Research article |
|
|
|
|
Do aeolian deposits and sand encroachment intensity shape patterns of vegetation diversity and plant functional traits in desert pavements? |
M'hammed BOUALLALA1, Souad NEFFAR2,3, Lyès BRADAI4, Haroun CHENCHOUNI5,6,*() |
1Laboratory of Saharan Natural Resources, Faculty of Sciences and Technology, University of Ahmed Draia, Adrar 01000, Algeria 2Department of Nature and Life Sciences, Faculty of Exact Sciences and Nature and Life Sciences, University of Tebessa, Tebessa 12002, Algeria 3Laboratory Water and Environment, University of Tebessa, Tebessa 12002, Algeria 4Laboratory of Saharan Bioresources Preservation and Valorization, Faculty of Nature and Life Sciences, University of Kasdi Merbah, Ouargla 30000, Algeria 5Department of Forest Management, Higher National School of Forests, Khenchela 40000, Algeria 6Laboratory of Natural Resources and Management of Sensitive Environments, University of Oum-El-Bouaghi, Oum-El- Bouaghi 04000, Algeria |
|
|
Abstract The effects of sand encroachment on composition, diversity, and functional patterns of vegetation in drylands are rarely studied, and yet addressing these aspects is important to deepen our understanding of the biodiversity conservation. This study aimed to investigate the effect of sand encroachment on plant functional biodiversity of desert pavements (gravel deserts) in the Sahara Desert of Algeria. Plants were sampled and analyzed in three desert pavements with different levels of sand encroachment (LSE) and quantity of aeolian deposits (low, LLSE; medium, MLSE; and high, HLSE). Within the sample-plot area (100 m2), density of every plant species was identified and total vegetation cover was determined. Plant taxonomic and functional diversity were analyzed and compared between LSE. Result showed that 19 plant species in desert pavements were classified into 18 genera and 13 families. Asteraceae and Poaceae were the most important families. The species Anabasis articulata (Forssk) Moq. characterized LLSE desert pavements with 11 species, whereas Thymelaea microphylla Coss. & Durieu ex Meisn. and Calobota saharae (C&D) Boatwr. & van Wyk were dominant species of desert pavements with MLSE (14 species) and HLSE (10 species), respectively. The highest values of species richness and biodiversity were recorded in desert pavements with MLSE, while low values of these ecological parameters were obtained in desert pavements with HLSE. Desert pavements with LLSE were characterized with the highest values of species abundances. Plant communities were dominated by chamaephytes, anemochorous, arido-active, and competitive stress-tolerant plants. The increase in LSE along the gradient from LLSE to HLSE induced significant changes in plant community variables including decreases in plant density, plant rarity, lifeform composition, morphological type, and aridity adaptation. Desert pavements with HLSE favor the degradation of vegetation and trigger biodiversity erosion.
|
Received: 25 December 2022
Published: 30 June 2023
|
Corresponding Authors:
* Haroun CHENCHOUNI (E-mail: chenchouni@gmail.com; chenchouni.haroun@ensf.dz)
|
|
|
[1] |
Abd El-Ghani M M A, Huerta-Martínez F M, Hongyan L, et al. 2017. Plant Responses to Hyperarid Desert Environments. Cham: Springer, 598.
|
|
|
[2] |
Ahmed M, Al-Dousari N, Al-Dousari A. 2015. The role of dominant perennial native plant species in controlling the mobile sand encroachment and fallen dust problem in Kuwait. Arabian Journal of Geosciences, 9(2): 134, doi: 10.1007/s1251 7-015-2216-6.
|
|
|
[3] |
Al-Dousari A M, Ahmed M, Al-Senafy M, et al. 2008. Characteristics of nabkhas in relation to dominant perennial plant species in Kuwait. Kuwait Journal of Science and Engineering, 35(1): 129-150.
|
|
|
[4] |
Al-Dousari A M, Ahmed M, Al-Dousari N, et al. 2019. Environmental and economic importance of native plants and green belts in controlling mobile sand and dust hazards. International Journal of Environmental Science and Technology, 16(5): 2415-2426.
