Please wait a minute...
Journal of Arid Land  2023, Vol. 15 Issue (6): 667-694    DOI: 10.1007/s40333-023-0014-7     CSTR: 32276.14.s40333-023-0014-7
Research article     
Do aeolian deposits and sand encroachment intensity shape patterns of vegetation diversity and plant functional traits in desert pavements?
M'hammed BOUALLALA1, Souad NEFFAR2,3, Lyès BRADAI4, Haroun CHENCHOUNI5,6,*()
1Laboratory of Saharan Natural Resources, Faculty of Sciences and Technology, University of Ahmed Draia, Adrar 01000, Algeria
2Department of Nature and Life Sciences, Faculty of Exact Sciences and Nature and Life Sciences, University of Tebessa, Tebessa 12002, Algeria
3Laboratory Water and Environment, University of Tebessa, Tebessa 12002, Algeria
4Laboratory of Saharan Bioresources Preservation and Valorization, Faculty of Nature and Life Sciences, University of Kasdi Merbah, Ouargla 30000, Algeria
5Department of Forest Management, Higher National School of Forests, Khenchela 40000, Algeria
6Laboratory of Natural Resources and Management of Sensitive Environments, University of Oum-El-Bouaghi, Oum-El- Bouaghi 04000, Algeria
Download: HTML     PDF(7273KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

The effects of sand encroachment on composition, diversity, and functional patterns of vegetation in drylands are rarely studied, and yet addressing these aspects is important to deepen our understanding of the biodiversity conservation. This study aimed to investigate the effect of sand encroachment on plant functional biodiversity of desert pavements (gravel deserts) in the Sahara Desert of Algeria. Plants were sampled and analyzed in three desert pavements with different levels of sand encroachment (LSE) and quantity of aeolian deposits (low, LLSE; medium, MLSE; and high, HLSE). Within the sample-plot area (100 m2), density of every plant species was identified and total vegetation cover was determined. Plant taxonomic and functional diversity were analyzed and compared between LSE. Result showed that 19 plant species in desert pavements were classified into 18 genera and 13 families. Asteraceae and Poaceae were the most important families. The species Anabasis articulata (Forssk) Moq. characterized LLSE desert pavements with 11 species, whereas Thymelaea microphylla Coss. & Durieu ex Meisn. and Calobota saharae (C&D) Boatwr. & van Wyk were dominant species of desert pavements with MLSE (14 species) and HLSE (10 species), respectively. The highest values of species richness and biodiversity were recorded in desert pavements with MLSE, while low values of these ecological parameters were obtained in desert pavements with HLSE. Desert pavements with LLSE were characterized with the highest values of species abundances. Plant communities were dominated by chamaephytes, anemochorous, arido-active, and competitive stress-tolerant plants. The increase in LSE along the gradient from LLSE to HLSE induced significant changes in plant community variables including decreases in plant density, plant rarity, lifeform composition, morphological type, and aridity adaptation. Desert pavements with HLSE favor the degradation of vegetation and trigger biodiversity erosion.



Key wordsdesert pavements      hot and arid rangeland      plant diversity      land degradation      sand encroachment      plant functional trait      Sahara Desert     
Received: 25 December 2022      Published: 30 June 2023
Corresponding Authors: * Haroun CHENCHOUNI (E-mail: chenchouni@gmail.com; chenchouni.haroun@ensf.dz)
Cite this article:

M'hammed BOUALLALA, Souad NEFFAR, Lyès BRADAI, Haroun CHENCHOUNI. Do aeolian deposits and sand encroachment intensity shape patterns of vegetation diversity and plant functional traits in desert pavements?. Journal of Arid Land, 2023, 15(6): 667-694.

URL:

http://jal.xjegi.com/10.1007/s40333-023-0014-7     OR     http://jal.xjegi.com/Y2023/V15/I6/667

Fig. 1 Geographic location and elevation (a1 and a2) of the El-Guerrara region (Ghardaia Province, Algeria), and monthly meteorological data for mean temperature, precipitation, and potential evapotranspiration (PET; b). Bars are standard errors.
Family Species Level of sand encroachment (LSE)
Low (LLSE) Moderate (MLSE) High (HLSE) Overall
Amaranthaceae Anabasis articulata (Forssk.) Moq. 29.8±5.1 [149] (100%) 10.0±9.5 [50] (100%) 5.0±2.5 [25] (100%) 14.9±12.6 [224] (100%)
Apiaceae Deverra scoparia subsp. scoparia Coss. & Durieu - - 0.2±0.4 [1] (20%) 0.1±0.3 [1] (7%)
Asteraceae Mecomischus halimifolius (Munby) Hochr. 1.0±1.4 [5] (40%) 1.2±1.1 [6] (60%) 2.6±2.1 [13] (80%) 1.6±1.6 [24] (60%)
Asteraceae Pulicaria undulata subsp. undulata (L.) C.A. Mey. 0.6±0.9 [3] (40%) 0.6±0.5 [3] (60%) - 0.4±0.6 [6] (33%)
Asteraceae Rhanterium suaveolens Desf. - 0.2±0.4 [1] (20%) 0.6±0.9 [3] (40%) 0.3±0.6 [4] (20%)
Boraginaceae Moltkiopsis ciliata (Forssk.) I.M. Johnst. 2.2±3.3 [11] (60%) 0.6±0.5 [3] (60%) - 0.9±2.1 [14] (40%)
Brassicaceae Moricandia nitens (Viv.) E.A. Durand & Barratte 0.2±0.4 [1] (20%) 2.8±2.6 [14] (60%) - 1.0±1.9 [15] (27%)
Caryophylla-
ceae
Polycarpaea repens (Forssk.) Asch. & Schweinf. 2.8±2.6 [14] (60%) 1.6±2.3 [8] (40%) - 1.5±2.2 [22] (33%)
Cistaceae Helianthemum lippii (L.) Dum. Cours. - 0.2±0.4 [1] (20%) 0.6±0.9 [3] (40%) 0.3±0.6 [4] (20%)
Ephedraceae Ephedra alata subsp. alenda (Stapf) Trab. - - 1.6±2.1 [8] (60%) 0.5±1.4 [8] (20%)
Euphorbia-
ceae
Euphorbia guyoniana Boiss. & Reut. - 2.0±1.0 [10] (100%) - 0.7±1.1 [10] (33%)
Fabaceae Calobota saharae (C&D) Boatwr. & van Wyk - - 14.2±5.2 [71] (100%) 4.7±7.5 [71] (33%)
Fabaceae Retama raetam (Forssk.) Webb - 0.2±0.4 [1] (20%) - 0.1±0.3 [1] (7%)
