Please wait a minute...
Journal of Arid Land  2012, Vol. 4 Issue (2): 180-190    DOI: 10.3724/SP.J.1227.2012.00180
Research Articles     
Molecular phylogeny of tribe Atraphaxideae (Polygonaceae) evidenced from five cpDNA genes
YanXia SUN1, MingLi ZHANG 1,2
1 Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China;
2 Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
Download:   PDF(175KB)
Export: BibTeX | EndNote (RIS)      

Abstract  Traditionally, Atraphaxis, Calligonum, Pteropyrum and Parapteropyrum are included in the tribe Atraphxideae. Recently, sequence data has revealed that this tribe is not monophyletic. The structure of the tribe was examined by adding more taxa and sequences to clarify the congruence between morphology and molecular phylogeny, the systematic placements of four genera in Polygonaceae, as well as the infra-generic relationships of Atraphaxis and Calligonum within Atraphaxideae. Five chloroplast genes, atpB-rbcL, psbA-trnH, trnL–trnF, psbK-psbI, and rbcL of Atraphaxis, Calligonum, Pteropyrum, and Parapteropyrum were sequenced. The non-monophyly of Atraphaxideae was confirmed. Atraphaxis and Calligonum, respectively, formed a monophyletic group that was well supported. Calligonum is closely related to Pteropyrum; Atraphaxis is sister to Polygonum s. str.; and Parapteropyrum is allied with Fagopyrum. Although the morphology suggested the four genera should form a tribe, the molecular data indicated Atraphaxideae was not one monophyletic group. The clades identified within Atraphaxis corresponded well with the current sectional classification based on morphological features. As for Calligonum, Medusa was identified as a non-monophyletic section

Key wordsnitrogen addition      species richness      biomass      functional group      temperate steppe      Duolun, Inner Mongolia     
Received: 15 September 2011      Published: 06 June 2012
Fund:  

Chinese Academy of Sciences Important Direction for Knowledge Innovation Project (KZCX2-EW-305), Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences.

Corresponding Authors: MingLi ZHANG     E-mail: zhangml@ibcas.ac.cn
Cite this article:

YanXia SUN, MingLi ZHANG. Molecular phylogeny of tribe Atraphaxideae (Polygonaceae) evidenced from five cpDNA genes. Journal of Arid Land, 2012, 4(2): 180-190.

URL:

http://jal.xjegi.com/10.3724/SP.J.1227.2012.00180     OR     http://jal.xjegi.com/Y2012/V4/I2/180

Bao B J, Li A J. 1993. A study of the genus Atraphaxis in China and the system of Atraphaxideae (Polygonaceae). Acta Phytotaxonomica Sinica, 31: 127–139.

Brandbyge J. 1993. Polygonaceae. In: Kubitzki K, Bittich V. The Fami-lies and Genera of Vascular Plants. Berlin: Springer, 531–544.

Dammer U. 1893. Polygonaceae. In: Engler H G A, Prantl K A E. Die natürlichen P?anzenfamilie. Leipzig: Engelmann, 1–36.

Doyle J J, Doyle J L. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf material. Phytochemical Bulletin, 19: 11–15.

Farris J S, Källersjö M, Kluge A G, et al. 1994. Testing significance of incongruence. Cladistics, 10: 315–319.

Farris J S, Källersjö M, Kluge A G, et al. 1995. Constructing a signifi-cance test for incongruence. Systmatic Biology, 44: 570–572.

Felsenstein J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39: 783–791.

Haraldson K. 1978. Anatomy and taxonomy in Polygonaceae subfam. Polygonoideae Meisn. emend. Jaretzky. Symbolae Botanicae Upsa-liensis, 22: 1–95.

Heywood V H, Brummitt P K, Culham A, et al. 2007. Flowering Plant Families of the World. London: Kew Publishing.

Hong S-P. 1995. Pollen morphology of Parapteropyrum and some putatively related genera (Polygonaceae-Atraphaxideae). Grana, 34: 153–159.

Huelsenbeck J P, Rannala B. 2004. Frequentist properties of Bayesian posterior probabilities of phylogenetic trees under simple and com-plex substitution models. Systmatic Biology, 53: 904–913.

Huelsenbeck J P, Ronquist F. 2001. MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics, 17: 754–755.

Janssens S, Geuten K, Yuan Y M, et al. 2006. Phylogenetics of Impa-tiens and Hydrocera (Balsaminaceae) using chloroplast atpB-rbcL spacer sequences. Systmatic Botany, 33: 171–180.

Jaretzky R. 1925. Contributions to the systematics of the Polygonaceae with consideration of the oxymethyl-anthraquinone-occurrence. Feddes Repertorium, 22: 49–83.

Jaretzky R. 1928. Histological and karyological studies on Polygona-ceae. Jahrbuecher fur Wissenschaftliche Botanik, 69: 357–490.