doi: 10.1007/s13762-018-1879-4
|
|
|
[5] |
Al Shaye N A, Masrahi Y S, Thomas J. 2020. Ecological significance of floristic composition and life forms of Riyadh region, Central Saudi Arabia. Saudi Journal of Biological Sciences, 27(1): 35-40.
doi: 10.1016/j.sjbs.2019.04.009
pmid: 31889814
|
|
|
[6] |
Arar A, Chenchouni H. 2012. How could geomatics promote our knowledge for environmental management in Eastern Algeria? Journal of Environmental Science and Technology, 5(5): 291-305.
|
|
|
[7] |
Arar A, Chenchouni H. 2014. A ''simple'' geomatics-based approach for assessing water erosion hazard at montane areas. Arabian Journal of Geosciences, 7(1): 1-12.
doi: 10.1007/s12517-012-0782-4
|
|
|
[8] |
Audru J, Cesar J, Lebrun J P. 1994. The Vascular Plants of the Republic of Djibouti. Volume I. Montpellier: CIRAD-EMVT, 29-45. (in French)
|
|
|
[9] |
Azizi M, Chenchouni H, Belarouci M E H, et al. 2021. Diversity of psammophyte communities on sand dunes and sandy soils of the northern Sahara Desert. Journal of King Saud University-Science, 33(8): 101656, doi: 10.1016/j.jksus.2021.101656.
doi: 10.1016/j.jksus.2021.101656
|
|
|
[10] |
Barakat N A, Laudadio V, Cazzato E, et al. 2013. Potential contribution of Retama raetam (Forssk.) Webb & Berthel as a forage shrub in Sinai, Egypt. Arid Land Research and Management, 27(3): 257-271.
|
|
|
[11] |
Batanouny K H. 1973. Soil properties as affected by topography in desert wadis. Acta Botanica Academiae Scientiarum Hungaricae, 19: 13-21.
|
|
|
[12] |
Batanouny K H, Hilli M R. 1973. Phytosociological study of Ghurfa Desert, central Iraq. Phytocoenologia, 1: 223-249.
doi: 10.1127/phyto/1/1973/223
|
|
|
[13] |
Benabderrahmane M C, Chenchouni H. 2010. Assessing environmental sensitivity areas to desertification in Eastern Algeria using Mediterranean desertification and land use ''MEDALUS'' model. International Journal of Sustainable Water and Environmental Systems, 1(1): 5-10.
doi: 10.5383/swes
|
|
|
[14] |
Benhouhou S S, Dargie T C D, Gilbert O L. 2001. Vegetation associations in the Great Western Erg and the Saoura Valley, Algeria. Phytocoenologia, 31(3): 311-324.
doi: 10.1127/phyto/31/2001/311
|
|
|
[15] |
Bossuyt B, Hermy M. 2004. Seed bank assembly follows vegetation succession in dune slacks. Journal of Vegetation Science, 15(4): 449-456.
doi: 10.1111/j.1654-1103.2004.tb02283.x
|
|
|
[16] |
Bouallala M. 2013. Floristic and nutritive spatio-temporal study of the camel rangelands of the Algerian Western Sahara:Case of the regions of Béchar and Tindouf. PhD Dissertation. Ouargla: University of Ouargla. (in French)
|
|
|
[17] |
Bouallala M, Neffar S, Chenchouni H. 2020. Vegetation traits are accurate indicators of how do plants beat the heat in drylands: Diversity and functional traits of vegetation associated with water towers in the Sahara Desert. Ecological Indicators, 114: 106364, doi: 10.1016/j.ecolind.2020.106364.
doi: 10.1016/j.ecolind.2020.106364
|
|
|
[18] |
Bouallala M, Bradai L, Chenchouni H. 2022. Effects of sand encroachment on vegetation diversity in the Sahara Desert. In: Chenchouni H, Chaminé H I, Khan M F, et al. New Prospects in Environmental Geosciences and Hydrogeosciences. Cham: Springer, 133-138.
|
|
|
[19] |
Bouarfa S, Bellal S A. 2018. Assessment of the aeolian sand dynamics in the region of Ain Sefra (Western Algeria), using wind data and satellite imagery. Arabian Journal of Geosciences, 11: 56, doi: 10.1007/s12517-017-3346-9.
