Please wait a minute...
Journal of Arid Land  2021, Vol. 13 Issue (3): 257-273    DOI: 10.1007/s40333-021-0004-6
Research article     
Soil bacterial characteristics between surface and subsurface soils along a precipitation gradient in the Alxa Desert, China
TENG Zeyu1,2,*(), XIAO Shengchun1, CHEN Xiaohong3, HAN Chao1,2
1Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environmental Resources, Chinese Academy of Sciences, Lanzhou 730000, China
2University of Chinese Academy of Sciences, Beijing 100049, China
3Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
Download: HTML     PDF(1510KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Bacteria in desert soil have unique phylogeny and important ecological functions, and their responses to changes in precipitation need further attention. However, relevant studies have mainly focused on the surface soil, and studies on the responses of bacteria at different soil depths to variations in precipitation are rare. Thus, we used 16S rDNA high-throughput sequencing to investigate the changes in soil bacterial distribution along a mean annual precipitation gradient (50-150 mm) in the Alxa Desert, China, and compared the variation characteristics in the surface soil layer (0-10 cm) and subsurface soil layer (10-20 cm). Results showed that soil bacterial communities significantly changed along the precipitation gradient in both soil layers. However, the subsurface soil layer could support bacterial communities with higher diversity and closer internal relationships but more internal competition than the surface soil layer. Additionally, compared with the surface soil layer, variations in diversity and co-occurrence patterns in the subsurface soil layer were more in line with the changes in the mean annual precipitation, while bacterial community structure was less variable in the subsurface soil layer. Compared with the mean annual precipitation, soil moisture had little influence on the structure and diversity of soil bacterial community but had a high correlation with intercommunity connectivity. Therefore, soil moisture might play a complex role in mediating environmental conditions and soil bacterial community characteristics. Due to the different responses of surface and subsurface soil bacteria to the changes in precipitation, it is necessary to distinguish different soil layers when predicting the trends in desert soil bacterial conditions associated with precipitation, and prediction of subsurface soil bacteria may be more accurate.



Key wordsprecipitation gradient      soil layer      soil bacterial community structure      diversity      co-occurrence pattern     
Received: 22 September 2020      Published: 10 March 2021
Corresponding Authors:
About author: * TENG Zeyu (E-mail: Tengzeyu1990@sina.com)
Cite this article:

TENG Zeyu, XIAO Shengchun, CHEN Xiaohong, HAN Chao. Soil bacterial characteristics between surface and subsurface soils along a precipitation gradient in the Alxa Desert, China. Journal of Arid Land, 2021, 13(3): 257-273.

URL:

http://jal.xjegi.com/10.1007/s40333-021-0004-6     OR     http://jal.xjegi.com/Y2021/V13/I3/257

Type Sampling site Latitude and longitude Elevation
(m)
Dominant species Coverage
(%)
Soil type
Typical desert
(MAP=50 mm)
Td1 40°55′22″N, 100°52′40″E 1031 Nitraria tangutorum, Haloxylon
ammodendron,
Reaumuria songarica, Calligonum mongolicum
7.01 Gray-brown calcic soil
Td2 41°23′48″N, 102°21′26″E 904 2.95
Td3 41°17′53″N, 104°08′45″E 794 3.18
Steppe desert
(MAP=100 mm)
Sd1 40°21′21″N, 104°44′19″E 1278
Nitraria tangutorum, Zygophyllum xanthoxylon,
Reaumuria songarica, Caragana korshinskii,
Pearl russianthistle
17.93 Gray-brown desert soil
Sd2 39°28′13″N, 105°36′16″E 1089 15.45
Sd3 40°03′12″N, 103°55′08″E 1471 26.87
Sd4 39°37′16″N, 103°07′54″E 1232 12.29
Desertified steppe
(MAP=150 mm)
Ds1 38°16′34″N, 103°56′35″E 1394 Nitraria tangutorum, Caragana korshinskii,
Oxytropis aciphylla, Reaumuria songarica, Ammopiptanthus mongolicus,
Zygophyllum xanthoxylon
35.66 Gray desert soil
Ds2 38°54′33″N, 105°30′15″E 1345 52.76
Ds3 37°54′02″N, 105°12′31″E 1416 28.44
Table 1 Location and environmental characteristics of sampling sites
Fig. 1 Relative abundance of soil bacterial at phylum level in different MAP (mean annual precipitation)-related subregions and soil layers. Td, typical desert (50 mm precipitation); Sd, steppe desert (100 mm precipitation); Ds, desertified steppe (150 mm precipitation); A, 0-10 cm soil layer; B, 10-20 cm soil layer.