Poaceae Centropodia forsskaolii (Vahl) Cope 1.4±3.1 [7] (20%) 0.8±1.3 [4] (40%) 2.0±3.5 [10] (40%) 1.4±2.6 [21] (33%)
Poaceae Stipagrostis acutiflora (Trin. & Rupr.) De Winter 0.4±0.9 [2] (20%) - - 0.1±0.5 [2] (7%)
Poaceae Stipagrostis pungens (Desf.) De Winter - - 0.2±0.4 [1] (20%) 0.1±0.3 [1] (7%)
Scrophularia-
ceae
Kickxia aegyptiaca (L.) Nábelek 2.0±2.9 [10] (60%) 0.2±0.4 [1] (20%) - 0.7±1.8 [11] (27%)
Scrophularia-
ceae
Scrophularia syriaca Benth. A. DC. 2.4±1.3 [12] (100%) 3.6±1.7 [18] (100%) - 2.0±1.9 [30] (67%)
Thymelaea-
ceae
Thymelaea microphylla Coss. & Durieu ex Meisn. 2.0±2.1 [10] (60%) 19.4±11.3 [97] (100%) 3.0±1.6 [15] (100%) 8.1±10.3 [122] (87%)
Table 1 Taxonomic list, density, and occurrence frequency of plant species sampled at desert pavements under different levels of sand encroachment in the Sahara Desert of Algeria
Family No. of
genus
Level of sand encroachment (LSE)
Low (LLSE) Moderate (MLSE) High (HLSE) Overall
S (RF) N' (RF) S (RF) N' (RF) S (RF) N' (RF) S (RF) N' (RF)
Amaranthaceae 1 1 (9.1%) 149 (66.5%) 1 (7.1%) 50 (23.0%) 1 (10.0%) 25 (16.7%) 1 (5.3%) 224 (37.9%)
Apiaceae 1 - - - - 1 (10.0%) 1 (0.7%) 1 (5.3%) 1 (0.2%)
Asteraceae 3 2 (18.2%) 8 (3.6%) 3 (21.4%) 10 (4.6%) 2 (20.0%) 16 (10.7%) 3 (15.7%) 34 (5.8%)
Boraginaceae 1 1 (9.1%) 11 (4.9%) 1 (7.1%) 3 (1.4%) - - 1 (5.3%) 14 (2.4%)
Brassicaceae 1 1 (9.1%) 1 (0.4%) 1 (7.1%) 14 (6.5%) - - 1 (5.3%) 15 (2.5%)
Caryophyllaceae 1 1 (9.1%) 14 (6.3%) 1 (7.1%) 8 (3.7%) - - 1 (5.3%) 22 (3.7%)
Cistaceae 1 - - 1 (7.1%) 1 (0.5%) 1 (10.0%) 3 (2.0%) 1 (5.3%) 4 (0.7%)
Ephedraceae 1 - - - - 1 (10.0%) 8 (5.3%) 1 (5.3%) 8 (1.4%)
Euphorbiaceae 1 - - 1 (7.1%) 10 (4.6%) - - 1 (5.3%) 10 (1.7%)
Fabaceae 2 - - 1 (7.1%) 1 (0.5%) 1 (10.0%) 71 (47.3%) 2 (10.4%) 72 (12.2%)
Poaceae 2 2 (18.2%) 9 (4.0%) 1 (7.1%) 4 (1.8%) 2 (20.0%) 11 (7.3%) 3 (15.7%) 24 (4.1%)
Scrophulariaceae 2 2 (18.2%) 22 (9.8%) 2 (14.3%) 19 (8.8%) - - 2 (10.5%) 41 (6.9%)
Thymelaeaceae 1 1 (9.1%) 10 (4.5%) 1 (7.1%) 97 (44.7%) 1 (10.0%) 15 (10.0%) 1 (5.3%) 122 (20.6%)
Total 18 11 (100.0%) 224 (100.0%) 14 (100.0%) 217 (100.0%) 10 (100.0%) 150 (100.0%) 19 (100.0%) 591 (100.0%)
Table 2 Species richness (S) and density (N') with relative frequencies (RF) of plant families at desert pavements under different levels of sand encroachment in the Sahara Desert of Algeria
Fig. 2 Partitioning of plant species richness (S) recorded at desert pavements in the Sahara Desert of Algeria using nested Venn diagrams. Values of S reported between round brackets represent the total number of species recorded at each level of sand encroachment. Number of species shared exclusively between habitats with different levels of sand encroachment (LSE) and sampling sites are designated between square brackets and within the five-set diagrams, respectively.
Fig. 3 Observed and estimated plant species richness at desert pavements under different levels of sand encroachment in the Sahara Desert of Algeria. Species richness was estimated using first- and second-order Jackknife's (SJack1 and SJack2) and Chao (SChao1 and SChao2) estimators. Vertical bars represent standard deviations. Sest, estimated species richness.
Fig. 4 Sample-based rarefaction (solid line) and extrapolation (dashed line) curves of estimated plant species richness at desert pavements under different levels of sand encroachmentin (LSE) in the Sahara Desert of Algeria. Black solid circles indicate species richness estimated based on reference samples, whereas white solid circles refer to extrapolation to 150 samples. Dark colored areas indicate standard deviations, and light colored areas represent lower and upper bounds of 95% confidence intervals for the estimated values. (a), low LSE (LLSE); (b), moderate LSE (MLSE); (c), high LSE (HLSE); (d), overall.
Fig. 5 Variation of diversity parameters at desert pavements under different levels of sand encroachment in the Sahara Desert of Algeria. Boxes indicate the IQR (interquartile range, 75th to 25th of the data). The median value is shown as a line within the box. White circle is shown as mean. Outlier is shown as black circle. Whiskers extend to the most extreme value within 1.5×IQR. (a), vegetation cover (VC); (b), plant abundance; (c), species richness (S); (d), individual cover (VC:N° ratio), N°, density; (e), species cover (VC:S ratio); (f), species abundance (N°:S ratio); (g), Shannon's diversity index; (h), maximum Shannon's diversity index (H°max); (i), Evenness index; (j), Simpson's reciprocal index (SRI); (j), SRI:S ratio; (k), H°:SRI ratio. The abbreavitaions are the same in the following figures and tables.
Similarity estimator Levels of sand encroachment (LSE)
Low (LLSE) (S=11)
Moderate (MLSE) (S=14)
Low (LLSE) (S=11)
High (HLSE) (S=10)
Moderate (MLSE) (S=14)
High (HLSE) (S=10)
Shared species observed 10.0 4.0 6.0
Estimated Chao-shared 10.7 4.0 7.6
Classic Jaccard index (%) 66.7 23.5 33.3
Classic Sørensen index (%) 80.0 38.1 50.0
Raw Chao-Jaccard index (%) 93.2 37.2 39.4
Estimated Chao-Jaccard index (%) 97.2 37.2 42.3
Raw Chao-Sørensen index (%) 96.5 54.2 56.5
Estimated Chao-Sørensen index (%) 98.6 54.2 59.4
Morisita-Horn index (%) 50.3 32.5 31.8
Bray-Curtis index (%) 44.0 25.1 28.3
Table 3 Qualitative and abundance-based similarity scores between plant communities at desert pavements under different levels of sand encroachment in the Sahara Desert of Algeria
Fig. 6 Correlation matrices exposing correlations between plant characteristics (vegetation cover, plant abundance, and diversity parameters) at desert pavements under different levels of sand encroachment (LSE) in the Sahara Desert of Algeria. (a), low LSE (LLSE); (b), moderate LSE (MLSE); (c), high LSE (HLSE).
