Please wait a minute...
Journal of Arid Land  2022, Vol. 14 Issue (5): 537-549    DOI: 10.1007/s40333-022-0017-9
Research article     
Application of biocementation technique using Bacillus sphaericus for stabilization of soil surface and dust storm control
Davood NAMDAR-KHOJASTEH1,*(), Masoud BAZGIR2, Seyed Abdollah HASHEMI BABAHEIDARI3, Akwasi B ASUMADU-SAKYI4
1Department of Soil Science, Faculty of Agriculture, Shahed University, Tehran 3319118651, Iran
2Department of Soil and Water Engineering, Faculty of Agriculture, Ilam University, Ilam 6931863949, Iran
3Department of Plant Protection, Faculty of Agriculture, Shahed University, Tehran 3319118651, Iran
4International Laboratory for Air Quality and Health, School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, Queensland 4000, Australia
Download: HTML     PDF(1021KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Dust emission and wind erosion are widespread phenomena in arid and semi-arid regions, which have far-reaching harmful effects to the environment. This study aimed to use microbial induced carbonate precipitation (MICP) method with Bacillus sphaericus to reduce soil losses that occur in a dust-producing area due to wind erosion in the Ilam Province, Iran. Soil samples at the 0-30 cm depth were used and sterilized in an autoclave for 2 h at 121°C and 103 kPa. Approximately 3 kg soils were weighed and poured in the 35 cm×35 cm×3 cm trays. Different treatments included two levels of B. sphaericus (0.0 and 0.5 OD), three levels of suspension volume (123, 264, and 369 mL), two levels of urea-chloride cementation solution (0.0 and 0.5 M), and two levels of bacterial spray (once and twice spray). After 28 d, soil properties such as soil mass loss, penetration resistance, and aggregate stability were measured. The results showed a low soil mass loss (1 g) in F14 formulation (twice bacterial spray+264 mL suspension volume+without cementation solution) and a high soil mass loss (246 g) in F5 formulation (without bacteria+264 mL suspension volume+0.5 M cementation solution). The highest (42.55%) and the lowest (19.47%) aggregate stabilities were observed in F16 and F7 formulations, respectively, and the highest penetration resistance (3.328 kg/cm2) was observed in F18 formulation. According to the final results, we recommended the formulation with twice bacterial spray, 0.5 M cementation solution, and 269 mL suspension volume as the best combination for soil surface stabilization. Furthermore, this method is environmentally friendly because it has no adverse effects on soil, water, and plants, thus, it would be an efficient approach to stabilize soil surface.



Key wordssoil stabilization      microbial cementation      calcium carbonate      bacteria      penetration resistance     
Received: 17 February 2022      Published: 31 May 2022
Corresponding Authors: *: Davood NAMDAR-KHOJASTEH (E-mail: d.namdar@shahed.ac.ir)
Cite this article:

Davood NAMDAR-KHOJASTEH, Masoud BAZGIR, Seyed Abdollah HASHEMI BABAHEIDARI, Akwasi B ASUMADU-SAKYI. Application of biocementation technique using Bacillus sphaericus for stabilization of soil surface and dust storm control. Journal of Arid Land, 2022, 14(5): 537-549.

URL:

http://jal.xjegi.com/10.1007/s40333-022-0017-9     OR     http://jal.xjegi.com/Y2022/V14/I5/537

Combination Treatment Combination Treatment
No. of spray Solution volume (mL) Urea-chloride cementation solution (M) Bacteria (OD) No. of spray Solution volume (mL) Urea-chloride cementation solution (M) Bacteria (OD)
1 123 0.5 0.5 F10 1 123 0.0 0.0 F1
1 264 0.5 0.5 F11 1 264 0.0 0.0 F2
1 369 0.5 0.5 F12 1 369 0.0 0.0 F3
2 123 0.0 0.5 F13 1 123 0.5 0.0 F4
2 264 0.0 0.5 F14 1 264 0.5 0.0 F5
2 369 0.0 0.5 F15 1 369 0.5 0.0 F6
2 123 0.5 0.5 F16 1 123 0.0 0.5 F7
2 264 0.5 0.5 F17 1 264 0.0 0.5 F8
2 369 0.5 0.5 F18 1 369 0.0 0.5 F9
Table 1 Combination of different formulations
Fig. 1 Preparation of samples.