Fig. 2 Alpha diversity index in different MAP-related subregions and soil layers. Td, typical desert (50 mm precipitation); Sd, steppe desert (100 mm precipitation); Ds, desertified steppe (150 mm precipitation); A, 0-10 cm soil layer; B, 10-20 cm soil layer; PD, phylogenetic diversity. The lowercase letters indicate significant differences among different treatments at P<0.05 level.
Group F value P value Group F value P value
Ds-Sd 3.021 0.008 Td.A-Sd.A 16.727 <0.001
Sd-Td 12.343 <0.001 Td.A-Ds.A 15.883 <0.001
Ds-Td 12.203 <0.001 Sd.A-Ds.A 4.081 0.004
Td.A-Td.B 5.069 0.007 Td.B-Sd.B 4.615 <0.001
Sd.A-Sd.B 7.222 <0.001 Td.B-Ds.B 7.022 <0.001
Ds.A-Ds.B 17.155 <0.001 Sd.B-Ds.B 2.925 0.014
A-B 13.404 <0.001
Table 2 Result of analysis of molecular variance (AMOVA) in different MAP-related subregions and soil layers
Fig. 3 Cladograms generated according to LEfSe analysis for the precipitation divisions in layer A (a) and layer B (b). Biomarkers were statistically significant at LDA ≥4. Cladograms indicating the phylogenetic distribution of bacterial lineages associated with the three subregions. Phylum, class, order, family, genus and species levels are listed in order from inside to outside of the cladogram. Red, green and blue circles represent the bacteria enriched in Ds, Sd and Td subregions, respectively, whereas yellow circle represents the taxa showing no significant difference among the three subregions. Labels for biomarkers for the class, order and family levels are abbreviated with a single letter. For the genus and species levels, please see Figures S1 and S2 for details.
Fig. 4 Cladogram generated according to LEfSe analysis for the soil layers and biomarkers showing statistical significance at LDA ≥4. Red and green circles represent the bacteria enriched in the A and B soil layers, respectively.
Index Td.A Td.B Sd.A Sd.B Ds.A Ds.B
SOC (g/kg) 1.11±0.71a 0.89±0.35a 1.09±0.53a 0.84±0.21a 1.62±1.15a 1.33±0.86a
TN (g/kg) 0.16±0.06b 0.21±0.05ab 0.26±0.10ab 0.21±0.10ab 0.31±0.11a 0.20±0.10ab
TC (g/kg) 3.85±0.66a 4.76±0.53a 5.87±4.16a 4.10±1.99a 4.61±4.02a 4.07±3.78a
TP (g/kg) 0.28±0.07a 0.30±0.11a 0.25±0.03a 0.21±0.05b 0.16±0.04c 0.15±0.02c
AN (mg/kg) 15.10±9.82b 16.28±12.12b 32.39±9.59a 33.95±3.69a 27.54±10.5ab 25.27±9.11ab
AP (mg/kg) 1.58±0.20b 1.42±0.54b 2.15±0.12ab 2.25±1.91ab 3.10±1.03a 1.58±0.63b
AK (mg/kg) 99.60±31.33b 113.43±16.60b 155.63±40.83a 112.05±39.01b 127.27±47.86ab 135.57±46.21ab
SMC (%) 1.33±0.78b 2.47±0.01a 1.30±0.60b 2.66±1.00a 3.07±0.76a 3.92±1.55a
SO2- 4 (cmol/kg) 4.77±4.75b 10.31±5.83a 1.95±3.31b 1.92±3.31b 0.12±0.10c 0.09±0.06c
Cl- (cmol/kg) 17.55±28.02a 5.76±6.24a 0.50±0.10b 0.15±0.10bc 0.07±0.01c 0.07±0.01c
HCO3- (cmol/kg) 0.27±0.06b 0.23±0.04c 0.36±0.08ab 0.38±0.08a 0.38±0.06a 0.39±0.06a
Ca2+ (cmol/kg) 2.97±2.09b 7.71±4.36a 1.90±3.07bc 1.82±3.07bc 0.32±0.08c 0.27±0.05c