Johnson L A, Soltis D E. 1995. Phylogenetic inference in Saxifragaceae sensu stricto and Gilia (Polemoniaceae) using matK sequences. An-nals of the Missouri Botanical Garden, 82: 149–175.

Lamb-Frye A S, Kron K A. 2003. Phylogeny and character evolution in Polygonaceae. Systmatic Botany, 28: 326–332.

Li A J, Bao B J, Grabovskava-Borodina A E, et al. 2003. Polygonaceae. In: Wu Z Y, Raven P H. Flora of China. Beijing: Science Press and St. Louis: Missouri Botanical Garden Press, 5: 277–350.

Li A J, Kao Z T, Mao Z M, et al. 1998. Polygonaceae. In: Wu Z Y, Chen X Q. Flora Reipublicae Popularis Sinicae, vol. 25. Beijing: Science Press, 120–142.

Lovelius O L. 1978. Synopsis generis Atraphaxis L. (Polygonaceae). Novosti Sistematiki Vysshikh Rastenii, 15: 85–108.

Mabberley D J. 1990. The Plant Book. Cambridge: Cambridge Univer-sity Press.

Mao Z M, Yang G, Wang C G. 1983. Studies on chromosome numbers and anatomy of young branches of Calligonum of Xinjiang in rela-tion to the evolution of some species of the genus. Acta Phytotax-onomica Sinica, 21: 44–49.

Maekawa F. 1964. On the phylogeny in the Polygonaceae. Journal of Japanese Botany, 39: 14–18.

Nakai T. 1926. A new classification of Linnean Polygonum. Rigakkai, 24: 289–301.

Ohnishi O. 1998. Search for the wild ancestor of buckwheat I. description of new Fagopyrum (Polygonaceae) species and their distribution in China and the Himalayan hills. Fagopyrum, 15: 18–28.

Pavlov H B. 1936. Flora of USSR, vol 5. Moscow: Science Press.

Posada D, Crandall K A. 1998. Modeltest: testing the model of DNA substitution. Bioinformatics, 14: 817–818.

Rechinger K H, Schiman-Czeika H. 1968. Polygonaceae. In: Rechinger. Flora Iranica. Graz: Akademische Druck-u Verlagsanstalt. 56.

Ronse Decraene L P, Akeroyd J R A. 1988. Generic limits in Poly-gonum and related genera (Polygonaceae) on the basis of floral characters. Botanical Journal of the Linnean Society, 98: 321–371.

Sanchez A, Kron K A. 2008. Phylogenetics of Polygonaceae with an em-phasis on the evolution of Eriogonoideae. Systmatic Botany, 33: 87–96.

Sanchez A, Kron K A. 2009. Phylogenetic relationships of Afrobrun-nichia Hutch. & Dalziel (Polygonaceae) based on three chloroplast genes and ITS. Taxon, 58: 781–792.

Sanchez A, Schuster T M, Kron K A. 2009. A large-scale phylogeny of Polygonaceae based on molecular data. International Journal of Plant Sciences, 170: 1044–1055.

Sanchez A, Schuster T M, Burke J M, et al. 2011. Taxonomy of Poly-gonoideae (Polygonaceae): a new tribal classification. Taxon, 60: 151–160.

Sang T, Crawford J, Stuessy T F. 1997. Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae). American Journal of Botany, 84: 1120–1136.

Swofford D L. 2002. PAUP*: phylogenetic analysis using parsimony, v. 4.0b10. Sunderland: Sinauer Associates.

Taberlet P, Gielly L, Pautou G, et al. 1991. Universal primers for ampli-fication of three non-coding regions of chloroplast DNA. Plant Mo-lecular Biology, 17: 1105–1109.

Takhtajan A. 2009. Flowering Plants. Berlin: Springer.

Tate J A, Simpson B B. 2003. Paraphyly of Tarasa (Malvaceae) and diverse origins of the polyploid species. Systmatic Botany, 28: 723–737.

Tavakkoli S, Osaloo S K, Maassoumi A A. 2008. Morphological cladis-tic analysis of Calligonum and Pteropyrum (Polygonaceae) in Iran. Iran Journal of Botany, 14: 117–125.

Tavakkoli S, Kazempour Osaloo S, Maassoumi A A. 2010. The phy-logeny of Calligonum and Pteropyrum (Polygonaceae) based on nu-clear ribosomal DNA ITS and chloroplast trnL-F sequences. Iranian Journal of Biotechnology, 8: 1–15.

Thompson J D, Gibson T J, Plewniak F, et al. 1997. The clustal X windows interface: flexible strategies for multiple sequence align-ment aided by quality analysis tools. Nucleic Acids Research, 24: 4876–4882.