doi: 10.1007/s12517-017-3346-9
|
|
|
[20] |
Bouchlaghem K, Chtioui H, Gazzah M H. 2021. Analyzing the impact of Saharan sand and dust storms based on HYSPLIT algorithm in Tunisian regions. Arabian Journal of Geosciences, 14: 834, doi: 10.1007/s12517-021-07174-4.
doi: 10.1007/s12517-021-07174-4
|
|
|
[21] |
Bradai L, Bouallala M H, Bouziane N F, et al. 2015. An appraisal of eremophyte diversity and plant traits in a rocky desert of the Sahara. Folia Geobotanica, 50(3): 239-252.
doi: 10.1007/s12224-015-9218-8
|
|
|
[22] |
Bouzekri A, Alexandridis T K, Toufik A, et al. 2023. Assessment of the spatial dynamics of sandy desertification using remote sensing in Nemamcha region (Algeria). The Egyptian Journal of Remote Sensing and Space Sciences, 26. (in Press)
|
|
|
[23] |
Brovkin V. 2002. Climate-vegetation interaction. Journal de Physique IV, 12(10): 57-72.
|
|
|
[24] |
Caiafa A N, Silva A F D. 2005. Floristic composition of a ''Campo de Altitude'' in the Sierra do Brigadeiro state park, Minas Gerais-Brazil. Rodriguésia, 56(87): 163-173.
doi: 10.1590/2175-78602005568712
|
|
|
[25] |
Chao A, Chazdon R L, Colwell R K, et al. 2005. A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecology Letters, 8(2): 148-159.
doi: 10.1111/ele.2005.8.issue-2
|
|
|
[26] |
Chehma A. 2005. Spatio-temporal floristic and nutritive study of camel rangelands in the northern Algerian Sahara. Case of the Ouargla and Ghardaia regions. PhD Dissertation. Annaba: University of Annaba. (in French)
|
|
|
[27] |
Chenchouni H. 2012. Flora diversity of a lake at Algerian Low-Sahara. Acta Botanica Malacitana, 37: 33-44.
doi: 10.24310/abm.v37i0
|
|
|
[28] |
Chenchouni H, Errami E, Rocha F, et al. 2019. Exploring the Nexus of Geoecology, Geography, Geoarcheology and Geotourism:Advances and Applications for Sustainable Development in Environmental Sciences and Agroforestry Research. Cham: Springer, 109.
|
|
|
[29] |
Chenchouni H, Chaminé H I, Khan M F, et al. 2022. New Prospects in Environmental Geosciences and Hydrogeosciences. Cham: Springer, 635.
|
|
|
[30] |
Colwell R K, Elsensohn J E. 2014. EstimateS turns 20: Statistical estimation of species richness and shared species from samples. Ecography, 37(6): 609-613.
doi: 10.1111/ecog.2014.37.issue-6
|
|
|
[31] |
Copeland S M, Bradford J B, Duniway M C, et al. 2017. Potential impacts of overlapping land-use and climate in a sensitive dryland: a case study of the Colorado Plateau, USA. Ecosphere, 8(5): e01823, doi: 10.1002/ecs2.1823.
doi: 10.1002/ecs2.1823
|
|
|
[32] |
Coude-Gaussen G. 2002. Surface formations of hot deserts and their margins. In: MiskovskyJ C. Geologyof Prehistory. Paris: Presses Universitaires de Perpignan, 125-144. (in French)
|
|
|
[33] |
Dadamoussa M L, Senoussi A, Idder M A, et al. 2015. Small development in the Algerian northern Sahara: Between development policies and reality, case of Ouargla, Ghardaïa and El-Oued. Livestock Research for Rural Development, 27(10): 210. (in French)
|
|
|
[34] |
Dashti A, Mohammad R, Al-Hurban A. 2021. Sand dunes-induced geomorphological changes in Um Ar-Rimam depression, Kuwait. Arabian Journal of Geosciences, 14: 1632, doi: 10.1007/s12517-021-08108-w.