Mg2+ (cmol/kg) 0.63±0.80a 0.44±0.29a 0.18±0.13b 0.17±0.13b 0.11±0.08b 0.12±0.04b
K+ (cmol/kg) 0.13±0.11a 0.12±0.06a 0.04±0.04b 0.04±0.04b 0.04±0.02b 0.05±0.01b
Na+ (cmol/kg) 15.78±25.01a 6.10±6.29a 0.34±0.21b 0.32±0.21b 0.02±0.03c 0.05±0.02c
EC (dS/m) 8.04±11.31a 5.06±3.86a 1.36±6.14a 4.34±6.15a 0.31±0.03b 0.39±0.05b
pH 7.44±0.16b 7.38±0.05b 7.67±0.16a 7.80±0.16a 7.72±0.08a 7.70±0.12a
VCS (%) 5.91±2.71a 3.22±3.63b 0.22±0.44c 0.03±0.07d 0.72±0.66c 0.33±0.29c
CS (%) 14.30±5.99a 8.89±6.82ab 3.84±1.02b 5.95±5.24b 21.07±18.57a 13.05±11.79a
MS (%) 21.58±9.17a 21.28±8.50a 26.69±8.40a 25.57±15.04a 27.67±17.71a 27.31±16.48a
FS (%) 43.32±7.39a 48.24±7.74a 47.26±10.84a 50.13±21.77a 32.89±18.77a 40.77±12.22a
VFS (%) 11.13±5.53ab 12.66±3.23a 8.78±3.91ab 7.90±5.14b 11.43±9.37ab 11.47±6.58ab
Silt (%) 3.20±1.61a 4.82±2.31a 11.20±11.19a 9.10±9.37a 5.33±7.42a 6.20±7.99a
Clay (%) 0.57±0.50a 0.88±0.67a 2.03±2.27a 1.32±1.67a 0.89±1.55a 0.87±1.51a
TCn (g/kg) 384.71±6.85a 377.66 ± 4.24b 377.23±7.59b
TNn (g/kg) 18.39±1.92a 20.45 ± 7.31a 21.32±6.94a
TPn (g/kg) 1.23±0.08ab 1.52 ± 0.78a 1.15±0.09b
COV (%) 4.38±1.98c 18.14 ± 5.67b 38.95±10.82a
Table 3 Differences in environmental factors (soil nutrients, moisture, salinity, pH, particle size distribution, N. tangutorum stoichiometric characteristic and vegetation coverage) in different MAP-related subregions and soil layers
Fig. 5 Canonical correlation analysis (CCA) ordination of bacterial community structure at the genus level in relation to major environmental factors in layers A (a) and B (b)
Layer A r value P value Layer B r value P value
VCS 0.7811 <0.001 Ca2+ 0.7993 <0.001
Na+ 0.6744 <0.001 SO2- 4 0.7242 <0.001
pH 0.6366 <0.001 Cl- 0.6586 <0.001
MAP 0.6125 <0.001 Na+ 0.6384 <0.001
Cl- 0.5879 <0.001 HCO3- 0.5660 <0.001
SO2- 4 0.5877 <0.001 K+ 0.4798 <0.001
EC 0.5766 <0.001 TP 0.4403 <0.001
Ca2+ 0.5717 <0.001 Mg2+ 0.4013 0.002
Mg2+ 0.4498 <0.001 pH 0.3987 <0.001
K+ 0.4090 <0.001 EC 0.3601 <0.001
AN 0.3987 <0.001 VCS 0.3558 <0.006
COV 0.3099 0.003 MAP 0.3397 <0.001
TCn 0.2961 <0.001 AN 0.2644 <0.001
AP 0.2855 0.004 COV 0.2077 0.009
VFS 0.2020 0.008
Table 4 Mantel test comparing the correlation between environmental factors and soil bacterial community structure in layer A and layer B
Type MD CC GD APL PNR (%)
Td.A 0.6502 0.4980 0.0242 4.443 24.41
Sd.A 0.5014 0.5539 0.0230 4.272 39.15
Ds.A 0.3332 0.5299 0.0354 3.691 25.14
Td.B 0.5216 0.5267 0.0332 4.072 28.19
Sd.B 0.5512 0.5407 0.0489 3.576 36.01
Ds.B 0.3704 0.5721 0.0527 3.303 40.14
Table 5 Parameters of network topology analysis (genus level) in different MAP-related subregions and soil layers
Fig. S1 Histogram of linear discriminant analysis (LDA) score distribution shows the categories with LDA score greater than the set value (≥ 4) in layer A (0-10 cm) along the precipitation gradient. The length of the histogram indicates the magnitude of the influence of biomarkers.
