Please wait a minute...
Journal of Arid Land  2021, Vol. 13 Issue (11): 1155-1162    DOI: 10.1007/s40333-021-0025-1     CSTR: 32276.14.s40333-021-0025-1
Research article     
Elevated CO2 increases shoot growth but not root growth and C:N:P stoichiometry of Suaeda aralocaspica plants
WANG Lei1,2,*(), FAN Lianlian1,3, JIANG Li1,2, TIAN Changyan1,2
1State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
2University of Chinese Academy of Sciences, Beijing 100049, China
3Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi 830011, China
Download: HTML     PDF(401KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

The purpose of the current study was to investigate the eco-physiological responses, in terms of growth and C:N:P stoichiometry of plants cultured from dimorphic seeds of a single-cell C4 annual Suaeda aralocaspica (Bunge) Freitag and Schütze under elevated CO2. A climatic chamber experiment was conducted to examine the effects of ambient (720 μg/L) and CO2-enriched (1440 μg/L) treatments on these responses in S. aralocaspica at vegetative and reproductive stages in 2012. Result showed that elevated CO2 significantly increased shoot dry weight, but decreased N:P ratio at both growth stages. Plants grown from dimorphic seeds did not exhibit significant differences in growth and C:N:P stoichiometric characteristics. The transition from vegetation to reproductive stage significantly increased shoot:root ratio, N and P contents, but decreased C:N, C:P and N:P ratios, and did not affect shoot dry weight. Moreover, our results indicate that the changes in N:P and C:N ratios between ambient and elevated CO2 are mainly caused by the decrease of N content under elevated CO2. These results provide an insight into nutritional metabolism of single-cell C4 plants under climate change.



Key wordsbiomass      CO2 elevation      C:N:P stoichiometry      seed heteromorphism      Suaeda aralocaspica     
Received: 23 August 2021      Published: 10 November 2021
Corresponding Authors: WANG Lei (E-mail: egiwang@ms.xjb.ac.cn)
Cite this article:

WANG Lei, FAN Lianlian, JIANG Li, TIAN Changyan. Elevated CO2 increases shoot growth but not root growth and C:N:P stoichiometry of Suaeda aralocaspica plants. Journal of Arid Land, 2021, 13(11): 1155-1162.

URL:

http://jal.xjegi.com/10.1007/s40333-021-0025-1     OR     http://jal.xjegi.com/Y2021/V13/I11/1155

Fig. 1 Effects of elevated CO2 on shoot dry weight (a and b), root dry weight (c and d), and shoot:root ratio (e and f) in plants grown from dimorphic seeds of Suaeda aralocaspica at vegetative and reproductive stages. * indicates significant difference between ambient and elevated CO2 treatments at P<0.05 level.
Fig. 2 Effects of elevated CO2 on C content (a and b), N content (c and d), P content (e and f) in shoots of plants grown from dimorphic seeds of Suaeda aralocaspica at vegetative and reproductive stages. * indicates significant difference between ambient and elevated CO2 treatments at P<0.05 level.
Fig. 3 Effects of elevated CO2 on C:N ratio (a and b), C:P ratio (c and d), and N:P ratio (e and f) in shoots of plants grown from dimorphic seeds of Suaeda aralocaspica at vegetative and reproductive stages. * indicates significant difference between ambient and elevated CO2 treatments at P<0.05 level.
Growth stage Index CO2 Plant type CO2×Plant type
F P F P F P
Vegetative Shoot 474.824 0.000* 0.031 0.864 0.034 0.858
Root 0.046 0.839 4.020 0.073 0.016 0.902
Shoot:root ratio 1.996 0.217 2.012 0.186 0.075 0.790
C 0.897 0.387 0.003 0.956 0.947 0.353
N 6.187 0.055 1.553 0.241 0.082 0.781
P 4.076 0.099 1.679 0.224 0.002 0.963
C:N ratio 6.031 0.058 2.021 0.186 0.132 0.724
C:P ratio 3.937 0.104 1.398 0.264 0.111 0.746
N:P ratio 28.070 0.003* 0.714 0.418 0.108 0.749
Reproductive Shoot 51.556 0.001* 0.024 0.880 0.367 0.558
Root 0.660 0.454 0.069 0.798 0.001 0.972
Shoot:root ratio 4.184 0.096 0.483 0.503 0.737 0.411
C 0.034 0.861 0.022 0.884 0.163 0.695
N 1.652 0.255 0.026 0.876 0.791 0.395
P 0.565 0.486 3.404 0.095 0.397 0.543
C:N ratio 0.967 0.371 2.448 0.149 0.698 0.423
C:P ratio 1.434 0.285 0.001 0.982 0.147 0.710
N:P ratio 16.494 0.010* 4.097 0.070 0.001 0.971
Table S1 Split plot variance analysis of the effects of elevated CO2, plant type and their interactions on growth and C:N:P ratio
[1]   Bao S D. 2000. Soil Chemistry and Agriculture Analysis. Beijing: China Agriculture Press, 36-37. (in Chinese)
[2]   Betts R A, Jones C D, Knight J R, et al. 2016. El Nino and a record CO2 rise. Nature Climate Change, 6: 806-810.
