y N, Li Z, Fan Y T, et al. 2014. Research progress on the impact of climate change on water resources in the arid region of Northwest China. Acta Geographica Sinica, 69(9): 1295-1304. (in Chinese)
[11]   Collins B, Ramezani Etedali H, Tavakol A, et al. 2021. Spatiotemporal variations of evapotranspiration and reference crop water requirement over 1957-2016 in Iran based on CRU TS gridded dataset. Journal of Arid Land, 13(8): 858-878.
doi: 10.1007/s40333-021-0103-4
[12]   Dinpashoh Y, Jhajharia D, Fakheri-Fard A, et al. 2011. Trends in reference crop evapotranspiration over Iran. Journal of Hydrology, 399(3-4): 422-433.
doi: 10.1016/j.jhydrol.2011.01.021
[13]   Eslamian S, Khordadi M J, Abedi-Koupai J. 2011. Effects of variations in climatic parameters on evapotranspiration in the arid and semi-arid regions. Global and Planetary Change, 78(3-4): 188-194.
doi: 10.1016/j.gloplacha.2011.07.001
[14]   Espadafor M, Lorite I J, Gavilán P, et al. 2011. An analysis of the tendency of reference evapotranspiration estimates and other climate variables during the last 45 years in southern Spain. Agricultural Water Management, 98(6): 1045-1061.
doi: 10.1016/j.agwat.2011.01.015
[15]   Fan S P. 2018. Variation tendency of potential evapotranspiration and aridity index in Central Gansu Province in recent 55 years. Journal of Earth Environment, 9(2): 172-181. (in Chinese)
[16]   Feng F, Chen J Q, Li X L, et al. 2015. Validity of five satellite-based latent heat flux algorithms for semi-arid ecosystems. Remote Sensing, 7(12): 16733-16755.
doi: 10.3390/rs71215853
[17]   Feng X, Thompson S E, Woods R, et al. 2019. Quantifying asynchronicity of precipitation and potential evapotranspiration in Mediterranean climates. Geophysical Research Letters, 46(24): 14692-14701.
doi: 10.1029/2019GL085653
[18]   Gan T Y. 2000. Reducing vulnerability of water resources of Canadian Prairies to potential droughts and possible climatic warming. Water Resources Management, 14(2): 111-135.
doi: 10.1023/A:1008195827031
[19]   Glenn E P, Doody T M, Guerschman J P, et al. 2011. Actual evapotranspiration estimation by ground and remote sensing methods: the Australian experience. Hydrological Processes, 25(26): 4103-4116.
doi: 10.1002/hyp.8391
[20]   Goyal R K. 2004. Sensitivity of evapotranspiration to global warming: A case study of arid zone of Rajasthan (India). Agricultural Water Management, 69(1): 1-11.
doi: 10.1016/j.agwat.2004.03.014
[21]   He H J, Zhuo J, Dong J F, et al. 2015. Surveying variations of evapotranspiration in Shaanxi Province using MOD16 products. Arid Land Geography, 38(5): 960-967. (in Chinese)
[22]   Huo Z L, Dai X Q, Feng S Y, et al. 2013. Effect of climate change on reference evapotranspiration and aridity index in arid region of China. Journal of Hydrology, 492(7): 24-34.
doi: 10.1016/j.jhydrol.2013.04.011
[23]   Jerin J N, Islam H M T, Islam A R M T, et al. 2021. Spatiotemporal trends in reference evapotranspiration and its driving factors in Bangladesh. Theoretical and Applied Climatology, 144: 793-808.
doi: 10.1007/s00704-021-03566-4
[24]   Jia Z Z, Liu S M, Xu Z W, et al. 2012. Validation of remotely sensed evapotranspiration over the Hai River Basin, China. Journal of Geophysical Research, 117, doi: 10.1029/2011JD017037.
doi: 10.1029/2011JD017037
[25]   Jovanovic N, Mu Q S, Bugan R D H, et al. 2015. Dynamics of MODIS evapotranspiration in South Africa. Water SA, 41(1): 79-90.
doi: 10.4314/wsa.v41i1.11
[26]   Jung M, Reichstein M, Ciais P, et al. 2010. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature, 467(7318): 951-954.