Fig. S2 Histogram of linear discriminant analysis (LDA) score distribution shows the categories with LDA score greater than the set value (≥ 4) in layer B (10-20 cm) along the precipitation gradient. The length of the histogram indicates the magnitude of the influence of biomarkers.
Fig. S3 Major environmental factors associated with alpha diversity in layers A (a) and B (b). Environmental factors are significantly correlated with at least one alpha diversity index. Asterisks indicate significance of the Spearman's r correlation. *, P<0.05 level; **, P<0.01 level.
Fig. S4 Major environmental factors associated with parameters of network topology analysis. Environmental factors are significantly correlated with at least one parameter. Asterisks indicate significance of the Spearman's r correlation. *, P<0.05 level; **, P<0.01 level.
[1]   Angel R, Soares M I M, Ungar E D, et al. 2010. Biogeography of soil archaea and bacteria along a steep precipitation gradient. The International Society for Microbial Ecology Journal, 4(4):553-563.
[2]   Azua-Bustos A, Urrejola C, Vicuña R. 2012. Life at the dry edge: Microorganisms of the Atacama Desert. FEBS Letters, 586(18):2939-2945.
doi: 10.1016/j.febslet.2012.07.025 pmid: 22819826
[3]   Bachar A, Al-Ashhab A, Soares M I M, et al. 2010. Soil microbial abundance and diversity along a low precipitation gradient. Microbial Ecology, 60:453-461.
doi: 10.1007/s00248-010-9727-1 pmid: 20683588
[4]   Bachar A, Soares M I M, Gillor O. 2012. The effect of resource islands on abundance and diversity of bacteria in arid soils. Microbial Ecology, 63(3):694-700.
doi: 10.1007/s00248-011-9957-x pmid: 22038034
[5]   Banerjee S, Helgason B, Wang L, et al. 2016. Legacy effects of soil moisture on microbial community structure and N2O emissions. Soil Biology and Biochemistry, 95:40-50.
[6]   Barnard R L, Osborne C A, Firestone M K. 2013. Responses of soil bacterial and fungal communities to extreme desiccation and rewetting. The International Society for Microbial Ecology Journal, 7(11):2229-2241.
[7]   Brockett B F T, Prescott C E, Grayston S J. 2012. Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada. Soil Biology and Biochemistry, 44(1):9-20.
[8]   Clark J S, Campbell J H, Grizzle H, et al. 2009. Soil microbial community response to drought and precipitation variability in the Chihuahuan Desert. Microbial Ecology, 57(2):248-260.
doi: 10.1007/s00248-008-9475-7 pmid: 19067031
[9]   Cregger M A, McDowell N G, Pangle R E, et al. 2014. The impact of precipitation changes on nitrogen cycling in a semi-arid ecosystem. Functional Ecology, 28(5):1534-1544.
[10]   Cruz-Martínez K, Suttle K B, Brodie E L, et al. 2009. Despite strong seasonal responses, soil microbial consortia are more resilient to long-term changes in rainfall than overlying grassland. The International Society for Microbial Ecology Journal, 3(6):738-744.
[11]   Cui Y X, Fang L C, Guo X B, et al. 2018. Responses of soil microbial communities to nutrient limitation in the desert-grassland ecological transition zone. Science of the Total Environment, 642:45-55.
[12]   Dijkstra F A, He M Z, Johansen M P, et al. 2015. Plant and microbial uptake of nitrogen and phosphorus affected by drought using 15N and 32P tracers. Soil Biology and Biochemistry, 82:135-142.
[13]   D'Odorico P, Caylor K, Okin G S, et al. 2007. On soil moisture-vegetation feedbacks and their possible effects on the dynamics of dryland ecosystems. Journal of Geophysical Research Atmospheres, 112:G04010.
[14]   Easterling D R, Events J L, Groismman P Y, et al. 2000. Observed variability and trends in extreme climate events: A brief review. Bulletin of the American Meteorological Society, 81(3):417-425.