Plant species Lifeform Morp type Dispersal
type
Noy-Meir's
type
Grime's strategy Phyt
type
Rarity
status
Ecology
Anabasis articulata Cham Perennial Anemo Arido-active CS SA C Psa, Sax
Centropodia forsskaolii Hemi Perennial Anemo Arido-passive CS SA CC Psa
Ephedra alata Phan Perennial Anemo Arido-active Str SA CC Psa
Euphorbia guyoniana Hemi Perennial Baro Arido-passive Str CC Psa
Calobota saharae Cham Perennial Baro Arido-active CS AR Psa
Helianthemum lippii Cham Perennial Anemo Arido-passive CSR M-SA CCC Sax, gyps-sax
Kickxia aegyptiaca Cham Perennial Anemo Arido-active CS M-SA C Sax, gyps-sax
Mecomischus halimifolius Cham Perennial Anemo Arido-active CS End RR Psa
Moltkiopsis ciliata Cham Perennial Anemo Arido-active CS SA C Psa
Moricandia nitens Cham Perennial Baro Arido-passive Str AR Rud, gyps
Deverra scoparia Cham Perennial Zoo Arido-active Str M-SA C Sax
Polycarpaea repens Ther Annual Anemo Arido-passive SR SA RR Psa
Pulicaria undulata Cham Perennial Anemo Arido-active Str SA AC Gypv
Retama raetam Phan Perennial Baro Arido-active Str M-SA C Psa
Rhanterium suaveolens Cham Perennial Zoo Arido-active CS SA R Sax, gyps-sax
Scrophularia syriaca Cham Perennial Baro Arido-passive Str M-SA CC Psa
Stipagrostis acutiflora Hemi Perennial Anemo Arido-active CS SA R Psa
Stipagrostis pungens Hemi Perennial Anemo Arido-active CS SA CC Psa
Thymelaea microphylla Cham Perennial Baro Arido-active Str M-SA CC Sax, gyps-sax
Table 4 Lfeform, morphological (morp) type, dispersal type, Noy-Meir's category, Grime's strategy, phytogeographic (phyt) type, rarity status, and ecology of plant species at desert pavements under different levels of sand encroachment in the Sahara Desert of Algeria
Fig. 7 Species- and abundance-based biological spectra of plant functional traits (Raunkiaer's lifeform (a), morphological type (b), dispersal type (c), Noy-Meir's strategy (d), Grime's strategy (e), and phytogeographic type (f)) characterizing the vegetation associated to desert pavements under different levels sand encroachment in the Sahara Desert of Algeria. S, species richness; N', density.
Plant status Levels of sand encroachment (LSE)
Low (LLSE) Moderate (MLSE) High (HLSE) Overall
S (RF) N' (RF) S (RF) N' (RF) S (RF) N' (RF) S (RF) N' (RF)
Ecological category
Psammophyte 12 (48.0%) 200 (50.8%) 12 (48.0%) 100 (26.2%) 12 (48.0%) 128 (65.3%) 12 (48.0%) 428 (44.1%)
Saxicolous 6 (24.0%) 169 (42.9%) 6 (24.0%) 150 (39.4%) 6 (24.0%) 47 (24.0%) 6 (24.0%) 366 (37.7%)
Gypsophyte 5 (20.0%) 21 (5.3%) 5 (20.0%) 114 (29.9%) 5 (20.0%) 21 (10.7%) 5 (20.0%) 156 (16.1%)
Gypsovag 1 (4.0%) 3 (0.8%) 1 (4.0%) 3 (0.8%) 1 (4.0%) - 1 (4.0%) 6 (0.6%)
Ruderal 1 (4.0%) 1 (0.3%) 1 (4.0%) 14 (3.7%) 1 (4.0%) - 1 (4.0%) 15 (1.5%)
Rarity/abundance status
CCC - - 1 (7.1%) 1 (0.5%) 1 (10.0%) 3 (2.0%) 1 (5.3%) 4 (0.7%)
CC 3 (27.3%) 29 (12.9%) 4 (28.6%) 129 (59.4%) 4 (40.0%) 34 (22.7%) 6 (31.6%) 192 (32.5%)
C 3 (27.3%) 170 (75.9%) 4 (28.6%) 55 (25.3%) 2 (20.0%) 26 (17.3%) 5 (26.3%) 251 (42.5%)
AC 1 (9.1%) 3 (1.3%) 1 (7.1%) 3 (1.4%) - - 1 (5.3%) 6 (1.0%)
AR 1 (9.1%) 1 (0.4%) 1 (7.1%) 14 (6.5%) 1 (10.0%) 71 (47.3%) 2 (10.5%) 86 (14.6%)
R 1 (9.1%) 2 (0.9%) 1 (7.1%) 1 (0.5%) 1 (10.0%) 3 (2.0%) 2 (10.5%) 6 (1.0%)
RR 2 (18.2%) 19 (8.5%) 2 (14.3%) 14 (6.5%) 1 (10.0%) 13 (8.7%) 2 (10.5%) 46 (7.8%)
Total 11 (100.0%) 224 (100.0%) 14 (100.0%) 217 (100.0%) 10 (100.0%) 150 (100.0%) 19 (100.0%) 591 (100.0%)
Table 5 Species richness (S) and density (N') with relative frequencies (RF) of ecological groups and rarity-abundance status for plants at desert pavements under different sand encroachment levels in the Sahara Desert of Algeria
Fig. 8 Vegetation pattern associated to desert pavements under different levels of sand encroachment in the Sahara Desert of Algeria. L1, low LSE; L2, moderate LSE; L3, high LSE. The vegetation of each sand encroachment level was projected on MFA (multiple factor analysis) dimensions using ten vectors representing different plant characteristics.
Fig. S1 Pearson's correlation matrix between sub-levels of all plant variables clustered in the bi-plot of multiple factorial analysis (MFA). CSR, competition-stress-ruderality; CS, competition-stress; SR, stress-ruderality; Str, stress-tolerant; NA, North African chorological type; M-SA, Mediterranean-Saharo-Arabian; Sah, Saharan chorological type; SA, Saharo-Arabian; CCC, widespread; CC, very common; C, common; AC, fairly common; AR, quite rare; R, rare; RR, very rare; VC, vegetation cover; N°, density; S, species richness; H°, Shannon's diversity index; H°max maximum Shannon's diversity index; E, Evenness index; SRI, Simpson's reciprocal index.