doi: 10.1038/nclimate3063
[3]   Boretti A, Florentine S. 2019. Atmospheric CO2concentration and other limiting factors in the growth of C3 and C4 plants. Plants, 8(4): 92, doi: 10.3390/plants8040092.
doi: 10.3390/plants8040092
[4]   Boyd C N, Franceschi V R, Chuong S D X, et al. 2007. Flowers of Bienertia cycloptera and Suaeda aralocaspica (Chenopodiaceae) complete the life cycle performing single-cell C4 photosynthesis. Functional Plant Biology, 34: 268-281.
doi: 10.1071/FP06283
[5]   Ceusters J, Borland A M. 2011. Impacts of elevated CO2 on the growth and physiology of plants with crassulacean acid metabolism. In: Lüttge U, Beyschlag W, Büdel B. et al. Progress in Botany 72. Berlin Heidelberg: Springer-Verlag, 163-181.
[6]   Commissione Redactorum Florae Xinjiangensis. 1994. Flora Xinjiangensis. Urumqi: Xinjiang Science & Technology & Hygiene Publishing House, 57-57. (in Chinese)
[7]   Cotrufo M F, Ineson P, Scott A. 1998. Elevated CO2 reduces the nitrogen concentration of plant tissues. Global Change Biology, 4(1): 43-54.
doi: 10.1046/j.1365-2486.1998.00101.x
[8]   Deng Q, Hui D, Luo Y, et al. 2015. Down-regulation of tissue N:P ratios in terrestrial plants by elevated CO2. Ecology, 96(12): 3354-3362.
pmid: 26909440
[9]   Dijkstra F A, Pendall E, Morgan J A, et al. 2012. Climate change alters stoichiometry of phosphorus and nitrogen in a semiarid grassland. New Phytolologist, 196(3): 807-815.
doi: 10.1111/nph.2012.196.issue-3
[10]   Du C, Wang X, Zhang M, et al. 2019. Effects of elevated CO2 on plant C-N-P stoichiometry in terrestrial ecosystems: A meta-analysis. Science of the Total Environment, 650: 697-708.
doi: 10.1016/j.scitotenv.2018.09.051
[11]   Elser J J, Fagan W F, Denno R F, et al. 2000. Nutritional constraints in terrestrial and freshwater food webs. Nature, 408: 578-580.
doi: 10.1038/35046058
[12]   Imbert E. 2002. Ecological consequences and ontogeny of seed heteromorphism. Perspectives in Plant Ecology, Evolution and Systematics, 5(1): 13-36.
doi: 10.1078/1433-8319-00021
[13]   IPCC. 2013. Climate Change 2013:The physical science basis. In: Stocker T F, Plattner G K, Tignor M, et al. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York: Cambridge University Press, 1535.
[14]   Jiang L, Tanveer M, Han W, et al. 2020. High and differential strontium tolerance in germinating dimorphic seeds of Salicornia europaea. Seed Science and Technology, 48(2): 231-239.
doi: 10.15258/sst.2020.48.2.10
[15]   Li B, Feng Y, Zong Y, et al. 2020. Elevated CO2-induced changes in photosynthesis, antioxidant enzymes and signal transduction enzyme of soybean under drought stress. Plant Physiology and Biochemistry, 154: 105-114.
doi: 10.1016/j.plaphy.2020.05.039
[16]   Li T, Su J, Fu Z. 2021. Halophytes differ in their adaptation to soil environment in the Yellow River Delta: Effects of water source, soil depth, and nutrient stoichiometry. Frontiers in Plant Science, 12: 675921, doi: 10.3389/fpls.2021.675921.
doi: 10.3389/fpls.2021.675921
[17]   Li Y, Yu Z, Yang S, et al. 2019. Impact of elevated CO2 on C:N:P ratio among soybean cultivars. Science of the Total Environment, 694: 133784, doi: 10.1016/j.scitotenv.2019.133784.
doi: 10.1016/j.scitotenv.2019.133784
[18]   Lin C, Yang Y, Guo J, et al. 2011. Fine root decomposition of evergreen broadleaved and coniferous tree species in midsubtropical China: dynamics of dry mass, nutrient and organic fractions. Plant and Soil, 338: 311-327.
doi: 10.1007/s11104-010-0547-3
[19]   Marschner P, 2013. Marschner's Mineral Nutrition of Higher Plants (3rd ed). Beijing: Science Press, 135-189.