[15]   Edgar R C. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32(5):1792-1797.
pmid: 15034147
[16]   Edgar R C, Haas B J, Clemente J C, et al. 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics, 27(16):2194-2200.
doi: 10.1093/bioinformatics/btr381 pmid: 21700674
[17]   Epstein H E, Lauenroth W K, Burke I C. 1997. Effects of temperature and soil texture on ANPP in the US Great Plains. Ecology, 78(8):2628-2631.
[18]   Excoffier L, Smouse P, Quattro J. 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics, 131(2):479– 491.
pmid: 1644282
[19]   Fang F, Hu Y K, Gong Y M, et al. 2013. Desert soil organic carbon characterized by the vertical distribution of soil microbial carbon. Journal of Desert Research, 33(3):777-781. (in Chinese)
[20]   Fierer N, Leff J W, Adams B J, et al. 2012. Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proceedings of the National Academy of Sciences of the United States of America, 109(52):21390-21395.
[21]   Haas B J, Gevers D, Earl A M, et al. 2011. Chimeric 16s rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Research, 21:494-504.
pmid: 21212162
[22]   Huang G, Li Y, Su Y G. 2015. Effects of increasing precipitation on soil microbial community composition and soil respiration in a temperate desert, northwestern China. Soil Biology and Biochemistry, 83:52-56.
[23]   Johnson R M, Ramond J B, Gunnigle E, et al. 2017. Namib Desert edaphic bacterial, fungal and archaeal communities assemble through deterministic processes but are influenced by different abiotic parameters. Extremophiles, 21(2):381-392.
pmid: 28058513
[24]   Jones D L, Olivera-Ardid S, Klumpp E, et al. 2017. Moisture activation and carbon use efficiency of soil microbial communities along an aridity gradient in the Atacama Desert. Soil Biology and Biochemistry, 117:68-71.
[25]   Kuzyakov Y, Blagodatskaya E. 2015. Microbial hotspots and hot moments in soil: concept & review. Soil Biology and Biochemistry, 83:184-199.
[26]   Li X R, Tan H J, He M Z, et al. 2009. Patterns of shrub species richness and abundance in relation to environmental factors on the Alxa Plateau: Prerequisites for conserving shrub diversity in extreme arid desert regions. Science in China, 52:669-680. (in Chinese)
[27]   Loarie S R, Duffy P B, Hamilton H, et al. 2010. The velocity of climate change. Nature, 462:1052-1055.
doi: 10.1038/nature08649 pmid: 20033047
[28]   Lozupone C, Lladser M E, Knights D, et al. 2011. UniFrac: an effective distance metric for microbial community comparison. The International Society for Microbial Ecology Journal, 5(2):169-172.
[29]   Maestre F T, Delgado-Baquerizo M, Jeffries T C, et al. 2015. Increasing aridity reduces soil microbial diversity and abundance in global drylands. Proceedings of the National Academy of Sciences of the United States of America, 112(51):15684-15689.
[30]   Manzoni S, Schimel J P, Porporato A. 2012. Responses of soil microbial communities to water stress: Results from a meta-analysis. Ecology, 93(4):930-938.
doi: 10.1890/11-0026.1 pmid: 22690643
[31]   Martin M. 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet Journal, 17(1):10-12.
[32]   Michelsen C F, Pedas P, Glaring M A, et al. 2014. Bacterial diversity in Greenlandic soils as affected by potato cropping and inorganic versus organic fertilization. Polar Biology, 37:61-71.
[33]   Neilson J W, Califf K, Cardona C, et al. 2017. Significant impacts of increasing aridity on the arid soil microbiome. mSystems, 2(3):224-231.
[34]   Noy-Meir I. 1973. Desert ecosystems: Environment and producers. Annual Review of Ecology and Systematics, 4:25-51.
[35]   Orlando J, Alfaro M, Bravo L, et al. 2010. Bacterial diversity and occurrence of ammonia-oxidizing bacteria in the Atacama Desert soil during a "desert bloom" event. Soil Biology and Biochemistry, 42(7):1183-1188.
[36]   Pei H, Zhu Z Y, Liang C Z. 2011. Ecological Environment Characteristics and Ecological Protection in Alxa Desert Area. Beijing: China Meteorological Press, 12-13. (in Chinese)
[37]   Pointing S B, Belnap J. 2012. Microbial colonization and controls in dryland systems. Nature Reviews Microbiology, 10(8):551-562.
doi: 10.1038/nrmicro2831 pmid: 22772903
[38]   Quast C, Pruesse E, Yilmaz P, et al. 2013 The Silva ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research, 41:590-596.
