Please wait a minute...
Journal of Arid Land  2023, Vol. 15 Issue (3): 327-343    DOI: 10.1007/s40333-023-0096-2
Research article     
Modern pollen assemblages and their relationships with vegetation and climate on the northern slopes of the Tianshan Mountains, Xinjiang, China
ZHANG Wensheng1, AN Chengbang1,*(), LI Yuecong2, ZHANG Yong1, LU Chao1, LIU Luyu1, ZHANG Yanzhen1, ZHENG Liyuan1, LI Bing2, FU Yang1, DING Guoqiang1
1Key Laboratory of Western China's Environmental Systems, Ministry of Education, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
2College of Geographical Sciences, Hebei Normal University, Shijiazhuang 050024, China
Download: HTML     PDF(2322KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

The reconstruction of paleovegetation and paleoclimate requires an understanding of the relationships between surface pollen assemblages and modern vegetation and climate. Here, we analyzed the characteristics of surface pollen assemblages across different vegetation zones in the Tianshan Mountains. Using surface pollen analysis and vegetation sample surveys at 75 sites on the northern slopes of the Tianshan Mountains, we determined the correlation between the percentage of dominant pollen types and the corresponding vegetation cover. Redundancy analysis was used to investigate the relationships between surface pollen assemblages and environmental factors. Our results show that the Tianshan Mountains contain several distinct ecological regions, which can be divided into five main vegetation zones from low to high altitudes: mountain desert zone (Hutubi County (HTB): 500-1300 m; Qitai County (QT): 1000-1600 m), mountain steppe zone (HTB: 1400-1600 m; QT: 1650-1800 m), mountain forest zone (HTB: 1650-2525 m; QT: 1850-2450 m), subalpine meadow zone (HTB: 2550-2600 m; QT: 2500-2600 m), and alpine mat vegetation zone (HTB: 2625-2700 m; QT: 2625-2750 m). The surface pollen assemblages of different vegetation zones can accurately reflect the characteristics of the mountainous vegetation patterns on the northern slopes of the Tianshan Mountains when excluding the widespread occurrence of Chenopodiaceae, Artemisia, and Picea pollen. Both average annual precipitation (Pann) and annual average temperature (Tann) affect the distribution of surface pollen assemblages. Moreover, Pann is the primary environmental factor affecting surface pollen assemblages in this region. A significant correlation exists between the pollen percentage and vegetation cover of Picea, Chenopodiaceae, Artemisia, and Asteraceae. Moreover, Picea, Chenopodiaceae, and Artemisia pollen are over-represented compared with their corresponding vegetation cover. The Asteraceae pollen percentage roughly reflects the distribution of a species within the local vegetation. These results have important implications for enhancing our understanding of the relationship between surface pollen assemblages and modern vegetation and climate.



Key wordssurface pollen assemblages      environmental factors      vegetation cover      redundancy analysis      Tianshan Mountains     
Received: 20 August 2022      Published: 31 March 2023
Corresponding Authors: * AN Chengbang (E-mail: cban@lzu.edu.cn)
Cite this article:

ZHANG Wensheng, AN Chengbang, LI Yuecong, ZHANG Yong, LU Chao, LIU Luyu, ZHANG Yanzhen, ZHENG Liyuan, LI Bing, FU Yang, DING Guoqiang. Modern pollen assemblages and their relationships with vegetation and climate on the northern slopes of the Tianshan Mountains, Xinjiang, China. Journal of Arid Land, 2023, 15(3): 327-343.