[20]   Pérez-Romero J A, Idaszkin Y L, Barcia-Piedras J, et al. 2018. Disentangling the effect of atmospheric CO2 enrichment on the halophyte Salicornia ramosissima J. Woods physiological performance under optimal and suboptimal saline conditions. Plant Physiology and Biochemistry, 127: 617-629.
doi: S0981-9428(18)30199-2 pmid: 29738990
[21]   Quirk J, Bellasio C, Johnson D A, et al. 2019. Response of photosynthesis, growth and water relations of a savannah-adapted tree and grass grown across high to low CO2. Annals of Botany, 124(1): 77-90.
doi: 10.1093/aob/mcz048 pmid: 31008510
[22]   Redondo-Gómez S, Mateos-naranjo E, Cambrollé J, et al. 2008. Carry-over of differential salt tolerance in plants grown from dimorphic seeds of Suaeda splendens. Annals of Botany, 102: 103-112.
doi: 10.1093/aob/mcn069 pmid: 18463109
[23]   Reich P B, Hobbie S E, Lee T D, et al. 2018. Unexpected reversal of C3 versus C4 grass response to elevated CO2 during a 20-year field experiment. Science, 360(6383): 317-320.
doi: 10.1126/science.aas9313
[24]   Ren C J, Zhang W, Zhong Z K, et al. 2018. Differential responses of soil microbial biomass, diversity, and compositions to altitudinal gradients depend on plant and soil characteristics. Science of the Total Environment, 610-611: 750-758.
doi: 10.1016/j.scitotenv.2017.08.110
[25]   Sardans J, Rivas-Ubach A, Peñuelas J, 2012. The C:N:P stoichiometry of organisms and ecosystems in a changing world: A review and perspectives. Perspectives in Plant Ecology, Evolution and Systematics, 14(1): 33-47.
doi: 10.1016/j.ppees.2011.08.002
[26]   Uchytilová T, Krejza J,. Veselá B, et al. 2019. Ultraviolet radiation modulates C:N stoichiometry and biomass allocation in Fagus sylvatica saplings cultivated under elevated CO2 concentration. Plant Physiology and Biochemistry, 134: 103-112.
doi: S0981-9428(18)30337-1 pmid: 30097290
[27]   Voznesenskaya E V, Franceschi V R, Kiirats O, et al. 2001. Kranz anatomy is not essential for terrestrial C4 plant photosynthesis. Nature, 414: 543-546.
doi: 10.1038/35107073
[28]   Wang L, Huang Z Y, Baskin C C, et al. 2008. Germination of dimorphic seeds of the desert annual halophyte Suaeda aralocaspica (Chenopodiaceae), a C4 plant without Kranz anatomy. Annals of Botany, 102(5): 757-769.
doi: 10.1093/aob/mcn158 pmid: 18772148
[29]   Wang L, Baskin J M, Baskin C C, et al. 2012. Seed dimorphism, nutrients and salinity differentially affect seed traits of the desert halophyte Suaeda aralocaspica via multiple maternal effects. BMC Plant Biology, 12: 170, doi: 10.1186/1471-2229-12-170.
doi: 10.1186/1471-2229-12-170 pmid: 23006315
[30]   Zhao Y, Yang Y, Song Y, et al. 2018. Analysis of storage compounds and inorganic ions in dimorphic seeds of euhalophyte Suaeda salsa. Plant Physiology and Biochemistry, 130: 511-516.
doi: 10.1016/j.plaphy.2018.08.003
[1] ZHOU Jiqiong, GONG Jinchao, WANG Pengsen, SU Yingying, LI Xuxu, LI Xiangjun, LIU Lin, BAI Yanfu, MA Congyu, WANG Wen, HUANG Ting, YAN Yanhong, ZHANG Xinquan. Historical tillage promotes grass-legume mixtures establishment and accelerates soil microbial activity and organic carbon decomposition[J]. Journal of Arid Land, 2024, 16(7): 910-924.