doi: 10.1007/s12517-021-08108-w
|
|
|
[35] |
Dewitte O, Jones A, Spaargaren O, et al. 2013. Harmonisation of the soil map of Africa at the continental scale. Geoderma, 211-212: 138-153.
|
|
|
[36] |
Dubief J. 1959. The Climate of the Sahara. Volume I. Temperature. Alger: Travaux de l'Institut de Recherche Saharienne, 312. (in French)
|
|
|
[37] |
Dubief J. 1963. The Climate of the Sahara. Volume II. Precipitation. Alger: Travaux de l'Institut de Recherche Saharienne, 275. (in French)
|
|
|
[38] |
Fabre J. 2005. Geology of Western and Central Sahara. Tervuren: Royal Museum for Central Africa, 19. (in French)
|
|
|
[39] |
FAO. 2014. Training manual for combating desertification, dune fixation and afforestation management in Mauritania. Nouakchott. [2022-08-16]. https://www.apefe.org/component/docman/cat_view/141-manuel.html. (in French)
|
|
|
[40] |
Fatmi H, Mâalem S, Harsa B, et al. 2020. Pollen morphological variability correlates with a large-scale gradient of aridity. Web Ecology, 20(1): 19-32.
doi: 10.5194/we-20-19-2020
|
|
|
[41] |
Faurie C, Ferra C, Medori P, et al. 2003. Ecology: Scientific Approches and Practice. Paris: Tec & Doc, 488. (in French)
|
|
|
[42] |
Fu Q, Feng S. 2014. Responses of terrestrial aridity to global warming. Atmospheres, 119(13): 7863-7875.
|
|
|
[43] |
Gamoun M, Ouled Belgacem A, Hanchi B, et al. 2012. Impact of grazing on the floristic diversity of arid rangelands in South Tunisia. Revue Ecologie (Terre Vie), 67(3): 271-282
|
|
|
[44] |
Gamoun M, Belgacem A O, Louhaichi M. 2018. Diversity of desert rangelands of Tunisia. Plant Diversity, 40(5): 217-225.
doi: 10.1016/j.pld.2018.06.004
pmid: 30740567
|
|
|
[45] |
Gentry A H. 1982. Patterns of neotropical plant species diversity. In: HechtM K, WallaceB, PranceG T. EvolutionaryBiology. Boston: Springer, 1-84.
|
|
|
[46] |
Giulietti A M, de Menezes N L, Pirani J R, et al. 1987. Flora of Serra do Cipó, Minas Gerais: Characterization and list of species. Boletim de Botânica da Universidade de São Paulo, 9: 151, doi: 10.11606/issn.2316-9052.v9i0p1-151.(inPortuguese)
doi: 10.11606/issn.2316-9052.v9i0p1-151.(inPortuguese
|
|
|
[47] |
Gorai M, Laajili W, Santiago L S, et al. 2015. Rapid recovery of photosynthesis and water relations following soil drying and re-watering is related to the adaptation of desert shrub Ephedra alata subsp. alenda (Ephedraceae) to arid environments. Environmental and Experimental Botany, 109: 113-121.
doi: 10.1016/j.envexpbot.2014.08.011
|
|
|
[48] |
Grime J P, Hodgson J G, Hunt R. 1988. Comparative Plant Ecology:A Functional Approach to Common British Species. Dordrecht: Springer, 742.
|
|
|
[49] |
Griz L M S, Machado I C S. 2001. Fruiting phenology and seed dispersal syndromes in Caatinga, a tropical dry forest in the northeast of Brazil. Journal of Tropical Ecology, 17(2): 303-321.
doi: 10.1017/S0266467401001201
|
|
|
[50] |
Groom J D, McKinney L B, Ball L C, et al. 2007. Quantifying off-highway vehicle impacts on density and survival of a threatened dune-endemic plant. Biological Conservation, 135(1): 119-134.