URL:

http://jal.xjegi.com/10.1007/s40333-023-0096-2     OR     http://jal.xjegi.com/Y2023/V15/I3/327

Fig. 1 Location (a and c) and vegetation distribution (b and d) of surface pollen sampling sites in the regions of Qitai County (QT) and Hutubi County (HTB) (drawn from Hou (2001))
Lab
number
Sample number Latitude Longitude Altitude
(m)
Lab
number
Sample number Latitude Longitude Altitude
(m)
1 HTB1 44°09′19′′N 86°34′16′′E 500 39 HTB39 43°43′31′′N 86°19′19′′E 2675
2 HTB2 44°07′51′′N 86°33′18′′E 600 40 HTB40 43°43′31′′N 86°19′20′′E 2700
3 HTB3 44°06′37′′N 86°32′51′′E 650 41 QT1 43°52′26′′N 89°32′40′′E 1000
4 HTB4 44°04′49′′N 86°32′14′′E 700 42 QT2 43°49′45′′N 89°32′01′′E 1100
5 HTB5 44°04′02′′N 86°32′13′′E 750 43 QT3 43°47′25′′N 89°31′33′′E 1200
6 HTB6 43°59′31′′N 86°30′55′′E 850 44 QT4 43°45′18′′N 89°31′47′′E 1300
7 HTB7 43°57′52′′N 86°30′27′′E 950 45 QT5 43°43′53′′N 89°33′44′′E 1400
8 HTB8 43°56′54′′N 86°28′24′′E 1000 46 QT6 43°40′24′′N 89°38′09′′E 1500
9 HTB9 43°55′13′′N 86°25′54′′E 1100 47 QT7 43°39′12′′N 89°37′31′′E 1600
10 HTB10 43°53′43′′N 86°24′24′′E 1200 48 QT8 43°38′34′′N 89°37′32′′E 1650
11 HTB11 43°52′07′′N 86°23′26′′E 1300 49 QT9 43°38′15′′N 89°36′57′′E 1700
12 HTB12 43°50′39′′N 86°22′36′′E 1400 50 QT10 43°37′27′′N 89°36′59′′E 1750
13 HTB13 43°50′35′′N 86°21′49′′E 1500 51 QT11 43°37′04′′N 89°36′51′′E 1800
14 HTB14 43°50′30′′N 86°21′01′′E 1600 52 QT12 43°36′58′′N 89°36′02′′E 1850
15 HTB15 43°49′41′′N 86°17′22′′E 1650 53 QT13 43°35′56′′N 89°36′50′′E 1900
16 HTB16 43°49′37′′N 86°17′27′′E 1700 54 QT14 43°35′31′′N 89°36′47′′E 1950
17 HTB17 43°49′35′′N 86°17′34′′E 1750 55 QT15 43°34′36′′N 89°36′50′′E 2000
18 HTB18 43°47′36′′N 86°19′37′′E 1800 56 QT16 43°34′05′′N 89°36′46′′E 2050
19 HTB19 43°47′20′′N 86°19′27′′E 1850 57 QT17 43°33′42′′N 89°36′43′′E 2100
20 HTB20 43°47′07′′N 86°19′16′′E 1900 58 QT18 43°33′11′′N 89°36′39′′E 2150
21 HTB21 43°46′55′′N 86°19′12′′E 1950 59 QT19 43°32′42′′N 89°36′39′′E 2200
22 HTB22 43°46′54′′N 86°19′16′′E 2000 60 QT20 43°32′21′′N 89°36′43′′E 2250
23 HTB23 43°46′15′′N 86°18′37′′E 2050 61 QT21 43°32′04′′N 89°36′40′′E 2300
24 HTB24 43°46′01′′N 86°18′36′′E 2100 62 QT22 43°31′36′′N 89°36′22′′E 2350
25 HTB25 43°47′12′′N 86°16′01′′E 2150 63 QT23 43°31′20′′N 89°36′16′′E 2400
26 HTB26 43°47′08′′N 86°15′53′′E 2200 64 QT24 43°30′59′′N 89°36′13′′E 2450
27 HTB27 43°47′07′′N 86°15′50′′E 2250 65 QT25 43°30′41′′N 89°36′10′′E 2500
28 HTB28 43°44′01′′N 86°20′27′′E 2300 66 QT26 43°30′27′′N 89°36′10′′E 2525
29 HTB29 43°43′55′′N 86°20′14′′E 2350 67 QT27 43°30′35′′N 89°36′16′′E 2550
30 HTB30 43°43′48′′N 86°19′59′′E 2400 68 QT28 43°30′34′′N 89°36′18′′E 2575
31 HTB31 43°43′43′′N 86°20′04′′E 2450 69 QT29 43°30′34′′N 89°36′20′′E 2600
32 HTB32 43°43′44′′N 86°20′06′′E 2500 70 QT30 43°30′09′′N 89°36′15′′E 2625
33 HTB33 43°43′44′′N 86°19′30′′E 2525 71 QT31 43°30′02′′N 89°36′11′′E 2650
34 HTB34 43°43′42′′N 86°19′20′′E 2550 72 QT32 43°30′09′′N 89°36′19′′E 2675
35 HTB35 43°43′37′′N 86°19′17′′E 2575 73 QT33 43°29′58′′N 89°36′13′′E 2700
36 HTB36 43°43′36′′N 86°19′17′′E 2600 74 QT34 43°29′49′′N 89°36′03′′E 2725
37 HTB37 43°43′35′′N 86°19′17′′E 2625 75 QT35 43°29′45′′N 89°36′04′′E 2750
38 HTB38 43°43′32′′N 86°19′17′′E 2650
Table 1 Longitude, latitude, and altitude of the sampling sites
Fig. 2 Pollen percentage and concentration spectra of surface samples in the region of HTB on the northern slopes of the central Tianshan Mountains. A/C, Artemisia/Chenopodiaceae ratio; AP/NAP, arboreal pollen/non-arboreal pollen ratio; Zone Ⅰ, mountain desert zone; Zone II, mountain steppe zone; Zone III, mountain forest zone; Zone IV, subalpine meadow zone; Zone V, alpine mat vegetation zone.