Tian X M, Liu R R, Tian B, et al. 2009. Karyological studies of Parap-teropyrum and Atraphaxis (Polygonaceae). Caryologia, 62: 261–266.
[1] HUANG Xiaotao, LUO Geping, CHEN Chunbo, PENG Jian, ZHANG Chujie, ZHOU Huakun, YAO Buqing, MA Zhen, XI Xiaoyan. How precipitation and grazing influence the ecological functions of drought-prone grasslands on the northern slopes of the Tianshan Mountains, China?[J]. Journal of Arid Land, 2021, 13(1): 88-97.
[2] JIN Xiaoming, YANG Xiaogang, ZHOU Zhen, ZHANG Yingqi, YU Liangbin, ZHANG Jinghua, LIANG Runfang. Ecological stoichiometry and biomass response of Agropyron michnoi Roshev. under simulated N deposition in a sandy grassland, China[J]. Journal of Arid Land, 2020, 12(5): 741-751.
[3] Ali MAHDAVI, Soghra SAIDI, Yaghob IRANMANESH, Mostafa NADERI. Biomass and carbon stocks in three types of Persian oak (Quercus brantii var. persica) of Zagros forests in a semi-arid area, Iran[J]. Journal of Arid Land, 2020, 12(5): 766-774.
[4] PEI Yanwu, HUANG Laiming, SHAO Ming'an, ZHANG Yinglong. Responses of Amygdalus pedunculata Pall. in the sandy and loamy soils to water stress[J]. Journal of Arid Land, 2020, 12(5): 791-805.
[5] ZHANG Zhenchao, LIU Miao, SUN Jian, WEI Tianxing. Degradation leads to dramatic decrease in topsoil but not subsoil root biomass in an alpine meadow on the Tibetan Plateau, China[J]. Journal of Arid Land, 2020, 12(5): 806-818.
[6] DONG Yiqiang, SUN Zongjiu, AN Shazhou, JIANG Shasha, WEI Peng. Community structure and carbon and nitrogen storage of sagebrush desert under grazing exclusion in Northwest China[J]. Journal of Arid Land, 2020, 12(2): 239-251.
[7] WEN Jing, QIN Ruimin, ZHANG Shixiong, YANG Xiaoyan, XU Manhou. Effects of long-term warming on the aboveground biomass and species diversity in an alpine meadow on the Qinghai-Tibetan Plateau of China[J]. Journal of Arid Land, 2020, 12(2): 252-266.
[8] YANG Yuling, LI Minfei, MA Jingjing, CHENG Junhui, LIU Yunhua, JIA Hongtao, LI Ning, WU Hongqi, SUN Zongjiu, FAN Yanmin, SHENG Jiandong, JIANG Ping'an. Changes in the relationship between species richness and belowground biomass among grassland types and along environmental gradients in Xinjiang, Northwest China[J]. Journal of Arid Land, 2019, 11(6): 855-865.
[9] Lianlian FAN, Junxiang DING, Xuexi MA, Yaoming LI. Ecological biomass allocation strategies in plant species with different life forms in a cold desert, China[J]. Journal of Arid Land, 2019, 11(5): 729-739.
[10] Xiang ZHAO, Shuya HU, Jie DONG, Min REN, Xiaolin ZHANG, Kuanhu DONG, Changhui WANG. Effects of spring fire and slope on the aboveground biomass, and organic C and N dynamics in a semi-arid grassland of northern China[J]. Journal of Arid Land, 2019, 11(2): 267-279.
[11] PORDEL Fatemeh, EBRAHIMI Ataollah, AZIZI Zahra. Canopy cover or remotely sensed vegetation index, explanatory variables of above-ground biomass in an arid rangeland, Iran[J]. Journal of Arid Land, 2018, 10(5): 767-780.
[12] Lishan SHAN, Wenzhi ZHAO, Yi LI, Zhengzhong ZHANG, Tingting XIE. Precipitation amount and frequency affect seedling emergence and growth of Reaumuria soongarica in northwestern China[J]. Journal of Arid Land, 2018, 10(4): 574-587.
[13] Quanlin MA, Yaolin WANG, Yinke LI, Tao SUN, MILNE Eleanor. Carbon storage in a wolfberry plantation chronosequence established on a secondary saline land in an arid irrigated area of Gansu Province, China[J]. Journal of Arid Land, 2018, 10(2): 202-216.
[14] Xuelian JIANG, Ling TONG, Shaozhong KANG, Fusheng LI, Donghao LI, Yonghui QIN, Rongchao SHI, Jianbing LI. Planting density affected biomass and grain yield of maize for seed production in an arid region of Northwest China[J]. Journal of Arid Land, 2018, 10(2): 292-303.
[15] Wen SHANG, Yuqiang LI, Xueyong ZHAO, Tonghui ZHANG, Quanlin MA, Jinnian TANG, Jing FENG, Na SU. Effects of Caragana microphylla plantations on organic carbon sequestration in total and labile soil organic carbon fractions in the Horqin Sandy Land, northern China[J]. Journal of Arid Land, 2017, 9(5): 688-700.