doi: 10.1038/nature09396
[27]   Kalma J D, McVicar T R, McCabe M F. 2008. Estimating land surface evaporation: a review of methods using remotely sensed surface temperature data. Surveys in Geophysics, 29: 421-469.
doi: 10.1007/s10712-008-9037-z
[28]   Khan M S, Liaqat U W, Baik J, et al. 2018. Stand-alone uncertainty characterization of GLEAM, GLDAS and MOD 16 evapotranspiration products using an extended triple collocation approach. Agricultural and Forest Meteorology, 252(15): 256-268.
doi: 10.1016/j.agrformet.2018.01.022
[29]   Kim H W, Hwang K, Mu Q Z, et al. 2012. Validation of MODIS 16 global terrestrial evapotranspiration products in various climates and land cover types in Asia. KSCE Journal of Civil Engineering, 16(2): 229-238.
doi: 10.1007/s12205-012-0006-1
[30]   Li M, Chu R, Islam A, et al. 2021. Characteristics of surface evapotranspiration and its response to climate and land use and land cover in the Huai River Basin of eastern China. Environmental Science and Pollution Research, 28(1): 683-699.
doi: 10.1007/s11356-020-10432-9
[31]   Li Z L, Li Z J, Xu Z X, et al. 2013. Temporal variations of reference evapotranspiration in Heihe River basin of China. Hydrology Research, 44(5): 904-916.
doi: 10.2166/nh.2012.125
[32]   Liu M G, Wang Z K, Mu L, et al. 2021. Effect of regulated deficit irrigation on alfalfa performance under two irrigation systems in the inland arid area of midwestern China. Agricultural Water Management, 248: 106764, doi: org/10.1016/j.agwat.2021.106764.
doi: org/10.1016/j.agwat.2021.106764
[33]   Liu Q, Yang Z F, Cui B S, et al. 2010. The temporal trends of reference evapotranspiration and its sensitivity to key meteorological variables in the Yellow River Basin, China. Hydrological Processes, 24(15): 2171-2181.
[34]   Liu X M, Zhang D, Luo Y Z, et al. 2013. Spatial and temporal changes in aridity index in northwest China: 1960 to 2010. Theoretical and Applied Climatology, 112: 307-316.
doi: 10.1007/s00704-012-0734-7
[35]   Liu Y, Wang Q Y, Yao X L, et al. 2020. Variation in reference evapotranspiration over the Tibetan Plateau during 1961-2017: Spatiotemporal variations, future trends and links to other climatic factors. Water 12: 3178, doi: 10.3390/w12113178.
doi: 10.3390/w12113178
[36]   Ma J Z, Chen L H, He J H, et al. 2013. Trends and periodicities in observed temperature, precipitation and runoff in a desert catchment: case study for the Shiyang River Basin in Northwestern China. Water and Environment Journal, 27(1): 86-98.
doi: 10.1111/wej.2013.27.issue-1
[37]   Ma Z G, Dan L, Hu Y W. 2004. The extreme dry/wet events in northern China during recent 100 years. Journal of Geographical Sciences, 14(3): 275-281.
doi: 10.1007/BF02837407
[38]   McVicar T R, Niel T G V, Li L T, et al. 2007. Spatially distributing monthly reference evapotranspiration and pan evaporation considering topographic influences. Journal of Hydrology, 338(3-4): 196-220.
doi: 10.1016/j.jhydrol.2007.02.018
[39]   Meng C L. 2021. Water balance scheme development for urban modelling. Urban Climate, 37(9): 100843, doi: 10.1016/j.uclim.2021.100843.
doi: 10.1016/j.uclim.2021.100843
[40]   Meng X J, Zhang S F, Zhang Y Y, et al. 2013. Temporal and spatial changes of temperature and precipitation in Hexi Corridor during 1955-2011. Journal of Geographical Sciences, 23(4): 653-667. (in Chinese)
doi: 10.1007/s11442-013-1035-5
[41]   Mo X, Liu S, Lin Z, et al. 2014. Trends in land surface evapotranspiration across China with remotely sensed NDVI and climatological data for 1981-2010. Hydrological Sciences Journal, 60(12): 2163-2177.
doi: 10.1080/02626667.2014.950579
[42]   Moreira A A, Adamatti D S, Ruhoff A L. 2018. Evaluation of remotely sensed evapotranspiration products MOD16 and GLEAM in eddy covariance flux sites from LBA Project. Micrometeorologia, 40: 112-118.