[2] Teame G KEBEDE, Emiru BIRHANE, Kiros-Meles AYIMUT, Yemane G EGZIABHER. Arbuscular mycorrhizal fungi improve biomass, photosynthesis, and water use efficiency of Opuntia ficus-indica (L.) Miller under different water levels[J]. Journal of Arid Land, 2023, 15(8): 975-988.
[3] LIU Yulin, LI Jiwei, HAI Xuying, WU Jianzhao, DONG Lingbo, PAN Yingjie, SHANGGUAN Zhouping, WANG Kaibo, DENG Lei. Carbon inputs regulate the temperature sensitivity of soil respiration in temperate forests[J]. Journal of Arid Land, 2022, 14(9): 1055-1068.
[4] HUI Rong, TAN Huijuan, LI Xinrong, WANG bingyao. Variation of soil physical-chemical characteristics in salt-affected soil in the Qarhan Salt Lake, Qaidam Basin[J]. Journal of Arid Land, 2022, 14(3): 341-355.
[5] Laura B RODRIGUEZ, Silvia S TORRES ROBLES, Marcelo F ARTURI, Juan M ZEBERIO, Andrés C H GRAND, Néstor I GASPARRI. Plant cover as an estimator of above-ground biomass in semi-arid woody vegetation in Northeast Patagonia, Argentina[J]. Journal of Arid Land, 2021, 13(9): 918-933.
[6] HUANG Xiaotao, LUO Geping, CHEN Chunbo, PENG Jian, ZHANG Chujie, ZHOU Huakun, YAO Buqing, MA Zhen, XI Xiaoyan. How precipitation and grazing influence the ecological functions of drought-prone grasslands on the northern slopes of the Tianshan Mountains, China?[J]. Journal of Arid Land, 2021, 13(1): 88-97.
[7] JIN Xiaoming, YANG Xiaogang, ZHOU Zhen, ZHANG Yingqi, YU Liangbin, ZHANG Jinghua, LIANG Runfang. Ecological stoichiometry and biomass response of Agropyron michnoi Roshev. under simulated N deposition in a sandy grassland, China[J]. Journal of Arid Land, 2020, 12(5): 741-751.
[8] Ali MAHDAVI, Soghra SAIDI, Yaghob IRANMANESH, Mostafa NADERI. Biomass and carbon stocks in three types of Persian oak (Quercus brantii var. persica) of Zagros forests in a semi-arid area, Iran[J]. Journal of Arid Land, 2020, 12(5): 766-774.
[9] PEI Yanwu, HUANG Laiming, SHAO Ming'an, ZHANG Yinglong. Responses of Amygdalus pedunculata Pall. in the sandy and loamy soils to water stress[J]. Journal of Arid Land, 2020, 12(5): 791-805.
[10] ZHANG Zhenchao, LIU Miao, SUN Jian, WEI Tianxing. Degradation leads to dramatic decrease in topsoil but not subsoil root biomass in an alpine meadow on the Tibetan Plateau, China[J]. Journal of Arid Land, 2020, 12(5): 806-818.
[11] DONG Yiqiang, SUN Zongjiu, AN Shazhou, JIANG Shasha, WEI Peng. Community structure and carbon and nitrogen storage of sagebrush desert under grazing exclusion in Northwest China[J]. Journal of Arid Land, 2020, 12(2): 239-251.
[12] WEN Jing, QIN Ruimin, ZHANG Shixiong, YANG Xiaoyan, XU Manhou. Effects of long-term warming on the aboveground biomass and species diversity in an alpine meadow on the Qinghai-Tibetan Plateau of China[J]. Journal of Arid Land, 2020, 12(2): 252-266.
[13] YANG Yuling, LI Minfei, MA Jingjing, CHENG Junhui, LIU Yunhua, JIA Hongtao, LI Ning, WU Hongqi, SUN Zongjiu, FAN Yanmin, SHENG Jiandong, JIANG Ping'an. Changes in the relationship between species richness and belowground biomass among grassland types and along environmental gradients in Xinjiang, Northwest China[J]. Journal of Arid Land, 2019, 11(6): 855-865.
[14] Lianlian FAN, Junxiang DING, Xuexi MA, Yaoming LI. Ecological biomass allocation strategies in plant species with different life forms in a cold desert, China[J]. Journal of Arid Land, 2019, 11(5): 729-739.
[15] Xiang ZHAO, Shuya HU, Jie DONG, Min REN, Xiaolin ZHANG, Kuanhu DONG, Changhui WANG. Effects of spring fire and slope on the aboveground biomass, and organic C and N dynamics in a semi-arid grassland of northern China[J]. Journal of Arid Land, 2019, 11(2): 267-279.