Fig. 3 Pollen percentage and concentration spectra of surface samples in the region of QT on the northern slopes of the eastern Tianshan Mountains
Fig. 4 Redundancy analysis of pollen samples and environmental factors in the study area. Pann, average annual precipitation; Tann, annual average temperature; TJul, July mean temperature; TJan, January mean temperature; PJul, July mean precipitation; PJan, January mean precipitation.
Fig. 5 Characteristics of vegetation cover and pollen percentage changes of dominant pollen types in the regions of HTB (a-d) and QT (e-h) under different altitude conditions
Fig. 6 Scatter plots of the relationships between the pollen percentage of dominant pollen types and their vegetation cover. (a), Picea; (b), Chenopodiaceae; (c), Asteraceae; (d), Artemisia. R-value is the representativeness of dominant pollen types, and ** indicates significant correlation at the 0.01 level.
[1]   Chen C Z, Huang X Z, Peng W, et al. 2012. Study of the surface sporopollen in the Small Yourdusi Basin on the southern slopes of the Tianshan Mountains. Journal of Glaciology and Geocryology, 34(6): 1526-1534. (in Chinese)
[2]   Chen L X, Li Y Y, Zhang Y, et al. 2021a. Relationship between surface pollen and modern vegetation in northern Xinjiang, China: Implications for paleovegetation and paleoclimate reconstruction. Quaternary International, 589: 124-134.
doi: 10.1016/j.quaint.2021.03.038
[3]   Chen L X, Zhang Y, Kong Z C. 2021b. Airborne pollen patterns and their relationship with meteorological factors in the Betula microphylla-dominated wetland of Ebinur Lake, Xinjiang, China. Science China Earth Sciences, 64: 1746-1760.
doi: 10.1007/s11430-020-9801-7
[4]   Chevalier M, Davis B A S, Heiri O, et al. 2020. Pollen-based climate reconstruction techiques for late Quaternary studies. Earth-Science Reviews, 210: 103384, doi: 10.1016/j.earscirev.2020.103384.
doi: 10.1016/j.earscirev.2020.103384
[5]   Comprehensive Investigation Team of Xinjiang and Institute of Botany, Chinese Academy of Sciences. 1978. Xinjiang Vegetation and its Utilization. Beijing: Science Press, 378. (in Chinese)
[6]   Davies C P, Fall P L. 2001. Modern pollen precipitation from an elevational transect in central Jordan and its relationship to vegetation. Journal of Biogeography, 28(10): 1195-1210.
doi: 10.1046/j.1365-2699.2001.00630.x
[7]   Davis M B, 1963. On the theory of pollen analysis. American Journal of Science, 261(10): 897-912.
doi: 10.2475/ajs.261.10.897
[8]   Deng W, Dai E F, Jia Y W, et al. 2015. Spatiotemporal coupling characteristics, effects and their regulation of water and soil elements in mountainous area. Mountain Research, 33(5): 513-520. (in Chinese)
[9]   Fægri K, Iversen J. 1989. Textbook of Pollen Analysis. Oxford: Blackwell.