[43]   Mosaedi A, Sough M G, Sadeghi S H, et al. 2016. Sensitivity analysis of monthly reference crop evapotranspiration trends in Iran: a qualitative approach. Theoretical and Applied Climatology, 128(3-4): 857-873.
doi: 10.1007/s00704-016-1740-y
[44]   Mou L, Lu Y X, Yang H M, et al. 2018. Spatiotemporal variation of vegetation cover in the pastoral area in Northwestern China during the period of 1981-2015. Arid Zone Research, 35(3): 615-623. (in Chinese)
[45]   Mu Q Z, Heinsch F A, Zhao M S, et al. 2007. Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sensing of Environment, 111(4): 519-536.
doi: 10.1016/j.rse.2007.04.015
[46]   Mu Q Z, Zhao M S, Running S W. 2011. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sensing of Environment, 115(8): 1781-1800.
doi: 10.1016/j.rse.2011.02.019
[47]   Nourani V, Tootoonchi R, Andaryani S. 2021. Investigation of climate, land cover and lake level pattern changes and interactions using remotely sensed data and wavelet analysis. Ecological Informatics, 64: 101330, doi: 10.1016/j.ecoinf.2021.101330.
doi: 10.1016/j.ecoinf.2021.101330
[48]   Nouri M, Bannayan M. 2019. Spatiotemporal changes in aridity index and reference evapotranspiration over semi-arid and humid regions of Iran: Trend, cause, and sensitivity analyses. Theoretical and applied climatology, 136(3-4): 1073-1084.
doi: 10.1007/s00704-018-2543-0
[49]   Pan N, Wang S, Liu Y X, et al. 2021. Rapid increase of potential evapotranspiration weakens the effect of precipitation on aridity in global drylands. Journal of Arid Environments, 186: 104414, doi: 10.1016/j.jaridenv.2020.104414.
doi: 10.1016/j.jaridenv.2020.104414
[50]   Shi Y F, Shen Y P, Kang E, et al. 2006. Recent and future climate change in northwest China. Climatic Change, 80(3-4): 379-393.
doi: 10.1007/s10584-006-9121-7
[51]   Song Z W, Zhang H L, Snyder R L, et al. 2010. Distribution and trends in reference evapotranspiration in the north China plain. Journal of Irrigation and Drainage Engineering, 136(4): 240-247.
doi: 10.1061/(ASCE)IR.1943-4774.0000175
[52]   Stocker T F, Qin D, Plattner G K, et al. 2013. IPCC, 2013:Summary for Policymakers. In: Climate Change 2013:The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge and New York: Cambridge University Press.
[53]   Sun Z D, Lotz T, Huang Q. 2021. An ET-based two-phase method for the calibration and application of distributed hydrological models. Water Resources Management, 35(3): 1065-1077.
doi: 10.1007/s11269-021-02774-x
[54]   Tabari H. 2010. Evaluation of reference crop evapotranspiration equations in various climates. Water Resources Management, 24(10): 2311-2337.
doi: 10.1007/s11269-009-9553-8
[55]   Thomas A. 2015. Spatial and temporal characteristics of potential evapotranspiration trends over China. International Journal of Climatology, 20(4): 381-396.
doi: 10.1002/(ISSN)1097-0088
[56]   Thornthwaite C W. 1948. An approach toward a rational classification of climate. Geographical Review, 38(1): 55-89.
doi: 10.2307/210739
[57]   Tong S Q, Zhang J Q, Hasi, et al. 2016. 14 years spatial-temporal distribution characteristics of evapotranspiration in Xilingol grassland based on MOD16. Chinese Journal of Grassland, 38(4): 83-91. (in Chinese)
[58]   Trenberth K E, Fasullo J T, Kiehl J. 2009. Earth's global energy budget. Bulletin of the American Meteorological Society, 90(3): 311-324.
doi: 10.1175/2008BAMS2634.1
[59]   Wang K C, Dickinson R E. 2012. A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic variability. Reviews of Geophysics, 50(2): 1-54.