Climatic information Value/class
Latitude 32°46′N
Longitude 04°33′E
Altitude (m) 280
Koeppen's climate classification BWh (B=Arid climate; W=Desert; h=hot)
Budyko's climate Desert
Radiational index of dryness 35.662
Budyko's evaporation (mm/a) 40
Budyko's runoff (mm/a) 0
Budyko's evaporation (%) 100
Budyko's runoff (%) 0
Aridity Hyper-arid
Aridity index 0.02
Moisture index (%) -98
de Martonne's index 1
Precipitation deficit (mm/a) 1639
Climatic NPP (g DM/(m2•a)) 79
NPP (Temperature) 2363
NPP (Precipitation) 79
NPP is precipitation limited
Gorczynski's continentality index 51.7
Table S1 Climatic information of the El-Guerrara region at the Ghardaia Province in the Sahara Desert of Algeria
Parameter Jan Feb Mar Apr May Jun Jul
Mean temperature (°C) 11.1±1.38 13.6±1.20 16.8±1.50 21.0±0.95 25.7±1.63 31.2±1.46 33.7±1.54
Maximum temperature (°C) 17.2±3.66 20.0±3.94 23.2±4.15 28.8±4.31 32.7±4.22 39.4±4.40 42.7±4.64
Minimum temperature (°C) 4.4±3.24 6.6±3.64 9.3±4.29 13.8±4.95 17.7±4.99 23.2±5.80 25.5±5.62
Precipitation (mm) 7±3.44 5±2.11 8±2.10 1±3.85 1±2.62 0±3.16 0±1.20
Potential evapotranspiration (mm) 57±16.38 74±17.90 120±25.69 147±21.64 193±25.24 219±22.40 234±20.27
Water vapor pressure (hPa) 8.2±2.00 8.8±3.15 8.2±3.97 12.3±4.46 13.9±6.43 16.5±8.07 20.5±7.52
Wind speed (km/h) 7.2±4.19 7.9±4.83 7.2±5.33 9.0±5.14 9.0±4.79 8.6±4.61 7.2±3.14
Sunshine frequency (%) 67±9.64 73±7.44 74±9.13 72±9.94 70±4.57 67±4.65 80±1.85
Day length (h) 9.6 12.0 12.0 12.0 14.4 14.2 13.9
Sunshine hours (h) 7.2 7.2 9.6 9.6 9.6 9.6 11.3
Ground frost frequency (%) 13 5 0 0 0 0 0
Effective rainfall (mm) 7 5 8 1 1 0 0
Effective rainfall percentage (%) 99 99 99 100 100 100 100
Number of rainy days (d) 1 1 1 0 0 0 0
Solid precipitation ratio 2 1 0 0 0 0 0
Parameter Aug Sep Oct Nov Dec Average
Mean temperature (°C) 34.0±1.34 28.6±1.29 22.2±1.02 15.8±1.21 11.1±0.95 22.07±1.29
Maximum temperature (°C) 41.7±4.39 37.2±3.92 30.5±4.34 23.2±3.86 18.2±3.51 29.6±4.11
Minimum temperature (°C) 25.0±5.20 22.2±4.81 16.1±4.59 10.0±3.73 6.0±3.28 15.0±4.51
Precipitation (mm) 0±0.86 4±2.45 3±2.53 6±3.06 5±6.30 3±5.31
Potential evapotranspiration (mm) 228±20.63 172±15.29 125±18.01 62±15.80 47±12.78 140±19.34
Water vapor pressure (hPa) 21.8±8.21 19.7±5.11 15.3±2.66 13.7±3.25 9.6±1.97 14.0±4.73
Wind speed (km/h) 7.2±3.05 7.9±2.81 8.6±3.31 7.2±2.77 7.2±3.24 7.9±3.93
Sunshine frequency (%) 78±4.70 73±9.62 71±7.29 66±9.58 67±12.16 72±7.53
Day length (h) 13.2 12.0 12.9 9.6 9.6 12.0
Sunshine hours (h) 10.3 9.6 7.2 7.2 7.2 9.6
Ground frost frequency (%) 0 0 0 0 7 2
Effective rainfall (mm) 0 4 3 6 5 40
Effective rainfall percentage (%) 100 99 100 99 99 99
Number of rainy days (d) 0 0 0 1 1 5
Solid precipitation ratio 0 0 0 1 2 1
Table S2 Long-term monthly climatic data near the El-Guerrara region at the Ghardaia Province in the Sahara Desert of Algeria
[1]   Abd El-Ghani M M A, Huerta-Martínez F M, Hongyan L, et al. 2017. Plant Responses to Hyperarid Desert Environments. Cham: Springer, 598.
[2]   Ahmed M, Al-Dousari N, Al-Dousari A. 2015. The role of dominant perennial native plant species in controlling the mobile sand encroachment and fallen dust problem in Kuwait. Arabian Journal of Geosciences, 9(2): 134, doi: 10.1007/s1251 7-015-2216-6.
[3]   Al-Dousari A M, Ahmed M, Al-Senafy M, et al. 2008. Characteristics of nabkhas in relation to dominant perennial plant species in Kuwait. Kuwait Journal of Science and Engineering, 35(1): 129-150.
[4]   Al-Dousari A M, Ahmed M, Al-Dousari N, et al. 2019. Environmental and economic importance of native plants and green belts in controlling mobile sand and dust hazards. International Journal of Environmental Science and Technology, 16(5): 2415-2426.
doi: 10.1007/s13762-018-1879-4
[5]   Al Shaye N A, Masrahi Y S, Thomas J. 2020. Ecological significance of floristic composition and life forms of Riyadh region, Central Saudi Arabia. Saudi Journal of Biological Sciences, 27(1): 35-40.
doi: 10.1016/j.sjbs.2019.04.009 pmid: 31889814
[6]   Arar A, Chenchouni H. 2012. How could geomatics promote our knowledge for environmental management in Eastern Algeria? Journal of Environmental Science and Technology, 5(5): 291-305.
[7]   Arar A, Chenchouni H. 2014. A ''simple'' geomatics-based approach for assessing water erosion hazard at montane areas. Arabian Journal of Geosciences, 7(1): 1-12.
doi: 10.1007/s12517-012-0782-4
[8]   Audru J, Cesar J, Lebrun J P. 1994. The Vascular Plants of the Republic of Djibouti. Volume I. Montpellier: CIRAD-EMVT, 29-45. (in French)
[9]   Azizi M, Chenchouni H, Belarouci M E H, et al. 2021. Diversity of psammophyte communities on sand dunes and sandy soils of the northern Sahara Desert. Journal of King Saud University-Science, 33(8): 101656, doi: 10.1016/j.jksus.2021.101656.
doi: 10.1016/j.jksus.2021.101656
[10]   Barakat N A, Laudadio V, Cazzato E, et al. 2013. Potential contribution of Retama raetam (Forssk.) Webb & Berthel as a forage shrub in Sinai, Egypt. Arid Land Research and Management, 27(3): 257-271.
[11]   Batanouny K H. 1973. Soil properties as affected by topography in desert wadis. Acta Botanica Academiae Scientiarum Hungaricae, 19: 13-21.