(a), laboratory environment; (b), incubator.
Fig. 2 Portable wind tunnel used in the study
Fig. 3 Effect of different levels of cementation solution
(a) and solution volume (b) on soil mass loss. C0t, without cementation solution or 0 M; C1t, 0.5 M cementation solution. WC1t, total solution volume of 123 mL; WC2t, total solution volume of 264 mL; WC3t, total solution volume of 369 mL.
Fig. 4 Effect of bacterial concentration on soil mass loss. WBt, without bacteria; BS1t, 0.5 OD bacteria with once spray; BS2t, 0.5 OD bacteria with twice spray. Different lowercase letters indicate significant differences among treatments at P<0.05 level. OD, optical density.
Fig. 5 Effects of different formulations on soil mass loss. The right-hand ordinate shows the value of F5 formulation. Different lowercase letters indicate significant differences among formulations at P<0.05 level. The detailed explanation of formulations is presented in Table 1.
Fig. 6 Effect of different levels of cementation solution
(a) and solution volume (b) on aggregate stability. C0t, without cementation solution or 0.0 M; C1t, 0.5 M cementation solution; WC1t, total solution volume of 123 mL; WC2t, total solution volume of 264 mL; WC3t, total solution volume of 369 mL.
Fig. 7 Effect of different bacterial concentrations on aggregate stability. WBt, without bacteria; BS1t, 0.5 OD bacteria with once spray; BS2t, 0.5 OD bacteria with twice spray; OD, optical density.
Fig. 8 Effect of different formulations on aggregate stability. Different lowercase letters indicate significant differences among formulations at P<0.05 level. The detailed explanation of formulations is presented in Table 1.
Fig. 9 Effect of different levels of cementation solution
(a) and solution volume (b) on penetration resistance. C0t, without cementation solution or 0.0 M; C1t, 0.5 M cementation solution; WC1t, total solution volume of 123 mL; WC2t, total solution volume of 264 mL; WC3t, total solution volume of 369 mL.
Fig. 10 Effect of bacterial concentration on penetration resistance. WBt, without bacteria; BS1t, 0.5 OD bacteria with once spray; BS2t, 0.5 OD bacteria with twice sprays; OD, optical density.
Fig. 11 Effect of different formulations on penetration resistance. Different lowercase letters indicate significant differences among formulations at P<0.05 level. The detailed explanation of formulations is presented in Table 1.
[1]   Al Qabany A, Soga K, Santamarina C. 2012. Factors affecting efficiency of microbially induced calcite precipitation. Journal of Geotechnical and Geoenvironmental Engineering, 138: 992-1001.
doi: 10.1061/(ASCE)GT.1943-5606.0000666
[2]   Al-Thawadi S. 2008. High strength in-situ biocementation of soil by calcite precipitating locally isolated ureolytic bacteria. PhD Dissertation. Western Australia: Murdoch University.
[3]   Anderson J, Bang S, Bang S S, et al. 2014. Reduction of wind erosion potential using microbial calcite and soil fibers. American Society of Civil Engineers (ASCE). Geotechnical Special Publication, 234: 1664-1673.
[4]   Anderson R S, Haff P K. 1988. Simulation of eolian saltation. Science, 241(4867): 820-823.
pmid: 17829176
[5]   Bahmani M A, Noorzad J, Hamedi J, et al. 2017. The role of bacillus pasteurii on the change of parameters of sands according to temperature compresion and wind erosion resistance. Journal CleanWAS, 1(2): 1-5.