[10]   Feng Y Y, Zhao Y L, Yang Z M, et al. 2021. Spatio-temporal differentiation of trade-offs and synergies of ecosystem services in typical mountain areas of China. Journal of Resources and Ecology, 12(2): 268-279.
doi: 10.5814/j.issn.1674-764x.2021.02.013
[11]   Ge Y W, Li Y C, Bunting M J, et al. 2017. Relation between modern pollen rain, vegetation and climate in northern China: implications for quantitative vegetation reconstruction in a steppe environment. Science of the Total Environment, 586: 25-41.
doi: 10.1016/j.scitotenv.2017.02.027
[12]   Ge Y W, Zhang K, Yang X D, et al. 2020. Pollen-vegetation/land use relationships in southeastern China: complexity and applicability for paleoenvironmental reconstruction. Ecological Indicators, 116: 106523, doi: 10.1016/j.ecolind.2020.106523.
doi: 10.1016/j.ecolind.2020.106523
[13]   Hou X Y. 2001. Vegetation Atlas of China (1: 1000000). Beijing: Science Press. (in Chinese)
[14]   Hu R J. 2004. Physical geography of the Tianshan Mountains in China. Beijing: China Environmental Science Press. (in Chinese)
[15]   Huang X Z, Chen X M, Du X. 2018. Modern pollen assemblages from human-influenced vegetation in northwestern China and their relationship with vegetation and climate. Vegetation History and Archaeobotany, 27: 767-780.
doi: 10.1007/s00334-018-0672-0
[16]   Lang Q, Yao F L, Yang H J. 2020. Surface pollen spectrum in intermountain basin of Middle Tianshan, Xinjiang, China. Chinese Journal of Ecology, 39(8): 2518-2527. (in Chinese)
[17]   Li F R, Zhao Y, Gaillard M J, et al. 2017. Modern pollen-climate relationships in north Xinjiang, northwestern China: Implications for pollen-based reconstruction of Holocene climate. The Holocene, 27(7): 951-966.
doi: 10.1177/0959683616678464
[18]   Li F R, Gaillard M J, Cao X Y, et al. 2020. Towards quantification of Holocene anthropogenic land-cover change in temperate China: A review in the light of pollen-based REVEALS reconstructions of regional plant cover. Earth-Science Reviews, 203: 103119, doi: 10.1016/j.earscirev.2020.103119.
doi: 10.1016/j.earscirev.2020.103119
[19]   Li X Q, Zhao K L, John D, et al. 2011a. Moisture dynamics in central Asia for the last 15 kyr: new evidence from Yili Valley, Xinjiang, NW China. Quaternary Science Reviews, 30(23-24): 3457-3466.
doi: 10.1016/j.quascirev.2011.09.010
[20]   Li Y C, Bunting M J, Xu Q H, et al. 2011b. Pollen-vegetation-climate relationships in some desert and desert steppe communities in Northern China. The Holocene, 21(6): 997-1010.
doi: 10.1177/0959683611400202
[21]   Li Y C, Ge Y W, Bunting M J, et al. 2017. Relative pollen productivities and relevant source area of pollen in the forest-steppe ecotone of northern China. Review of Palaeobotany and Palynology, 244: 1-12.
doi: 10.1016/j.revpalbo.2017.04.003
[22]   Li Y F, Li C H, Xu L Y, et al. 2017. Relationships between vegetation and stomata, and between vegetation and pollen surface soil in Taibai Mountains. Acta Palaeontologica Sinica, 56(1): 108-116. (in Chinese)
[23]   Li Y Y, Zhang Y, Kong Z C, et al. 2021. Surface sporopollen and modern vegetation in Hongshanzui area Altai, Xinjiang, China. Chinese Journal of Plant Ecology, 45(2): 174-186. (in Chinese)
doi: 10.17521/cjpe.2020.0195
[24]   Liu H Y, Wang Y, Tian Y H, et al. 2006. Climatic and anthropogenic control of surface pollen assemblages in East Asian steppes. Review of Palaeobotany and Palynology, 138(3-4): 281-289.
doi: 10.1016/j.revpalbo.2006.01.008
[25]   Long H, Shen J, Chen J H, et al. 2017. Holocene moisture variations over the arid central Asia revealed by a comprehensive sand-dune record from the central Tian Shan, NW China. Quaternary Science Reviews, 174: 13-32.
doi: 10.1016/j.quascirev.2017.08.024
[26]   Lu H Y, Wu N Q, Liu K B, et al. 2011. Modern pollen distributions in Qinghai-Tibetan Plateau and the development of transfer functions for reconstructing Holocene environmental changes. Quaternary Science Reviews, 30(7-8): 947-966.