[12]   Batanouny K H, Hilli M R. 1973. Phytosociological study of Ghurfa Desert, central Iraq. Phytocoenologia, 1: 223-249.
doi: 10.1127/phyto/1/1973/223
[13]   Benabderrahmane M C, Chenchouni H. 2010. Assessing environmental sensitivity areas to desertification in Eastern Algeria using Mediterranean desertification and land use ''MEDALUS'' model. International Journal of Sustainable Water and Environmental Systems, 1(1): 5-10.
doi: 10.5383/swes
[14]   Benhouhou S S, Dargie T C D, Gilbert O L. 2001. Vegetation associations in the Great Western Erg and the Saoura Valley, Algeria. Phytocoenologia, 31(3): 311-324.
doi: 10.1127/phyto/31/2001/311
[15]   Bossuyt B, Hermy M. 2004. Seed bank assembly follows vegetation succession in dune slacks. Journal of Vegetation Science, 15(4): 449-456.
doi: 10.1111/j.1654-1103.2004.tb02283.x
[16]   Bouallala M. 2013. Floristic and nutritive spatio-temporal study of the camel rangelands of the Algerian Western Sahara:Case of the regions of Béchar and Tindouf. PhD Dissertation. Ouargla: University of Ouargla. (in French)
[17]   Bouallala M, Neffar S, Chenchouni H. 2020. Vegetation traits are accurate indicators of how do plants beat the heat in drylands: Diversity and functional traits of vegetation associated with water towers in the Sahara Desert. Ecological Indicators, 114: 106364, doi: 10.1016/j.ecolind.2020.106364.
doi: 10.1016/j.ecolind.2020.106364
[18]   Bouallala M, Bradai L, Chenchouni H. 2022. Effects of sand encroachment on vegetation diversity in the Sahara Desert. In: Chenchouni H, Chaminé H I, Khan M F, et al. New Prospects in Environmental Geosciences and Hydrogeosciences. Cham: Springer, 133-138.
[19]   Bouarfa S, Bellal S A. 2018. Assessment of the aeolian sand dynamics in the region of Ain Sefra (Western Algeria), using wind data and satellite imagery. Arabian Journal of Geosciences, 11: 56, doi: 10.1007/s12517-017-3346-9.
doi: 10.1007/s12517-017-3346-9
[20]   Bouchlaghem K, Chtioui H, Gazzah M H. 2021. Analyzing the impact of Saharan sand and dust storms based on HYSPLIT algorithm in Tunisian regions. Arabian Journal of Geosciences, 14: 834, doi: 10.1007/s12517-021-07174-4.
doi: 10.1007/s12517-021-07174-4
[21]   Bradai L, Bouallala M H, Bouziane N F, et al. 2015. An appraisal of eremophyte diversity and plant traits in a rocky desert of the Sahara. Folia Geobotanica, 50(3): 239-252.
doi: 10.1007/s12224-015-9218-8
[22]   Bouzekri A, Alexandridis T K, Toufik A, et al. 2023. Assessment of the spatial dynamics of sandy desertification using remote sensing in Nemamcha region (Algeria). The Egyptian Journal of Remote Sensing and Space Sciences, 26. (in Press)
[23]   Brovkin V. 2002. Climate-vegetation interaction. Journal de Physique IV, 12(10): 57-72.
[24]   Caiafa A N, Silva A F D. 2005. Floristic composition of a ''Campo de Altitude'' in the Sierra do Brigadeiro state park, Minas Gerais-Brazil. Rodriguésia, 56(87): 163-173.
doi: 10.1590/2175-78602005568712
[25]   Chao A, Chazdon R L, Colwell R K, et al. 2005. A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecology Letters, 8(2): 148-159.
doi: 10.1111/ele.2005.8.issue-2
[26]   Chehma A. 2005. Spatio-temporal floristic and nutritive study of camel rangelands in the northern Algerian Sahara. Case of the Ouargla and Ghardaia regions. PhD Dissertation. Annaba: University of Annaba. (in French)
[27]   Chenchouni H. 2012. Flora diversity of a lake at Algerian Low-Sahara. Acta Botanica Malacitana, 37: 33-44.
doi: 10.24310/abm.v37i0
[28]   Chenchouni H, Errami E, Rocha F, et al. 2019. Exploring the Nexus of Geoecology, Geography, Geoarcheology and Geotourism:Advances and Applications for Sustainable Development in Environmental Sciences and Agroforestry Research. Cham: Springer, 109.
[29]   Chenchouni H, Chaminé H I, Khan M F, et al. 2022. New Prospects in Environmental Geosciences and Hydrogeosciences. Cham: Springer, 635.
[30]   Colwell R K, Elsensohn J E. 2014. EstimateS turns 20: Statistical estimation of species richness and shared species from samples. Ecography, 37(6): 609-613.
doi: 10.1111/ecog.2014.37.issue-6
[31]   Copeland S M, Bradford J B, Duniway M C, et al. 2017. Potential impacts of overlapping land-use and climate in a sensitive dryland: a case study of the Colorado Plateau, USA. Ecosphere, 8(5): e01823, doi: 10.1002/ecs2.1823.
doi: 10.1002/ecs2.1823
[32]   Coude-Gaussen G. 2002. Surface formations of hot deserts and their margins. In: MiskovskyJ C. Geologyof Prehistory. Paris: Presses Universitaires de Perpignan, 125-144. (in French)
[33]   Dadamoussa M L, Senoussi A, Idder M A, et al. 2015. Small development in the Algerian northern Sahara: Between development policies and reality, case of Ouargla, Ghardaïa and El-Oued. Livestock Research for Rural Development, 27(10): 210. (in French)
[34]   Dashti A, Mohammad R, Al-Hurban A. 2021. Sand dunes-induced geomorphological changes in Um Ar-Rimam depression, Kuwait. Arabian Journal of Geosciences, 14: 1632, doi: 10.1007/s12517-021-08108-w.
doi: 10.1007/s12517-021-08108-w
[35]   Dewitte O, Jones A, Spaargaren O, et al. 2013. Harmonisation of the soil map of Africa at the continental scale. Geoderma, 211-212: 138-153.
[36]   Dubief J. 1959. The Climate of the Sahara. Volume I. Temperature. Alger: Travaux de l'Institut de Recherche Saharienne, 312. (in French)
[37]   Dubief J. 1963. The Climate of the Sahara. Volume II. Precipitation. Alger: Travaux de l'Institut de Recherche Saharienne, 275. (in French)
[38]   Fabre J. 2005. Geology of Western and Central Sahara. Tervuren: Royal Museum for Central Africa, 19. (in French)
[39]   FAO. 2014. Training manual for combating desertification, dune fixation and afforestation management in Mauritania. Nouakchott. [2022-08-16]. https://www.apefe.org/component/docman/cat_view/141-manuel.html. (in French)
[40]   Fatmi H, Mâalem S, Harsa B, et al. 2020. Pollen morphological variability correlates with a large-scale gradient of aridity. Web Ecology, 20(1): 19-32.
doi: 10.5194/we-20-19-2020
[41]   Faurie C, Ferra C, Medori P, et al. 2003. Ecology: Scientific Approches and Practice. Paris: Tec & Doc, 488. (in French)
[42]   Fu Q, Feng S. 2014. Responses of terrestrial aridity to global warming. Atmospheres, 119(13): 7863-7875.
[43]   Gamoun M, Ouled Belgacem A, Hanchi B, et al. 2012. Impact of grazing on the floristic diversity of arid rangelands in South Tunisia. Revue Ecologie (Terre Vie), 67(3): 271-282
[44]   Gamoun M, Belgacem A O, Louhaichi M. 2018. Diversity of desert rangelands of Tunisia. Plant Diversity, 40(5): 217-225.
doi: 10.1016/j.pld.2018.06.004 pmid: 30740567
[45]   Gentry A H. 1982. Patterns of neotropical plant species diversity. In: HechtM K, WallaceB, PranceG T. EvolutionaryBiology. Boston: Springer, 1-84.