[6]   Bennion P, Hubbard R, O'Hara S, et al. 2007. The impact of airborne dust on respiratory health in children living in the Aral Sea region. International Journal of Epidemiology, 36(5): 1103-1110.
pmid: 17911152
[7]   Castro-Alonso M J, Montañez-Hernandez L E, Sanchez-Muñoz M A, et al. 2019. Microbially induced calcium carbonate precipitation (MICP) and its potential in bioconcrete: microbiological and molecular concepts. Frontiers in Materials, 6: 126.
doi: 10.3389/fmats.2019.00126
[8]   Chang I, Im J, Cho G C. 2016. Introduction of microbial biopolymers in soil treatment for future environmentally-friendly and sustainable geotechnical engineering. Sustainability, 8(3): 251.
doi: 10.3390/su8030251
[9]   Chen F, Deng C, Song W, et al. 2016. Biostabilization of desert sands using bacterially induced calcite precipitation. Geomicrobiology Journal, 33(3-4): 243-249.
doi: 10.1080/01490451.2015.1053584
[10]   Dagliya M, Satyam N, Sharma M, et al. 2022. Experimental study on mitigating wind erosion of calcareous desert sand using spray method for microbially induced calcium carbonate precipitation. Journal of Rock Mechanics and Geotechnical Engineering, doi: 10.1016/j.jrmge.2021.12.008 (in press).
doi: 10.1016/j.jrmge.2021.12.008
[11]   DeJong J T, Fritzges M B, Nüsslein K. 2006. Microbially induced cementation to control sand response to undrained shear. Journal of Geotechnical Geoenvironmental Engineering, 132: 1381-1392.
doi: 10.1061/(ASCE)1090-0241(2006)132:11(1381)
[12]   Deriase S F, El-Gendy N S. 2014. Mathematical correlation between microbial biomass and total viable count for different bacterial strains used in biotreatment of oil pollution. Biosciences Biotechnology Research Asia, 11(1): 61-65.
doi: 10.13005/bbra/1233
[13]   Devrani R, Dubey A A, Ravi K, et al. 2021. Applications of bio-cementation and bio-polymerization for aeolian erosion control. Journal of Arid Environments, 187: 104433, doi: 10.1016/j.jaridenv.2020.104433.
doi: 10.1016/j.jaridenv.2020.104433
[14]   Dubey A A, Devrani R,Ravi K, et al. 2021. Experimental investigation to mitigate aeolian erosion via biocementation employed with a novel ureolytic soil isolate. Aeolian Research, 52: 100727, doi: 10.1016/j.aeolia.2021.100727.
doi: 10.1016/j.aeolia.2021.100727
[15]   Duo L, Tian K L, Zhang H L, et al. 2018. Experimental investigation of solidifying desert aeolian sand using microbially induced calcite precipitation. Construction and Building Materials, 172: 251-262.
doi: 10.1016/j.conbuildmat.2018.03.255
[16]   Gadi V K, Bordoloi S, Garg A, et al. 2016. Improving and correcting unsaturated soil hydraulic properties with plant parameters for agriculture and bioengineered slopes. Rhizosphere, 1: 58-78.
doi: 10.1016/j.rhisph.2016.07.003
[17]   Gebru K A, Kidanemariam T G, Gebretinsae H K. 2021. Bio-cement production using microbially induced calcite precipitation (MICP) method: A review. Chemical Engineering Science, 238: 116610, doi: 10.1016/j.ces.2021.116610.
doi: 10.1016/j.ces.2021.116610
[18]   Gee G, Bauder J. 1986. Methods of Soil Analysis. Part 1. Monogr. 9. Madison: American Society of Aggronony Inc., 234.