[39]   Rath K M, Maheshwari A, Rousk J. 2017. The impact of salinity on the microbial response to drying and rewetting in soil. Soil Biology and Biochemistry, 108:17-26.
[40]   Rivas M N, Burton O T, Wise P, et al. 2013. A microbiota signature associated with experimental food allergy promotes allergic sensitization and anaphylaxis. Journal of Allergy and Clinical, 131(1):201-212.
[41]   Rodriguez-Zaragoza S, Mayzlish E, Steinberger Y. 2005. Vertical distribution of the free-living amoeba population in soil under desert shrubs in the Negev Desert, Israel. Applied and Environmental Microbiology, 71(4):2053-2060.
doi: 10.1128/AEM.71.4.2053-2060.2005 pmid: 15812038
[42]   Schimmel J P. 2018. Life in dry soils: effects of drought on soil microbial communities and processes. Annual Review of Ecology Evolution and Systematics, 49:409-432.
[43]   Scholes R J, Archer S R. 1997. Tree-grass interactions in Savannas. Annual Review of Ecology and Systematics, 28:517-544.
doi: 10.1146/annurev.ecolsys.28.1.517
[44]   Segata N, Lzard J, Waldron L, et al. 2011. Metagenomic biomarker discovery and explanation. Genome Biology, 12(6):R60.
doi: 10.1186/gb-2011-12-6-r60 pmid: 21702898
[45]   Shamir I, Steinberger Y. 2007. Vertical distribution and activity of soil microbial population in a sandy desert ecosystem. Microbial Ecology, 53:340-347.
doi: 10.1007/s00248-006-9137-6 pmid: 17265001
[46]   Šťovíček A, Kim M, Or D, et al. 2017. Microbial community response to hydration-desiccation cycles in desert soil. Scientific Reports, 7:45735.
pmid: 28383531
[47]   Tomiolo S, van der Putten W H, Tielbörger K. 2015. Separating the role of biotic interactions and climate in determining adaptive response of plants to climate change. Ecology, 96(5):1298-1308.
doi: 10.1890/14-1445.1 pmid: 26236843
[48]   Tripathi B M, Moroenyane I, Chen S, et al. 2017. Trends in taxonomic and functional composition of soil microbiome along a precipitation gradient in Israel. Microbial Ecology, 74:168-176.
pmid: 28074247
[49]   Xiao S C, Chen X H, Ding A J. 2017. Study process of climate changes, environment evolution and its driving mechanism in the last two centuries in the Alxa Desert. Journal of Desert Research, 37:1102-1110. (in Chinese)
[50]   Yao Z Y, Xiao J H, Li C X, et al. 2011. Regional characteristics of dust storms observed in the Alxa Plateau of China from 1961 to 2005. Environmental Earth Sciences, 64:255-267.
[51]   Yi C X, Wei S H, Hendrey G. 2014. Warming climate extends dryness-controlled areas of terrestrial carbon sequestration. Scientific Reports, 4:5472-5477.
pmid: 24980649
[52]   Zahran H H. 1997. Diversity, adaptation and activity of the bacterial flora in saline environments. Biology and Fertility of Soils, 25:211-223.
[53]   Zhang L H, Xie Z K, Zhao R F, et al. 2018. Plant, microbial community and soil property responses to an experimental precipitation gradient in a desert grassland. Applied Soil Ecology, 127:87-95.
[54]   Zhou J Z, Xia B C, Huang H S, et al. 2004. Microbial diversity and heterogeneity in sandy subsurface soils. Applied and Environmental Microbiology, 70:1723-1734.
doi: 10.1128/aem.70.3.1723-1734.2004 pmid: 15006798
[55]   Zvyagintsev D G, Ritz K, Dighton J, et al. 1994. Vertical Distribution of Microbial Communities in Soils. Hoboken, New Jersey: John Wiley & Sons Ltd., 29-37.
[1] SUN Lin, YU Zhouchang, TIAN Xingfang, ZHANG Ying, SHI Jiayi, FU Rong, LIANG Yujie, ZHANG Wei. Leguminosae plants play a key role in affecting soil physical-chemical and biological properties during grassland succession after farmland abandonment in the Loess Plateau, China[J]. Journal of Arid Land, 2023, 15(9): 1107-1128.