doi: 10.1016/j.biocon.2006.10.005
|
|
|
[51] |
Guinet P H, Sauvage C H. 1954. South Moroccan Hamadas, Botanical Series. Hamadas: Cherifian Scientific Institute, 75-167. (in French)
|
|
|
[52] |
Hall R M, Penke N, Kriechbaum M, et al. 2020. Vegetation management intensity and landscape diversity alter plant species richness, functional traits and community composition across European vineyards. Agricultural Systems, 177: 102706, doi: 10.1016/j.agsy.2019.102706.
doi: 10.1016/j.agsy.2019.102706
|
|
|
[53] |
Harrison S P, Prentice I C, Barboni D, et al. 2010. Ecophysiological and bioclimatic foundations for a global plant functional classification. Journal of Vegetation Science, 21(2): 300-317.
doi: 10.1111/jvs.2010.21.issue-2
|
|
|
[54] |
Heywood V H. 1978. Flowering Plants of the World. Oxford: Oxford University Press, 33.
|
|
|
[55] |
Hughes L, Dunlop M, French K, et al. 1994. Predicting dispersal spectra: a minimal set of hypotheses based on plant attributes. Journal of Ecology, 82: 933-950.
doi: 10.2307/2261456
|
|
|
[56] |
Jamir S A, Pandey H N. 2003. Vascular plant diversity in the sacred groves of Jaintia Hills in northeast India. Biodiversity & Conservation, 12(7): 1497-1510.
|
|
|
[57] |
Jaouen X. 1988. Trees, Shrubs and Bushes of Mauritania. Nouakchott: CCF, 31. (in French)
|
|
|
[58] |
Jara-Guerrero A, de la Cruz M, Méndez M. 2011. Seed dispersal spectrum of woody species in south Ecuadorian dry forests: Environmental correlates and the effect of considering species abundance. Biotropica, 43(6): 722-730.
doi: 10.1111/btp.2011.43.issue-6
|
|
|
[59] |
Jauffret S. 2001. Validation and comparison of various indicators of long-term changes in arid Mediterranean ecosystems:Application to the monitoring of desertification in southern Tunisia. PhD Dissertation. Marseille: University of Aix-Marseille III. (in French)
|
|
|
[60] |
Kent M, Owen N W, Dale M P. 2005. Photosynthetic responses of plant communities to sand burial on the Machair dune systems of the Outer Hebrides, Scotland. Annals of Botany, 95(5): 869-877.
pmid: 15710644
|
|
|
[61] |
Kouba Y, Merdas S, Mostephaoui T, et al. 2021. Plant community composition and structure under short-term grazing exclusion in steppic arid rangelands. Ecological Indicators, 120: 106910, doi: 10.1016/j.ecolind.2020.106910.
doi: 10.1016/j.ecolind.2020.106910
|
|
|
[62] |
Lavorel S, Diaz S, Cornelissen J H C, et al. 2007 Plant functional types:are we getting any closer to the Holy Grail? In: Canadell J G, Pataki D E, Pitelka L F. Terrestrial Ecosystems in a Changing World. Heidelberg: Springer, 149-164.
|
|
|
[63] |
Le Houérou H N. 1990. Definition and bioclimatic limits of the Sahara. Sécheresse, 1(4): 246-259. (in French)
|
|
|
[64] |
Lemee G. 1953. Contribution to phytosociological knowledge of the Saharo-Moroccan confines: Therophyte associations of sandy and non-salte loamy depressions and rockeries around Beni-Ounif. Vegetatio, 4(3): 137-154. (in French)
doi: 10.1007/BF00297015
|
|
|
[65] |
Liu Z, Li X, Yan Q, et al. 2007. Species richness and vegetation pattern in interdune lowlands of an active dune field in Inner Mongolia, China. Biological Conservation, 140(1-2): 29-39.
doi: 10.1016/j.biocon.2007.07.030
|
|
|
[66] |
Macheroum A, Kadik L, Neffar S, et al. 2021. Environmental drivers of taxonomic and phylogenetic diversity patterns of plant communities in semi-arid steppe rangelands of North Africa. Ecological Indicators, 132: 108279, doi: 10.1016/j.ecolind.2021.108279.
doi: 10.1016/j.ecolind.2021.108279
|
|
|
[67] |
Macheroum A, Chenchouni H. 2022. Short-term land degradation driven by livestock grazing does not affect soil properties in semiarid steppe rangelands. Frontiers in Environmental Science, 10: 846045, doi: 10.3389/fenvs.2022.846045.