[19]   Ghosh T, Bhaduri S, Montemagno C, et al. 2019. Sporosarcina pasteurii can form nanoscale calcium carbonate crystals on cell surface. PloS ONE, 14(1): e0210339, doi: 10.1371/journal.pone.0210339.
doi: 10.1371/journal.pone.0210339
[20]   Gomez M G, Martinez B C, DeJong J T, et al. 2015. Field-scale bio-cementation tests to improve sands. Proceedings of the Institution of Civil Engineers-Ground Improvement, 168(3): 206-216.
[21]   Goudie A S, Middleton N J. 2006. Dust storm control. Desert Dust in the Global System, 193-199.
[22]   Hammad I A, Talkhan F, Zoheir A. 2013. Urease activity and induction of calcium carbonate precipitation by Sporosarcina pasteurii NCIMB 8841. Journal of Applied Sciences Research, 9: 1525-1533.
[23]   Jabri E, Carr M B, Hausinger R P, et al. 1995. The crystal structure of urease from Klebsiella aerogenes. Science, 268(5213): 998-1004.
pmid: 7754395
[24]   Karol R H. 2003. Chemical Grouting and Soil Stabilization. New York: Basel Marcel Dekker, Inc., 122.
[25]   Khojasteh D N, Bahrami H A, Kianirad M, et al. 2017. Using bio-mulch for dust stabilization (case study: Semnan Province, Iran). Nature Environment Pollution Technology, 16(4): 1313-1320.
[26]   Kim J H, Lee J Y. 2019. An optimum condition of MICP indigenous bacteria with contaminated wastes of heavy metal. Journal of Material Cycles Waste Management, 21: 239-247.
doi: 10.1007/s10163-018-0779-5
[27]   Köppen W, Geiger R. 1936. The Geographical System of the Climate:Handbook of Climatology. Berlin: Verlag Gebrüder Borntrager, 46. (in German)
[28]   Lai Y, Yu J, Liu S, et al. 2021. Experimental study to improve the mechanical properties of iron tailings sand by using MICP at low pH. Construction Building Materials, 273: 121729, doi: 10.1016/j.conbuildmat.2020.121729.
doi: 10.1016/j.conbuildmat.2020.121729
[29]   Mahawish A, Bouazza A, Gates W P. 2018. Effect of particle size distribution on the bio-cementation of coarse aggregates. Acta Geotechnica, 13: 1019-1025.
doi: 10.1007/s11440-017-0604-7
[30]   Maleki Kakler M, Ebrahimi S, Asadzadeh F, et al. 2016. Evaluation of microbial deposition efficiency of carbonate for stabilization of sand. Iranian Soil and Water Research, 47: 407-415.
[31]   Mathur S, Bhatt A, Patel R. 2018. Role of microbial induced calcite precipitation in sustainable development. Annals of Biological Research, 9: 11-27.
[32]   McLean E O. 1982. Soil pH and lime requirement. In: Buxton D R. Methods of Soil Analysis:Part 2. Madison: American Society of Aggronony Inc., 199-224.
[33]   Meng H, Gao Y, He J, et al. 2021. Microbially induced carbonate precipitation for wind erosion control of desert soil: Field-scale tests. Geoderma, 383: 114723, doi: 10.1016/j.geoderma.2020.114723.
doi: 10.1016/j.geoderma.2020.114723
[34]   Merrill S D, Black A L, Fryrear D W, et al. 1999. Soil wind erosion hazard of spring wheat-fallow as affected by long-term climate and tillage. Soil Science Society of America Journal, 63(6): 1768-1777.
doi: 10.2136/sssaj1999.6361768x
[35]   Meyer F, Bang S, Min S, et al. 2011. Microbiologically-induced soil stabilization:application of Sporosarcina pasteurii for fugitive dust control. In: Geo-Frontiers 2011:Advances in Geotechnical Engineering. Dallas: ASCE, 2011: 4002-4011.