doi: 10.1016/j.quascirev.2011.01.008
[27]   Luo C X, Zheng Z, Tarasov P, et al. 2009. Characteristics of the modern pollen distribution and their relationship to vegetation in the Xinjiang region, northwestern China. Review of Palaeobotany and Palynology, 153(3-4): 282-295.
doi: 10.1016/j.revpalbo.2008.08.007
[28]   Luo C X, Zheng Z, Tarasov P. 2010. A potential of pollen-based climate reconstruction using a modern pollen-climate dataset from arid northern and western China. Review of Palaeobotany and Palynology, 160(3-4): 111-125.
doi: 10.1016/j.revpalbo.2010.01.003
[29]   Ma Q F, Zhu L P, Wang J B, et al. 2017. Artemisia/Chenopodiaceae ratio from surface lake sediments on the central and western Tibetan Plateau and its application. Palaeogeography, Palaeoclimatology, Palaeoecology, 479: 138-145.
doi: 10.1016/j.palaeo.2017.05.002
[30]   Ma Y Z, Liu K B, Feng Z D, et al. 2008. A survey of modern pollen and vegetation along a south-north transect in Mongolia. Journal of Biogeography, 35(8): 1512-1532.
doi: 10.1111/jbi.2008.35.issue-8
[31]   Ning L K. 2013. Study on the influence of topography and geomorphology on precipitation over Tianshan Mountains, Central Asia. MSc Thesis. Shihezi: Shihezi University. (in Chinese)
[32]   Niu D Y, Li J Y, Wang N L, et al. 2022. Relationship between pollen assemblages in surface soil and modern vegetation and climate in the western Tianshan Mountains, Xinjiang. Journal of Glaciology and Geocryology, 44(3): 1070-1082. (in Chinese)
[33]   Pan Y F, Yan S, Behling H, et al. 2013. Transport of airborne Picea schrenkiana pollen on the northern slope of Tianshan Mountains (Xinjiang, China) and its implication for paleoenvironmental reconstruction. Aerobiologia, 29(2): 161-173.
doi: 10.1007/s10453-012-9270-2
[34]   Ran M, Zhang C J, Feng Z D. 2015. Climatic and hydrological variations during the past 8000 years in northern Xinjiang of China and the associated mechanisms. Quaternary International, 358: 21-34.
doi: 10.1016/j.quaint.2014.07.056
[35]   Sun F F, Zhang W Y, Gong J C, et al. 2010. The palaeoenvironmental reconstruction on pollen proxy in the Qaidam Basin since Late Pliocene. Geological Review, 56(5): 621-628. (in Chinese)
[36]   ter Braak C J F, Smilauer P. 2012. CANOCO Reference Manual and User's Guide: Software for Ordination (Version 5). Ithaca: Microcomputer Power.
[37]   Wang L, Zhang Y, Kong Z C, et al. 2017. Preliminary study on pollen distribution in the surface soil of the Turpan region in the southern slope of Tianshan Mountains, Xinjiang, China. Chinese Journal of Plant Ecology, 41(7): 779-786. (in Chinese)
doi: 10.17521/cjpe.2017.0019
[38]   Wei H C, Zhao Y. 2016. Surface pollen and its relationships with modern vegetation and climate in the Tianshan Mountains, northwestern China. Vegetation History and Archaeobotany, 25(1): 19-27.
doi: 10.1007/s00334-015-0530-2
[39]   Wu H X, Xu H, Lan J H, et al. 2018. Pollen assemblages in surface soil and their relationships with vegetation and climate in northern Xinjiang. Chinese Journal of Ecology, 37(12): 3499-3507. (in Chinese)
[40]   Xu Q H, Li Y C, Li Y, et al. 2006. The discussion of modern pollen and Quaternary environmental study. Progress in Natural Science, 16(6): 647-656. (in Chinese)
[41]   Xu Q H, Li Y C, Yang X L, et al. 2007. Quantitative relationship between pollen and vegetation in northern China. Science in China Series D: Earth Sciences, 50(4): 582-599.