doi: 10.3389/fenvs.2022.846045
|
|
|
[68] |
Merdas S, Kouba Y, Mostephaoui T, et al. 2021. Livestock grazing-induced large-scale biotic homogenization in arid Mediterranean steppe rangelands. Land Degradation & Development, 32(17): 5099-5107.
doi: 10.1002/ldr.v32.17
|
|
|
[69] |
Mihi A, Tarai N, Chenchouni H. 2019a. Can palm date plantations and oasification be used as a proxy to fight sustainably against desertification and sand encroachment in hot drylands?. Ecological Indicators, 105: 365-375.
doi: 10.1016/j.ecolind.2017.11.027
|
|
|
[70] |
Mihi A, Nacer T, Chenchouni H. 2019b. Monitoring dynamics of date palm plantations from 1984 to 2013 using Landsat Time-Series in Sahara Desert Oases of Algeria. In: El-Askary H M, Lee S, Heggy E, et al. Advances in Remote Sensing and Geo Informatics Applications. Cham: Springer, 225-228.
|
|
|
[71] |
Monod T. 1992. Desert. Sécheresse, 3(1): 7-24. (in French)
|
|
|
[72] |
Monteiro A, Caetano F, Vasconcelos T, et al. 2012. Vineyard weed community dynamics in the Dão winegrowing region. Ciência e Técnica Vitivinicola, 27(2): 73-82.
|
|
|
[73] |
Morales J M, Carlo T A. 2006. The effects of plant distribution and frugivore density on the scale and shape of dispersal kernels. Ecology, 87(6): 1489-1496.
pmid: 16869425
|
|
|
[74] |
Mota G S, Luz G R, Mota N M, et al. 2018. Changes in species composition, vegetation structure, and life forms along an altitudinal gradient of rupestrian grasslands in south-eastern Brazil. Flora, 238: 32-42.
doi: 10.1016/j.flora.2017.03.010
|
|
|
[75] |
Munoz-Reinoso J C, Novo F G. 2005. Multiscale control of vegetation patterns: The case of Doñana (SW Spain). Landscape Ecology, 20(1): 51-61.
doi: 10.1007/s10980-004-0466-x
|
|
|
[76] |
Nash M S, Whitford W G, de Soyza A G, et al. 1999. Livestock activity and Chihuahuan Desert annual-plant communities: boundary analysis of disturbance gradients. Ecological Applications, 9(3): 814-823.
doi: 10.1890/1051-0761(1999)009[0814:LAACDA]2.0.CO;2
|
|
|
[77] |
Navarro T, Pascual V, Alados C L, et al. 2009. Growth forms, dispersal strategies and taxonomic spectrum in a semi-arid shrubland in SE Spain. Journal of Arid Environments, 73(1): 103-112.
doi: 10.1016/j.jaridenv.2008.09.009
|
|
|
[78] |
Neffar S, Chenchouni H, Si Bachir A. 2016. Floristic composition and analysis of spontaneous vegetation of Sabkha Djendli in North-east Algeria. Plant Biosystems, 150(3): 396-403.
doi: 10.1080/11263504.2013.810181
|
|
|
[79] |
Neffar S, Menasria T, Chenchouni H. 2018. Diversity and functional traits of spontaneous plant species in Algerian rangelands rehabilitated with prickly pear (Opuntia ficus-indica L.) plantations. Turkish Journal of Botany, 42(4): 448-461.
|
|
|
[80] |
Neffar S, Beddiar A, Menasria T, et al. 2022. Planting prickly pears as a sustainable alternative and restoration tool for rehabilitating degraded soils in dry steppe rangelands. Arabian Journal of Geosciences, 15(3): 287.