[36]   Miao L, Wu L, Sun X. 2020. Enzyme-catalysed mineralisation experiment study to solidify desert sands. Scientific Reports, 10(1): 1-12.
doi: 10.1038/s41598-019-56847-4
[37]   Moravej S, Habibagahi G, Nikooee E, et al. 2018. Stabilization of dispersive soils by means of biological calcite precipitation. Geoderma, 315: 130-137.
doi: 10.1016/j.geoderma.2017.11.037
[38]   Mujah D, Cheng L, Shahin M A. 2019. Microstructural and geomechanical study on biocemented sand for optimization of MICP process. Journal of Materials in Civil Engineering, 31(4): 04019025, doi: 10.1061/(ASCE)MT.1943-5533.0002660.
doi: 10.1061/(ASCE)MT.1943-5533.0002660
[39]   Murugan R, Suraishkumar G, Mukherjee A, et al. 2021. Insights into the influence of cell concentration in design and development of microbially induced calcium carbonate precipitation (MICP) process. PloS ONE, 16(7): e0254536, doi: 10.1371/journal.pone.0254536.
doi: 10.1371/journal.pone.0254536
[40]   Namdar Khojasteh D,Bonsu Asumadu-Sakyi A. 2021. Design, manufacture, and testing of an innovative ridging device for controlling of wind erosion. Arid Land Research and Management, 35(4): 375-396.
doi: 10.1080/15324982.2021.1912208
[41]   Nayanthara P G N, Dassanayake A B N, Nakashima K, et al. 2019. Microbial induced carbonate precipitation using a native inland bacterium for beach sand stabilization in nearshore areas. Applied Sciences, 9(15): 3201.
doi: 10.3390/app9153201
[42]   Nelson D W, Sommers L E. 1996. Total carbon, organic carbon, and organic matter. In: Sparks D L, Page P A, Helmke P A. Methods of Soil Analysis:Part 3. Madison: American Society of Aggronony Inc., 961-1010.
[43]   Omoregie A I, Ngu L H, Ong D E L, et al. 2019. Low-cost cultivation of Sporosarcina pasteurii strain in food-grade yeast extract medium for microbially induced carbonate precipitation (MICP) application. Biocatalysis Agricultural Biotechnology, 17: 247-255.
doi: 10.1016/j.bcab.2018.11.030
[44]   Peng J, Liu Z. 2019. Influence of temperature on microbially induced calcium carbonate precipitation for soil treatment. PloS ONE, 14(6): e0218396, doi: 10.1371/journal.pone.0218396.
doi: 10.1371/journal.pone.0218396
[45]   R Core Team. 2019. R: A language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. [2021-10-18]. .
[46]   Rajabi Agereh S, Kiani F, Khavazi K, et al. 2019. An environmentally friendly soil improvement technology for sand and dust storms control. Environmental Health Engineering Management Journal, 6(1): 63-71.
[47]   Rhoades J. 1996. Salinity:Electrical conductivity and total dissolved solids. In: Sparks D L, Page P A, Helmke P A. Methods of Soil Analysis:Part 3. Madison: American Society of Aggronony Inc., 417-435.
[48]   Sharma M, Satyam N, Reddy K. R. 2021a. Comparison of improved shear strength of biotreated sand using different ureolytic strains and sterile conditions. Soil Use and Management, 38(1): 771-789.
doi: 10.1111/sum.12690
[49]   Sharma M, Satyam N, Reddy K R. 2021b. Rock-like behavior of biocemented sand treated under non-sterile environment and various treatment conditions. Journal of Rock Mechanics and Geotechnical Engineering, 13(3): 705-716.
doi: 10.1016/j.jrmge.2020.11.006
[50]   Sharma M, Satyam N, Tiwari N, et al. 2021c. Simplified biogeochemical numerical model to predict pore fluid chemistry and calcite precipitation during biocementation of soil. Arabian Journal of Geosciences, 14: 1-16.