[46]   Giulietti A M, de Menezes N L, Pirani J R, et al. 1987. Flora of Serra do Cipó, Minas Gerais: Characterization and list of species. Boletim de Botânica da Universidade de São Paulo, 9: 151, doi: 10.11606/issn.2316-9052.v9i0p1-151.(inPortuguese)
doi: 10.11606/issn.2316-9052.v9i0p1-151.(inPortuguese
[47]   Gorai M, Laajili W, Santiago L S, et al. 2015. Rapid recovery of photosynthesis and water relations following soil drying and re-watering is related to the adaptation of desert shrub Ephedra alata subsp. alenda (Ephedraceae) to arid environments. Environmental and Experimental Botany, 109: 113-121.
doi: 10.1016/j.envexpbot.2014.08.011
[48]   Grime J P, Hodgson J G, Hunt R. 1988. Comparative Plant Ecology:A Functional Approach to Common British Species. Dordrecht: Springer, 742.
[49]   Griz L M S, Machado I C S. 2001. Fruiting phenology and seed dispersal syndromes in Caatinga, a tropical dry forest in the northeast of Brazil. Journal of Tropical Ecology, 17(2): 303-321.
doi: 10.1017/S0266467401001201
[50]   Groom J D, McKinney L B, Ball L C, et al. 2007. Quantifying off-highway vehicle impacts on density and survival of a threatened dune-endemic plant. Biological Conservation, 135(1): 119-134.
doi: 10.1016/j.biocon.2006.10.005
[51]   Guinet P H, Sauvage C H. 1954. South Moroccan Hamadas, Botanical Series. Hamadas: Cherifian Scientific Institute, 75-167. (in French)
[52]   Hall R M, Penke N, Kriechbaum M, et al. 2020. Vegetation management intensity and landscape diversity alter plant species richness, functional traits and community composition across European vineyards. Agricultural Systems, 177: 102706, doi: 10.1016/j.agsy.2019.102706.
doi: 10.1016/j.agsy.2019.102706
[53]   Harrison S P, Prentice I C, Barboni D, et al. 2010. Ecophysiological and bioclimatic foundations for a global plant functional classification. Journal of Vegetation Science, 21(2): 300-317.
doi: 10.1111/jvs.2010.21.issue-2
[54]   Heywood V H. 1978. Flowering Plants of the World. Oxford: Oxford University Press, 33.
[55]   Hughes L, Dunlop M, French K, et al. 1994. Predicting dispersal spectra: a minimal set of hypotheses based on plant attributes. Journal of Ecology, 82: 933-950.
doi: 10.2307/2261456
[56]   Jamir S A, Pandey H N. 2003. Vascular plant diversity in the sacred groves of Jaintia Hills in northeast India. Biodiversity & Conservation, 12(7): 1497-1510.
[57]   Jaouen X. 1988. Trees, Shrubs and Bushes of Mauritania. Nouakchott: CCF, 31. (in French)
[58]   Jara-Guerrero A, de la Cruz M, Méndez M. 2011. Seed dispersal spectrum of woody species in south Ecuadorian dry forests: Environmental correlates and the effect of considering species abundance. Biotropica, 43(6): 722-730.
doi: 10.1111/btp.2011.43.issue-6
[59]   Jauffret S. 2001. Validation and comparison of various indicators of long-term changes in arid Mediterranean ecosystems:Application to the monitoring of desertification in southern Tunisia. PhD Dissertation. Marseille: University of Aix-Marseille III. (in French)
[60]   Kent M, Owen N W, Dale M P. 2005. Photosynthetic responses of plant communities to sand burial on the Machair dune systems of the Outer Hebrides, Scotland. Annals of Botany, 95(5): 869-877.
pmid: 15710644
[61]   Kouba Y, Merdas S, Mostephaoui T, et al. 2021. Plant community composition and structure under short-term grazing exclusion in steppic arid rangelands. Ecological Indicators, 120: 106910, doi: 10.1016/j.ecolind.2020.106910.
doi: 10.1016/j.ecolind.2020.106910
[62]   Lavorel S, Diaz S, Cornelissen J H C, et al. 2007 Plant functional types:are we getting any closer to the Holy Grail? In: Canadell J G, Pataki D E, Pitelka L F. Terrestrial Ecosystems in a Changing World. Heidelberg: Springer, 149-164.
[63]   Le Houérou H N. 1990. Definition and bioclimatic limits of the Sahara. Sécheresse, 1(4): 246-259. (in French)
[64]   Lemee G. 1953. Contribution to phytosociological knowledge of the Saharo-Moroccan confines: Therophyte associations of sandy and non-salte loamy depressions and rockeries around Beni-Ounif. Vegetatio, 4(3): 137-154. (in French)
doi: 10.1007/BF00297015
[65]   Liu Z, Li X, Yan Q, et al. 2007. Species richness and vegetation pattern in interdune lowlands of an active dune field in Inner Mongolia, China. Biological Conservation, 140(1-2): 29-39.
doi: 10.1016/j.biocon.2007.07.030
[66]   Macheroum A, Kadik L, Neffar S, et al. 2021. Environmental drivers of taxonomic and phylogenetic diversity patterns of plant communities in semi-arid steppe rangelands of North Africa. Ecological Indicators, 132: 108279, doi: 10.1016/j.ecolind.2021.108279.
doi: 10.1016/j.ecolind.2021.108279
[67]   Macheroum A, Chenchouni H. 2022. Short-term land degradation driven by livestock grazing does not affect soil properties in semiarid steppe rangelands. Frontiers in Environmental Science, 10: 846045, doi: 10.3389/fenvs.2022.846045.
doi: 10.3389/fenvs.2022.846045
[68]   Merdas S, Kouba Y, Mostephaoui T, et al. 2021. Livestock grazing-induced large-scale biotic homogenization in arid Mediterranean steppe rangelands. Land Degradation & Development, 32(17): 5099-5107.
doi: 10.1002/ldr.v32.17
[69]   Mihi A, Tarai N, Chenchouni H. 2019a. Can palm date plantations and oasification be used as a proxy to fight sustainably against desertification and sand encroachment in hot drylands?. Ecological Indicators, 105: 365-375.
doi: 10.1016/j.ecolind.2017.11.027
[70]   Mihi A, Nacer T, Chenchouni H. 2019b. Monitoring dynamics of date palm plantations from 1984 to 2013 using Landsat Time-Series in Sahara Desert Oases of Algeria. In: El-Askary H M, Lee S, Heggy E, et al. Advances in Remote Sensing and Geo Informatics Applications. Cham: Springer, 225-228.
[71]   Monod T. 1992. Desert. Sécheresse, 3(1): 7-24. (in French)
[72]   Monteiro A, Caetano F, Vasconcelos T, et al. 2012. Vineyard weed community dynamics in the Dão winegrowing region. Ciência e Técnica Vitivinicola, 27(2): 73-82.