doi: 10.1007/s12517-022-09579-1
|
|
|
[81] |
Neffati M, Sghaier M, Labbene Y. 2016. Meeting the challenges of climate change through adaptation and mitigation. Project OSS-MENA-DELP. [2022-07-15]. https://www.profor.info/sites/profor.info/files/Rapport%20principal-Etude%20CC-MENA.PDF. (in French)
|
|
|
[82] |
Negre R. 1962. Small Flora of the Arid rRegions of Western Morocco. Paris: CNRS, 34. (in French)
|
|
|
[83] |
Noy-Meir I. 1973. Desert ecosystems: environment and producers. Annual Review of Ecology, Evolution, and Systematics, 4: 25-51.
|
|
|
[84] |
Orshan G. 1986. The deserts of the Middle East. In: EvenariM, Noy-MeirI, GoodallD W. HotDeserts and Arid Shrublands. Amsterdam: Elsevier, 1-28.
|
|
|
[85] |
Ozenda P. 1991. Flora and Vegetation of the Sahara. Paris: CNRS, 660. (in French)
|
|
|
[86] |
Ozenda P. 2004. Flora and Vegetation of the Sahara. Paris: CNRS, 662. (in French)
|
|
|
[87] |
Parsons A J, Abrahams A D. 2009. Geomorphology of Desert Environments. Dordrecht: Springer, 831.
|
|
|
[88] |
Pausas J G, Austin M P. 2001. Patterns of plant species richness in relation to different environments: an appraisal. Journal of Vegetation Science, 12(2): 153-166.
doi: 10.2307/3236601
|
|
|
[89] |
Peguero-Pina J J, Vilagrosa A, Alonso-Forn D, et al. 2020. Living in drylands: Functional adaptations of trees and shrubs to cope with high temperatures and water scarcity. Forests, 11(10): 1028, doi: 10.3390/f11101028.
doi: 10.3390/f11101028
|
|
|
[90] |
Pielou E C. 1975. Ecological Diversity. New York: Wiley InterScience, 166.
|
|
|
[91] |
Quézel P, Santa S. 1962. New Flora of Algeria and the Southern Desert Regions. Volume 1. Paris: CNRS, 1-565. (in French)
|
|
|
[92] |
Quézel P, Santa S. 1963. New Flora of Algeria and the Southern Desert Regions. Volume 2. Paris: CNRS, 566-1170. (in French)
|
|
|
[93] |
Quézel P. 1965. The Vegetation of the Sahara from Chad to Mauritania. Stuttgart: Gustav Verlag, 333. (in French)
|
|
|
[94] |
Quézel P. 1978. Analysis of the flora of Mediterranean and Saharan Africa. Annals of the Missouri Botanical Garden, 65(2): 479-534.
doi: 10.2307/2398860
|
|
|
[95] |
Rana T S, Datt B, Rao R R. 2002. Life forms and biological spectrum of the flora of Tons valley, Garhwal Himalaya (Uttaranchal), India. Taiwania, 47(2): 164-169.
|
|
|
[96] |
Raunkiær C. 1934. The Life-forms of Plants and Statistical Plant Geography. Oxford: Clarendon Press, 632.
|
|
|
[97] |
Ribeiro K T, Medina B M O, Scarano F R. 2007. Species composition and biogeographic relations of the rock outcrop flora on the high plateau of Itatiaia, SE-Brazil. Brazilian Journal of Botany, 30(4): 623-639.
doi: 10.1590/S0100-84042007000400008
|
|
|
[98] |
Salama F, Abd El-Ghani M, Gadallah M, et al. 2014. Variations in vegetation structure, species dominance and plant communities in South of the Eastern Desert-Egypt. Notulae Scientia Biologicae, 6(1): 41-58.
doi: 10.15835/nsb619191
|
|
|
[99] |
Seltzer P. 1946. The Climate of Algeria. Algiers: University of Algiers, 24. (in French)
|
|
|
[100] |
Senoussi A, Schadt I, Hioun S, et al. 2021. Botanical composition and aroma compounds of semi-arid pastures in Algeria. Grass and Forage Science, 76(2): 282-299.
doi: 10.1111/gfs.v76.2
|
|
|
[101] |
Shameem S A, Mushtaq H, Wani A A, et al. 2017. Phytodiversity of herbaceous vegetation in disturbed and undisturbed forest ecosystems of Pahalgam valley, Kashmir Himalaya, India. British Journal of Environment & Climate Change, 7(3): 148-167.