doi: 10.1007/s12517-020-06304-8
[51]   Stabnikov V, Ivanov V, Chu J. 2015. Construction biotechnology: a new area of biotechnological research and applications. World Journal of Microbiology and Biotechnology, 31(11): 1303-1314.
doi: 10.1007/s11274-015-1881-7
[52]   Stocks-Fischer S, Galinat J K, Bang S S. 1999. Microbiological precipitation of CaCO3. Soil Biology and Biochemistry, 31: 1563-1571.
doi: 10.1016/S0038-0717(99)00082-6
[53]   Tian K, Wu Y, Zhang H, et al. 2018. Increasing wind erosion resistance of aeolian sandy soil by microbially induced calcium carbonate precipitation. Land Degradation and Development, 29(12): 4271-4281.
doi: 10.1002/ldr.3176
[54]   van Paassen L, Harkes M, van Zwieten G, et al. 2009. Scale up of BioGrout:a biological ground reinforcement method. In:Proceedings of the 17th International Conference on Soil Mechanics and Geotechnical Engineering. Alexandria, Egypt: The Academia and Practice of Geotechnical Engineering, 2328-2333.
[55]   Wang Z, Zhang N, Cai G, et al. 2017. Review of ground improvement using microbial induced carbonate precipitation (MICP). Marine Georesources and Geotechnology, 35(8): 1135-1146.
doi: 10.1080/1064119X.2017.1297877
[56]   Wang Z, Zhang N, Ding J, et al. 2018. Experimental study on wind erosion resistance and strength of sands treated with microbial-induced calcium carbonate precipitation. Advances in Materials Science Engineering, 2018: 3463298, doi: 10.1155/2018/3463298.
doi: 10.1155/2018/3463298
[57]   Whiffin V S, van Paassen L A, Harkes M P. 2007. Microbial carbonate precipitation as a soil improvement technique. Geomicrobiology Journal, 24(5): 417-423.
doi: 10.1080/01490450701436505
[58]   Zehner J, Røyne A, Sikorski P. 2021. Calcite seed-assisted microbial induced carbonate precipitation (MICP). PloS ONE, 16(2): e0240763, doi: 10.1371/journal.pone.0240763.
doi: 10.1371/journal.pone.0240763
[59]   Zhao Q, Li L, Li C, et al. 2014. Factors affecting improvement of engineering properties of MICP-treated soil catalyzed by bacteria and urease. Journal of Materials in Civil Engineering, 26(12): 04014094, doi: 10.1061/(ASCE)MT.1943-5533. 0001013.
doi: 10.1061/(ASCE)MT.1943-5533. 0001013
[60]   Zomorodian S M A, Ghaffari H, O'Kelly B C. 2019. Stabilisation of crustal sand layer using biocementation technique for wind erosion control. Aeolian Research, 40: 34-41.
doi: 10.1016/j.aeolia.2019.06.001
[1] Monika DAGLIYA, Neelima SATYAM, Ankit GARG. Optimization of growth medium for microbially induced calcium carbonate precipitation (MICP) treatment of desert sand[J]. Journal of Arid Land, 2023, 15(7): 797-811.
[2] ZHANG Lihua, GAO Han, WANG Junfeng, ZHAO Ruifeng, WANG Mengmeng, HAO Lianyi, GUO Yafei, JIANG Xiaoyu, ZHONG Lingfei. Plant property regulates soil bacterial community structure under altered precipitation regimes in a semi-arid desert grassland, China[J]. Journal of Arid Land, 2023, 15(5): 602-619.
[3] TONG Shan, CAO Guangchao, ZHANG Zhuo, ZHANG Jinhu, YAN Xin. Soil microbial community diversity and distribution characteristics under three vegetation types in the Qilian Mountains, China[J]. Journal of Arid Land, 2023, 15(3): 359-376.