[60]   Wang P X, Zheng Y F, He J H, et al. 2007. Analysis of climate change from dry to wet phase in NW China with an aridity-wetness homogenized index. In: IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2007. Barcelona: 1778-1781, doi: 10.1109/IGARSS.2007.4423165.
doi: 10.1109/IGARSS.2007.4423165
[61]   Wang S, Lian J J, Peng Y Z, et al. 2019. Generalized reference evapotranspiration models with limited climatic data based on random forest and gene expression programming in Guangxi, China. Agricultural Water Management, 221: 220-230.
doi: 10.1016/j.agwat.2019.03.027
[62]   Wang Y, Jiang T, Bothe O, et al. 2007. Changes of pan evaporation and reference evapotranspiration in the Yangtze River basin. Theoretical and Applied Climatology, 90: 13-23.
doi: 10.1007/s00704-006-0276-y
[63]   Wang Y P, Li R, Hu J H, et al. 2021. Evaluations of MODIS and microwave based satellite evapotranspiration products under varied cloud conditions over East Asia forests. Remote Sensing of Environment, 264(5): 112606, doi: 10.1016/j.rse.2021.112606.
doi: 10.1016/j.rse.2021.112606
[64]   Wu S Q, Cao S S, Wang Z H, et al. 2019. Spatiotemporal variations in agricultural flooding in middle and lower reaches of Yangtze River from 1970 to 2018. Sustainability, 11(23): 6613.
doi: 10.3390/su11236613
[65]   Xu C Y, Gong L B, Jiang T, et al. 2006. Analysis of spatial distribution and temporal trend of reference evapotranspiration and pan evaporation in Changjiang (Yangtze River) catchment. Journal of Hydrology, 327(1-2): 81-93.
doi: 10.1016/j.jhydrol.2005.11.029
[66]   Yang C, Xia J Z, Liang S L, et al. 2014. Comparison of satellite-based evapotranspiration models over terrestrial ecosystems in China. Remote Sensing of Environment, 140: 279-293.
doi: 10.1016/j.rse.2013.08.045
[67]   Yang X Q, Wang G J, Pan X, et al. 2015. Spatio-temporal variability of terrestrial evapotranspiration in China from 1980 to 2011 based on GLEAM data. Transactions of the Chinese Society of Agricultural Engineering, 31(21): 132-141. (in Chinese)
[68]   Yao J Q, Yang Q, Liu Z H, et al. 2015. Spatio-temporal change of precipitation in arid region of the northwest China. Acta Ecologica Sinica, 35(17): 5846-5855. (in Chinese)
[69]   Zhang K X, Pan S M, Zhang W, et al. 2015. Influence of climate change on reference evapotranspiration and aridity index and their temporal-spatial variations in the Yellow River Basin, China, from 1961 to 2012. Quaternary International, 380-381: 75-82.
doi: 10.1016/j.quaint.2014.12.037
[70]   Zhang S H, Wang Y F, Hou Q Z, et al. 2015. Spatial and temporal characteristics of aridity index and association with AO and ENSO in Qinghai Province. Pratacultural Science, 32(12): 1980-1987. (in Chinese)
[71]   Zhang X T, Kang S Z, Zhang L, et al. 2010. Spatial variation of climatology monthly crop reference evapotranspiration and sensitivity coefficients in Shiyang river basin of northwest China. Agricultural Water Management, 97(10): 1506-1516.
doi: 10.1016/j.agwat.2010.05.004
[72]   Zhang Y Q, Liu C M, Tang Y H, et al. 2007. Trends in pan evaporation and reference and actual evapotranspiration across the Tibetan Plateau. Journal of Geophysical Research, 112, doi: 10.1029/2006jd008161.
doi: 10.1029/2006jd008161
[1] YU Yang, CHEN Xi, Ireneusz MALIK, Malgorzata WISTUBA, CAO Yiguo, HOU Dongde, TA Zhijie, HE Jing, ZHANG Lingyun, YU Ruide, ZHANG Haiyan, SUN Lingxiao. Spatiotemporal changes in water, land use, and ecosystem services in Central Asia considering climate changes and human activities[J]. Journal of Arid Land, 2021, 13(9): 881-890.
[2] Farhad YAZDANDOOST, Sogol MORADIAN. Climate change impacts on the streamflow of Zarrineh River, Iran[J]. Journal of Arid Land, 2021, 13(9): 891-904.