|
|
|
[102] |
Sinsin T, Mounir F, El Aboudi A. 2021. Modeling and assessing driving factors of the spatial and temporal dynamics of the sand dunes in the district of Errachidia, Morocco. Arabian Journal of Geosciences, 14: 2111, doi: 10.1007/s12517-021-08423-2.
doi: 10.1007/s12517-021-08423-2
|
|
|
[103] |
Sirvent L. 2020. Biological Types: State of the Art, Updating of Definitions and Establishment of a Repository. Porquerolles: National Mediterranean Botanical Conservatory of Porquerolles, 64. (in French)
|
|
|
[104] |
Sophia M, Behera N, Gupta A. 2019. Life-form and biological spectrum of sub-tropical forests and agroecosystems of Manipur in North-east India. Pleione, 13(2): 346-354.
doi: 10.26679/Pleione.13.2.2019.346-354
|
|
|
[105] |
Souahi H, Gacem R, Chenchouni H. 2022. Variation in plant diversity along a watershed in the semi-arid lands of North Africa. Diversity, 14(6): 450, doi: 10.3390/d14060450.
doi: 10.3390/d14060450
|
|
|
[106] |
Tanji A. 2005. Wheat and Barley Weeds in Morocco. Raba: INRA, 134. (in French)
|
|
|
[107] |
van Bodegom P, Bakker C, van der Gon H D. 2004. Identifying key issues in environmental wetland research using scaling and uncertainty analysis. Regional Environmental Change, 4(2/3): 100-106.
doi: 10.1007/s10113-004-0069-8
|
|
|
[108] |
van Der Pijil L. 1982. Principles of Dispersal in Higher Plants. Heidelberg: Springer, 218.
|
|
|
[109] |
van Rooyen M W, Theron G K, Grobbelaar N. 1990. Life form and dispersal spectra of the flora of Namaqualand, South Africa. Journal of Arid Environments, 19(2): 133-145.
doi: 10.1016/S0140-1963(18)30812-7
|
|
|
[110] |
Violle C, Navas M L, Vile D, et al. 2007. Let the concept of trait be functional! Oikos, 116(5): 882-892.
|
|
|
[111] |
von Maydell H J. 1983. Trees and Shrubs of the Sahel, their Characteristics and Uses. Eschbon: German Agency for Technical Cooperation, 517-531. (in French)
|
|
|
[112] |
Wang H, Harrison S P, Prentice I C, et al. 2018. The China plant trait database: Toward a comprehensive regional compilation of functional traits for land plants. Ecology, 99(2): 500-500.
|
|
|
[113] |
Wang J H, Baskin C C, Cui X L, et al. 2009. Effect of phylogeny, life history and habitat correlates on seed germination of 69 arid and semi-arid zone species from northwest China. Evolutionary Ecology, 23: 827-846.
doi: 10.1007/s10682-008-9273-1
|
|
|
[114] |
Weiher E A, van der Werf, Thompson K, et al. 1999. Challenging Theophrastus: A common core list of plant trait for functional ecology. Journal of Vegetation Science, 10: 609-620.
doi: 10.2307/3237076
|
|
|
[115] |
Yan Q, Liu Z, Zhu J, et al. 2005. Structure, pattern and mechanisms of formation of seed banks in sand dune systems in northeastern Inner Mongolia, China. Plant and Soil, 277: 175-184.
doi: 10.1007/s11104-005-6836-6
|
|
|
[116] |
Yan Q, Liu Z, Ma J, et al. 2007. The role of reproductive phenology, seedling emergence and establishment of perennial Salix gordejevii in active sand dune fields. Annals of Botany, 99(1): 19-28.
doi: 10.1093/aob/mcl228
|
|
|
[117] |
Yazdani M, Sobhani B, Zengir V S, et al. 2020. Analysis, monitoring and simulation of dust hazard phenomenon in the northern Persian Gulf, Iran, Middle East. Arabian Journal of Geosciences, 13: 530, doi: 10.1007/s12517-020-05470-z.
doi: 10.1007/s12517-020-05470-z
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|