[4] Mohammad Hossein TAGHIZADEH, Mohammad FARZAM, Jafar NABATI. Rhizobacteria facilitate physiological and biochemical drought tolerance of Halimodendron halodendron (Pall.) Voss[J]. Journal of Arid Land, 2023, 15(2): 205-217.
[5] ZHAO Mengqi, SU Huan, HUANG Yin, Rashidin ABDUGHENI, MA Jinbiao, GAO Jiangtao, GUO Fei, LI Li. Plant growth-promoting properties and anti-fungal activity of endophytic bacterial strains isolated from Thymus altaicus and Salvia deserta in arid lands[J]. Journal of Arid Land, 2023, 15(11): 1405-1420.
[6] GOU Qianqian, MA Gailing, QU Jianjun, WANG Guohua. Diversity of soil bacteria and fungi communities in artificial forests of the sandy-hilly region of Northwest China[J]. Journal of Arid Land, 2023, 15(1): 109-126.
[7] TENG Zeyu, XIAO Shengchun, CHEN Xiaohong, HAN Chao. Soil bacterial characteristics between surface and subsurface soils along a precipitation gradient in the Alxa Desert, China[J]. Journal of Arid Land, 2021, 13(3): 257-273.
[8] ZHANG Bingchang, ZHANG Yongqing, ZHOU Xiaobing, LI Xiangzhen, ZHANG Yuanming. Snowpack shifts cyanobacterial community in biological soil crusts[J]. Journal of Arid Land, 2021, 13(3): 239-256.
[9] MA Gailing, GOU Qianqian, WANG Guohua, QU Jianjun. Succession of soil bacterial and fungal communities of Caragana korshinskii plantation in a typical agro-pastoral ecotone in northern China over a 50-a period[J]. Journal of Arid Land, 2021, 13(10): 1071-1086.
[10] Vyacheslav SHURIGIN, Dilfuza EGAMBERDIEVA, LI Li, Kakhramon DAVRANOV, Hovik PANOSYAN, Nils-Kåre BIRKELAND, Stephan WIRTH, Sonoko D BELLINGRATH-KIMURA. Endophytic bacteria associated with halophyte Seidlitzia rosmarinus Ehrenb. ex Boiss. from saline soil of Uzbekistan and their plant beneficial traits[J]. Journal of Arid Land, 2020, 12(5): 730-740.
[11] YAN Ru, FENG Wei. Effect of vegetation on soil bacteria and their potential functions for ecological restoration in the Hulun Buir Sandy Land, China[J]. Journal of Arid Land, 2020, 12(3): 473-494.
[12] Hui ZHANG, Wenjun LIU, Xiaoming KANG, Xiaoyong CUI, Yanfen WANG, Haitao ZHAO, Xiaoqing QIAN, Yanbin HAO. Changes in soil microbial community response to precipitation events in a semi-arid steppe of the Xilin River Basin, China[J]. Journal of Arid Land, 2019, 11(1): 97-110.
[13] Shaofei JIN, Xiaohong TIAN, Hesong WANG. Hierarchical responses of soil organic and inorganic carbon dynamics to soil acidification in a dryland agroecosystem, China[J]. Journal of Arid Land, 2018, 10(5): 726-736.
[14] Yonghong LIU, Jianwei GUO, Li LI, D ASEM Mipeshwaree, Yongguang ZHANG, A MOHAMAD Osama, SALAM Nimaichand, Wenjun LI. Endophytic bacteria associated with endangered plant Ferula sinkiangensis K. M. Shen in an arid land: diversity and plant growth-promoting traits[J]. Journal of Arid Land, 2017, 9(3): 432-445.
[15] Wei ZHANG, Gaosen ZHANG, Xiukun WU, Guangxiu LIU, Zhibao DONG, Jianjun QU, Yun WANG, Tuo CHEN. Bacterial diversity in the sediment of Crescent Moon Spring, Kumtag Desert, Northwest China[J]. Journal of Arid Land, 2017, 9(2): 278-286.