[3] BAI Jie, LI Junli, BAO Anmin, CHANG Cun. Spatial-temporal variations of ecological vulnerability in the Tarim River Basin, Northwest China[J]. Journal of Arid Land, 2021, 13(8): 814-834.
[4] Brian COLLINS, Hadi RAMEZANI ETEDALI, Ameneh TAVAKOL, Abbas KAVIANI. Spatiotemporal variations of evapotranspiration and reference crop water requirement over 1957-2016 in Iran based on CRU TS gridded dataset[J]. Journal of Arid Land, 2021, 13(8): 858-878.
[5] WU Jun, DENG Guoning, ZHOU Dongmei, ZHU Xiaoyan, MA Jing, CEN Guozhang, JIN Yinli, ZHANG Jun. Effects of climate change and land-use changes on spatiotemporal distributions of blue water and green water in Ningxia, Northwest China[J]. Journal of Arid Land, 2021, 13(7): 674-687.
[6] WANG Yuejian, GU Xinchen, YANG Guang, YAO Junqiang, LIAO Na. Impacts of climate change and human activities on water resources in the Ebinur Lake Basin, Northwest China[J]. Journal of Arid Land, 2021, 13(6): 581-598.
[7] Nirmal M DAHAL, XIONG Donghong, Nilhari NEUPANE, Belayneh YIGEZ, ZHANG Baojun, YUAN Yong, Saroj KOIRALA, LIU Lin, FANG Yiping. Spatiotemporal analysis of drought variability based on the standardized precipitation evapotranspiration index in the Koshi River Basin, Nepal[J]. Journal of Arid Land, 2021, 13(5): 433-454.
[8] JIA Wuhui, YIN Lihe, ZHANG Maosheng, ZHANG Xinxin, ZHANG Jun, TANG Xiaoping, DONG Jiaqiu. Quantification of groundwater recharge and evapotranspiration along a semi-arid wetland transect using diurnal water table fluctuations[J]. Journal of Arid Land, 2021, 13(5): 455-469.
[9] SA Chula, MENG Fanhao, LUO Min, LI Chenhao, WANG Mulan, ADIYA Saruulzaya, BAO Yuhai. Spatiotemporal variation in snow cover and its effects on grassland phenology on the Mongolian Plateau[J]. Journal of Arid Land, 2021, 13(4): 332-349.
[10] Abdulrahim M AL-ISMAILI, Moustafa A FADEL, Hemantha JAYASURIYA, L H Janitha JEEWANTHA, Adel AL-MAHDOURI, Talal AL-SHUKEILI. Potential reduction in water consumption of greenhouse evaporative coolers in arid areas via earth-tube heat exchangers[J]. Journal of Arid Land, 2021, 13(4): 388-396.
[11] Ayad M F AL-QURAISHI, Heman A GAZNAYEE, Mattia CRESPI. Drought trend analysis in a semi-arid area of Iraq based on Normalized Difference Vegetation Index, Normalized Difference Water Index and Standardized Precipitation Index[J]. Journal of Arid Land, 2021, 13(4): 413-430.
[12] ZHANG Yongkun, HUANG Mingbin. Spatial variability and temporal stability of actual evapotranspiration on a hillslope of the Chinese Loess Plateau[J]. Journal of Arid Land, 2021, 13(2): 189-204.
[13] LIU Zhaogang, CHEN Zhi, YU Guirui, ZHANG Tianyou, YANG Meng. A bibliometric analysis of carbon exchange in global drylands[J]. Journal of Arid Land, 2021, 13(11): 1089-1102.
[14] WANG Wanrui, CHEN Yaning, WANG Weihua, XIA Zhenhua, LI Xiaoyang, Patient M KAYUMBA. Hydrochemical characteristics and evolution of groundwater in the dried-up river oasis of the Tarim Basin, Central Asia[J]. Journal of Arid Land, 2021, 13(10): 977-994.
[15] SUN Chen, MA Yonggang, GONG Lu. Response of ecosystem service value to land use/cover change in the northern slope economic belt of the Tianshan Mountains, Xinjiang, China[J]. Journal of Arid Land, 2021, 13(10): 1026-1040.