[73]   Morales J M, Carlo T A. 2006. The effects of plant distribution and frugivore density on the scale and shape of dispersal kernels. Ecology, 87(6): 1489-1496.
pmid: 16869425
[74]   Mota G S, Luz G R, Mota N M, et al. 2018. Changes in species composition, vegetation structure, and life forms along an altitudinal gradient of rupestrian grasslands in south-eastern Brazil. Flora, 238: 32-42.
doi: 10.1016/j.flora.2017.03.010
[75]   Munoz-Reinoso J C, Novo F G. 2005. Multiscale control of vegetation patterns: The case of Doñana (SW Spain). Landscape Ecology, 20(1): 51-61.
doi: 10.1007/s10980-004-0466-x
[76]   Nash M S, Whitford W G, de Soyza A G, et al. 1999. Livestock activity and Chihuahuan Desert annual-plant communities: boundary analysis of disturbance gradients. Ecological Applications, 9(3): 814-823.
doi: 10.1890/1051-0761(1999)009[0814:LAACDA]2.0.CO;2
[77]   Navarro T, Pascual V, Alados C L, et al. 2009. Growth forms, dispersal strategies and taxonomic spectrum in a semi-arid shrubland in SE Spain. Journal of Arid Environments, 73(1): 103-112.
doi: 10.1016/j.jaridenv.2008.09.009
[78]   Neffar S, Chenchouni H, Si Bachir A. 2016. Floristic composition and analysis of spontaneous vegetation of Sabkha Djendli in North-east Algeria. Plant Biosystems, 150(3): 396-403.
doi: 10.1080/11263504.2013.810181
[79]   Neffar S, Menasria T, Chenchouni H. 2018. Diversity and functional traits of spontaneous plant species in Algerian rangelands rehabilitated with prickly pear (Opuntia ficus-indica L.) plantations. Turkish Journal of Botany, 42(4): 448-461.
[80]   Neffar S, Beddiar A, Menasria T, et al. 2022. Planting prickly pears as a sustainable alternative and restoration tool for rehabilitating degraded soils in dry steppe rangelands. Arabian Journal of Geosciences, 15(3): 287.
doi: 10.1007/s12517-022-09579-1
[81]   Neffati M, Sghaier M, Labbene Y. 2016. Meeting the challenges of climate change through adaptation and mitigation. Project OSS-MENA-DELP. [2022-07-15]. https://www.profor.info/sites/profor.info/files/Rapport%20principal-Etude%20CC-MENA.PDF. (in French)
[82]   Negre R. 1962. Small Flora of the Arid rRegions of Western Morocco. Paris: CNRS, 34. (in French)
[83]   Noy-Meir I. 1973. Desert ecosystems: environment and producers. Annual Review of Ecology, Evolution, and Systematics, 4: 25-51.
[84]   Orshan G. 1986. The deserts of the Middle East. In: EvenariM, Noy-MeirI, GoodallD W. HotDeserts and Arid Shrublands. Amsterdam: Elsevier, 1-28.
[85]   Ozenda P. 1991. Flora and Vegetation of the Sahara. Paris: CNRS, 660. (in French)
[86]   Ozenda P. 2004. Flora and Vegetation of the Sahara. Paris: CNRS, 662. (in French)
[87]   Parsons A J, Abrahams A D. 2009. Geomorphology of Desert Environments. Dordrecht: Springer, 831.
[88]   Pausas J G, Austin M P. 2001. Patterns of plant species richness in relation to different environments: an appraisal. Journal of Vegetation Science, 12(2): 153-166.
doi: 10.2307/3236601
[89]   Peguero-Pina J J, Vilagrosa A, Alonso-Forn D, et al. 2020. Living in drylands: Functional adaptations of trees and shrubs to cope with high temperatures and water scarcity. Forests, 11(10): 1028, doi: 10.3390/f11101028.
doi: 10.3390/f11101028
[90]   Pielou E C. 1975. Ecological Diversity. New York: Wiley InterScience, 166.
[91]   Quézel P, Santa S. 1962. New Flora of Algeria and the Southern Desert Regions. Volume 1. Paris: CNRS, 1-565. (in French)
[92]   Quézel P, Santa S. 1963. New Flora of Algeria and the Southern Desert Regions. Volume 2. Paris: CNRS, 566-1170. (in French)
[93]   Quézel P. 1965. The Vegetation of the Sahara from Chad to Mauritania. Stuttgart: Gustav Verlag, 333. (in French)
[94]   Quézel P. 1978. Analysis of the flora of Mediterranean and Saharan Africa. Annals of the Missouri Botanical Garden, 65(2): 479-534.
doi: 10.2307/2398860
[95]   Rana T S, Datt B, Rao R R. 2002. Life forms and biological spectrum of the flora of Tons valley, Garhwal Himalaya (Uttaranchal), India. Taiwania, 47(2): 164-169.
[96]   Raunkiær C. 1934. The Life-forms of Plants and Statistical Plant Geography. Oxford: Clarendon Press, 632.
[97]   Ribeiro K T, Medina B M O, Scarano F R. 2007. Species composition and biogeographic relations of the rock outcrop flora on the high plateau of Itatiaia, SE-Brazil. Brazilian Journal of Botany, 30(4): 623-639.
doi: 10.1590/S0100-84042007000400008
[98]   Salama F, Abd El-Ghani M, Gadallah M, et al. 2014. Variations in vegetation structure, species dominance and plant communities in South of the Eastern Desert-Egypt. Notulae Scientia Biologicae, 6(1): 41-58.
doi: 10.15835/nsb619191
[99]   Seltzer P. 1946. The Climate of Algeria. Algiers: University of Algiers, 24. (in French)
[100]   Senoussi A, Schadt I, Hioun S, et al. 2021. Botanical composition and aroma compounds of semi-arid pastures in Algeria. Grass and Forage Science, 76(2): 282-299.
doi: 10.1111/gfs.v76.2
[101]   Shameem S A, Mushtaq H, Wani A A, et al. 2017. Phytodiversity of herbaceous vegetation in disturbed and undisturbed forest ecosystems of Pahalgam valley, Kashmir Himalaya, India. British Journal of Environment & Climate Change, 7(3): 148-167.
[102]   Sinsin T, Mounir F, El Aboudi A. 2021. Modeling and assessing driving factors of the spatial and temporal dynamics of the sand dunes in the district of Errachidia, Morocco. Arabian Journal of Geosciences, 14: 2111, doi: 10.1007/s12517-021-08423-2.
doi: 10.1007/s12517-021-08423-2
[103]   Sirvent L. 2020. Biological Types: State of the Art, Updating of Definitions and Establishment of a Repository. Porquerolles: National Mediterranean Botanical Conservatory of Porquerolles, 64. (in French)
[104]   Sophia M, Behera N, Gupta A. 2019. Life-form and biological spectrum of sub-tropical forests and agroecosystems of Manipur in North-east India. Pleione, 13(2): 346-354.
doi: 10.26679/Pleione.13.2.2019.346-354
[105]   Souahi H, Gacem R, Chenchouni H. 2022. Variation in plant diversity along a watershed in the semi-arid lands of North Africa. Diversity, 14(6): 450, doi: 10.3390/d14060450.
doi: 10.3390/d14060450
[106]   Tanji A. 2005. Wheat and Barley Weeds in Morocco. Raba: INRA, 134. (in French)
[107]   van Bodegom P, Bakker C, van der Gon H D. 2004. Identifying key issues in environmental wetland research using scaling and uncertainty analysis. Regional Environmental Change, 4(2/3): 100-106.
doi: 10.1007/s10113-004-0069-8
[108]   van Der Pijil L. 1982. Principles of Dispersal in Higher Plants. Heidelberg: Springer, 218.