[42]   Xu Q H, Li M Y, Zhang S R, et al. 2015. Modern pollen processes of China: Progress and problems. Science China Earth Sciences, 58(11): 1661-1682. (in Chinese)
[43]   Yang Q H, Yang Z J, Zhang Y, et al. 2019. Relationship between surface sporepollen and modern vegetation in Xarxili Nature Reserve of Xinjiang. Arid Land Geography, 42(5): 986-997. (in Chinese)
[44]   Yang Z J, Kong Z C, Yan S, et al. 2004. Pollen distribution in topsoil along the Daxigou valley in the headwaters of the Urumqi river, the Central Tianshan Mountains. Arid Land Geography, 27(4): 543-547. (in Chinese)
[45]   Yang Z J, Zhang Y, Bi Z W, et al. 2011. Surface pollen distribution in the southern slope of Tianshan Mountains, Xinjiang. Arid Land Geography, 34(6): 880-889. (in Chinese)
[46]   Yang Z J, Zhang Y, Ren H B, et al. 2016. Altitudinal changes of surface pollen and vegetation on the north slope of the Middle Tianshan Mountains, China. Journal of Arid Land, 8(5): 799-810.
doi: 10.1007/s40333-016-0085-9
[47]   Yao F L, Xia Q Q, Zhang J, et al. 2019. Pollen in surface soil at the southern slope of western Tianshan, China. Chinese Journal of Applied Ecology, 30(7): 2301-2308. (in Chinese)
[48]   Yao F L, Zhang J, Yang H J, et al. 2021a. Surface pollen distribution on the north slope of Bogda Mountain, Xinjiang, China. Ecology and Environmental Sciences, 30(3): 466-474. (in Chinese)
[49]   Yao F L, Ma C M, Zhu C, et al. 2021b. Relationship between surface pollen and vegetation on the northern slope of West Tianshan Mountains, China. Acta Palaeontologica Sinica, 60(3): 471-482. (in Chinese)
[50]   Yao Y F, Wang X, Xie G, et al. 2015. Holocene vegetation succession and climate-environment change in Xinjiang Region. Chinese Science Bulletin, 60(31): 2963-2976. (in Chinese)
[51]   Yu G, Tang L Y, Yang X D, et al. 2001. Modern pollen samples from alpine vegetation on the Tibetan Plateau. Global Ecology and Biogeography, 10(5): 503-519.
doi: 10.1046/j.1466-822X.2001.00258.x
[52]   Yu P T, Liu H Y. 1997. Surface pollen and its climatical significance of vertical zone in Beitai, Xiaowutai Mountain. Acta Scientiarum Naturalium Universitatis Pekinensis, 33(4): 475-484. (in Chinese)
[53]   Zhang H, Zhang Y, Yang Z J, et al. 2013. Surface pollen research of Nanshan region, Shihezi City in Xinjiang. Acta Ecologica Sinica, 33(20): 6478-6487. (in Chinese)
doi: 10.5846/stxb
[54]   Zhang N, Ge Y W, Li Y C, et al. 2021. Modern pollen-vegetation relationships in the Taihang Mountains: Towards the quantitative reconstruction of land-cover changes in the North China Plain. Ecological Indicators, 129: 107928, doi: 10.1016/j.ecolind.2021.107928.
doi: 10.1016/j.ecolind.2021.107928
[55]   Zhang W S, Fan B S, Li Y C, et al. 2019. Pollen record of precipitation changes during the Younger Dryas and Early Holocene in the North China Plain. Quaternary International, 532: 116-125.
doi: 10.1016/j.quaint.2019.10.017
[56]   Zhang W S, An C B, Zhang Y, et al. 2022. Holocene precipitation changes in the Balikun basin based on high-resolution sporopollen quantitative reconstruction. Quaternary International, 631: 69-81.
doi: 10.1016/j.quaint.2022.06.005
[57]   Zhang Y, Kong Z C, Yan S, et al. 2006. Fluctuation of Picea timber-line and paleo-environment on the northern slope of Tianshan Mountains during the late Holocene. Chinese Science Bulletin, 51: 1747-1756.
doi: 10.1007/s11434-006-2029-9
[58]   Zhang Y J, Duo L, Pang Y Z, et al. 2018. Modern pollen assemblages and their relationships to vegetation and climate in the Lhasa Valley, Tibetan Plateau, China. Quaternary International, 467: 210-221.
doi: 10.1016/j.quaint.2018.01.040
[59]   Zhao K L, Li X Q. 2013. Modern pollen and vegetation relationships in the Yili Basin, Xinjiang, NW China. Chinese Science Bulletin, 58: 4133-4142.