[2] M'hammed BOUALLALA, Souad NEFFAR, Lyès BRADAI, Haroun CHENCHOUNI. Do aeolian deposits and sand encroachment intensity shape patterns of vegetation diversity and plant functional traits in desert pavements?[J]. Journal of Arid Land, 2023, 15(6): 667-694.
[3] ZHANG Lihua, GAO Han, WANG Junfeng, ZHAO Ruifeng, WANG Mengmeng, HAO Lianyi, GUO Yafei, JIANG Xiaoyu, ZHONG Lingfei. Plant property regulates soil bacterial community structure under altered precipitation regimes in a semi-arid desert grassland, China[J]. Journal of Arid Land, 2023, 15(5): 602-619.
[4] KUDURETI Ayijiamali, ZHAO Shuai, Dina ZHAKYP, TIAN Changyan. Responses of soil fauna community under changing environmental conditions[J]. Journal of Arid Land, 2023, 15(5): 620-636.
[5] TONG Shan, CAO Guangchao, ZHANG Zhuo, ZHANG Jinhu, YAN Xin. Soil microbial community diversity and distribution characteristics under three vegetation types in the Qilian Mountains, China[J]. Journal of Arid Land, 2023, 15(3): 359-376.
[6] GOU Qianqian, MA Gailing, QU Jianjun, WANG Guohua. Diversity of soil bacteria and fungi communities in artificial forests of the sandy-hilly region of Northwest China[J]. Journal of Arid Land, 2023, 15(1): 109-126.
[7] WANG Kun, WANG Xiaoxia, FEI Hongyan, WAN Chuanyu, HAN Fengpeng. Changes in diversity, composition and assembly processes of soil microbial communities during Robinia pseudoacacia L. restoration on the Loess Plateau, China[J]. Journal of Arid Land, 2022, 14(5): 561-575.
[8] HE Bing, CHANG Jianxia, GUO Aijun, WANG Yimin, WANG Yan, LI Zhehao. Assessment of river basin habitat quality and its relationship with disturbance factors: A case study of the Tarim River Basin in Northwest China[J]. Journal of Arid Land, 2022, 14(2): 167-185.
[9] LI Li, GAO Lei, LIU Yonghong, FANG Baozhu, HUANG Yin, Osama A A MOHAMAD, Dilfuza EGAMBERDIEVA, LI Wenjun, MA Jinbiao. Diversity of cultivable endophytic bacteria associated with halophytes in Xinjiang of China and their plant beneficial traits[J]. Journal of Arid Land, 2021, 13(8): 790-800.
[10] ZHOU Siyuan, DUAN Yufeng, ZHANG Yuxiu, GUO Jinjin. Vegetation dynamics of coal mining city in an arid desert region of Northwest China from 2000 to 2019[J]. Journal of Arid Land, 2021, 13(5): 534-547.
[11] ZHANG Bingchang, ZHANG Yongqing, ZHOU Xiaobing, LI Xiangzhen, ZHANG Yuanming. Snowpack shifts cyanobacterial community in biological soil crusts[J]. Journal of Arid Land, 2021, 13(3): 239-256.
[12] MA Gailing, GOU Qianqian, WANG Guohua, QU Jianjun. Succession of soil bacterial and fungal communities of Caragana korshinskii plantation in a typical agro-pastoral ecotone in northern China over a 50-a period[J]. Journal of Arid Land, 2021, 13(10): 1071-1086.
[13] Adilov BEKZOD, Shomurodov HABIBULLO, FAN Lianlian, LI Kaihui, MA Xuexi, LI Yaoming. Transformation of vegetative cover on the Ustyurt Plateau of Central Asia as a consequence of the Aral Sea shrinkage[J]. Journal of Arid Land, 2021, 13(1): 71-87.
[14] XU Bo, HUGJILTU Minggagud, BAOYIN Taogetao, ZHONG Yankai, BAO Qinghai, ZHOU Yanlin, LIU Zhiying. Rapid loss of leguminous species in the semi-arid grasslands of northern China under climate change and mowing from 1982 to 2011[J]. Journal of Arid Land, 2020, 12(5): 752-765.
[15] Ahmed M M HASOBA, Ahmed A H SIDDIG, Yousif E YAGOUB. Exploring tree diversity and stand structure of savanna woodlands in southeastern Sudan[J]. Journal of Arid Land, 2020, 12(4): 609-617.