[109]   van Rooyen M W, Theron G K, Grobbelaar N. 1990. Life form and dispersal spectra of the flora of Namaqualand, South Africa. Journal of Arid Environments, 19(2): 133-145.
doi: 10.1016/S0140-1963(18)30812-7
[110]   Violle C, Navas M L, Vile D, et al. 2007. Let the concept of trait be functional! Oikos, 116(5): 882-892.
[111]   von Maydell H J. 1983. Trees and Shrubs of the Sahel, their Characteristics and Uses. Eschbon: German Agency for Technical Cooperation, 517-531. (in French)
[112]   Wang H, Harrison S P, Prentice I C, et al. 2018. The China plant trait database: Toward a comprehensive regional compilation of functional traits for land plants. Ecology, 99(2): 500-500.
[113]   Wang J H, Baskin C C, Cui X L, et al. 2009. Effect of phylogeny, life history and habitat correlates on seed germination of 69 arid and semi-arid zone species from northwest China. Evolutionary Ecology, 23: 827-846.
doi: 10.1007/s10682-008-9273-1
[114]   Weiher E A, van der Werf, Thompson K, et al. 1999. Challenging Theophrastus: A common core list of plant trait for functional ecology. Journal of Vegetation Science, 10: 609-620.
doi: 10.2307/3237076
[115]   Yan Q, Liu Z, Zhu J, et al. 2005. Structure, pattern and mechanisms of formation of seed banks in sand dune systems in northeastern Inner Mongolia, China. Plant and Soil, 277: 175-184.
doi: 10.1007/s11104-005-6836-6
[116]   Yan Q, Liu Z, Ma J, et al. 2007. The role of reproductive phenology, seedling emergence and establishment of perennial Salix gordejevii in active sand dune fields. Annals of Botany, 99(1): 19-28.
doi: 10.1093/aob/mcl228
[117]   Yazdani M, Sobhani B, Zengir V S, et al. 2020. Analysis, monitoring and simulation of dust hazard phenomenon in the northern Persian Gulf, Iran, Middle East. Arabian Journal of Geosciences, 13: 530, doi: 10.1007/s12517-020-05470-z.
doi: 10.1007/s12517-020-05470-z
[1] Mohammed SOUDDI, Haroun CHENCHOUNI, M'hammed BOUALLALA. Thriving green havens in baking deserts: Plant diversity and species composition of urban plantations in the Sahara Desert[J]. Journal of Arid Land, 2024, 16(9): 1270-1287.
[2] Asmaa S ABO HATAB, Yassin M AL-SODANY, Kamal H SHALTOUT, Soliman A HAROUN, Mohamed M EL-KHALAFY. Assessment of plant diversity of endemic species of the Saharo-Arabian region in Egypt[J]. Journal of Arid Land, 2024, 16(7): 1000-1021.
[3] WU Yuechen, ZHU Haili, ZHANG Yu, ZHANG Hailong, LIU Guosong, LIU Yabin, LI Guorong, HU Xiasong. Characterization of alpine meadow surface crack and its correlation with root-soil properties[J]. Journal of Arid Land, 2024, 16(6): 834-851.
[4] ZHANG Jun, ZHANG Yuanming, ZHANG Qi. Host plant traits play a crucial role in shaping the composition of epiphytic microbiota in the arid desert, Northwest China[J]. Journal of Arid Land, 2024, 16(5): 699-724.
[5] YE He, HONG Mei, XU Xuehui, LIANG Zhiwei, JIANG Na, TU Nare, WU Zhendan. Responses of plant diversity and soil microorganism diversity to nitrogen addition in the desert steppe, China[J]. Journal of Arid Land, 2024, 16(3): 447-459.
[6] SUN Lin, YU Zhouchang, TIAN Xingfang, ZHANG Ying, SHI Jiayi, FU Rong, LIANG Yujie, ZHANG Wei. Leguminosae plants play a key role in affecting soil physical-chemical and biological properties during grassland succession after farmland abandonment in the Loess Plateau, China[J]. Journal of Arid Land, 2023, 15(9): 1107-1128.
[7] Orhan DENGİZ, İnci DEMİRAĞ TURAN. Soil quality assessment for desertification based on multi-indicators with the best-worst method in a semi-arid ecosystem[J]. Journal of Arid Land, 2023, 15(7): 779-796.
[8] XU Mengran, ZHANG Jing, LI Zhenghai, MO Yu. Attribution analysis and multi-scenario prediction of NDVI drivers in the Xilin Gol grassland, China[J]. Journal of Arid Land, 2022, 14(9): 941-961.
[9] ZHOU Siyuan, DUAN Yufeng, ZHANG Yuxiu, GUO Jinjin. Vegetation dynamics of coal mining city in an arid desert region of Northwest China from 2000 to 2019[J]. Journal of Arid Land, 2021, 13(5): 534-547.
[10] DING Jinchen, CHEN Yunzhi, WANG Xiaoqin, CAO Meiqin. Land degradation sensitivity assessment and convergence analysis in Korla of Xinjiang, China[J]. Journal of Arid Land, 2020, 12(4): 594-608.
[11] MATIN Shafique, GHOSH Sujit, D BEHERA Mukunda. Assessing land transformation and associated degradation of the west part of Ganga River Basin using forest cover land use mapping and residual trend analysis[J]. Journal of Arid Land, 2019, 11(1): 29-42.
[12] BELALA Fahima, HIRCHE Azziz, D MULLER Serge, TOURKI Mahmoud, SALAMANI Mostefa, GRANDI Mohamed, AIT HAMOUDA Tahar, BOUGHANI Madjid. Rainfall patterns of Algerian steppes and the impacts on natural vegetation in the 20th century[J]. Journal of Arid Land, 2018, 10(4): 561-573.
[13] Yunxiao BAI, Xiaobing LI, Wanyu WEN, Xue MI, Ruihua LI, Qi HUANG, Meng ZHANG. CO2, CH4 and N2O flux changes in degraded grassland soil of Inner Mongolia, China[J]. Journal of Arid Land, 2018, 10(3): 347-361.
[14] Z MGANGA Kevin, M NYARIKI Dickson, K R MUSIMBA Nashon, A AMWATA Dorothy. Determinants and rates of land degradation: Application of stationary time-series model to data from a semi-arid environment in Kenya[J]. Journal of Arid Land, 2018, 10(1): 1-11.
[15] LI Xiliang, HOU Xiangyang, REN Weibo, Taogetao BAOYIN, LIU Zhiying, Warwick BADGERY, LI Yaqiong, WU Xinhong, XU Huimin. Long-term effects of mowing on plasticity and allometry of Leymus chinensis in a temperate semi-arid grassland, China[J]. Journal of Arid Land, 2016, 8(6): 899-909.