doi: 10.1007/s11434-013-5896-x
[60]   Zhao N N, Yang Z J, Ning K, et al. 2019. A comparative study on the relationship between surface pollen and vegetation on the north and south slopes of the northern Tianshan mountains. Journal of Arid Land Resources and Environment, 33(12): 117-126. (in Chinese)
[61]   Zhao N N, Yang Z J, Ning K, et al. 2020. Relationship between surface pollen and vegetation in the Qaidam Basin. Arid Zone Research, 37(4): 1068-1078. (in Chinese)
[62]   Zhao Y J, Li Y C, Zhang Z, et al. 2022. Relationship between modern pollen assemblages and vegetation in the Bashang typical steppe region of North China. Ecological Indicators, 135: 108581, doi: 10.1016/j.ecolind.2022.108581.
doi: 10.1016/j.ecolind.2022.108581
[63]   Zhao Y T, Miao Y F, Fang Y M, et al. 2021. Investigation of factors affecting surface pollen assemblages in the Balikun Basin, central Asia: Implications for palaeoenvironmental reconstructions. Ecological Indicators, 123: 107332, doi: 10.1016/j.ecolind.2020.107332.
doi: 10.1016/j.ecolind.2020.107332
[1] ZHANG Shubao, LEI Jun, TONG Yanjun, ZHANG Xiaolei, LU Danni, FAN Liqin, DUAN Zuliang. Temporal and spatial responses of ecological resilience to climate change and human activities in the economic belt on the northern slope of the Tianshan Mountains, China[J]. Journal of Arid Land, 2023, 15(10): 1245-1268.
[2] Alamusa , SU Yuhang, YIN Jiawang, ZHOU Quanlai, WANG Yongcui. Effect of sand-fixing vegetation on the hydrological regulation function of sand dunes and its practical significance[J]. Journal of Arid Land, 2023, 15(1): 52-62.
[3] WEI Tianfeng, SHANGGUAN Donghui, TANG Xianglong, QIN Yu. The role of glacial gravel in community development of vascular plants on the glacier forelands of the Third Pole[J]. Journal of Arid Land, 2022, 14(9): 1022-1037.
[4] ZHANG Yin, GULIMIRE Hanati, SULITAN Danierhan, HU Keke. Monitoring and analysis of snow cover change in an alpine mountainous area in the Tianshan Mountains, China[J]. Journal of Arid Land, 2022, 14(9): 962-977.
[5] LI Hongliang, WANG Puyu, LI Zhongqin, JIN Shuang, XU Chunhai, MU Jianxin, HE Jie, YU Fengchen. Effect of topography on the changes of Urumqi Glacier No. 1 in the Chinese Tianshan Mountains[J]. Journal of Arid Land, 2022, 14(7): 719-738.
[6] ABAY Peryzat, GONG Lu, CHEN Xin, LUO Yan, WU Xue. Spatiotemporal variation and correlation of soil enzyme activities and soil physicochemical properties in canopy gaps of the Tianshan Mountains, Northwest China[J]. Journal of Arid Land, 2022, 14(7): 824-836.
[7] SU Yuan, GONG Yanming, HAN Wenxuan, LI Kaihui, LIU Xuejun. Dependency of litter decomposition on litter quality, climate change, and grassland type in the alpine grassland of Tianshan Mountains, Northwest China[J]. Journal of Arid Land, 2022, 14(6): 691-703.
[8] HUANG Xiaoran, BAO Anming, GUO Hao, MENG Fanhao, ZHANG Pengfei, ZHENG Guoxiong, YU Tao, QI Peng, Vincent NZABARINDA, DU Weibing. Spatiotemporal changes of typical glaciers and their responses to climate change in Xinjiang, Northwest China[J]. Journal of Arid Land, 2022, 14(5): 502-520.
[9] PENG Jiajia, LI Zhongqin, XU Liping, MA Yuqing, LI Hongliang, ZHAO Weibo, FAN Shuang. Glacier mass balance and its impacts on streamflow in a typical inland river basin in the Tianshan Mountains, northwestern China[J]. Journal of Arid Land, 2022, 14(4): 455-472.
[10] CHEN Haiyan, CHEN Yaning, LI Dalong, LI Weihong, YANG Yuhui. Identifying water vapor sources of precipitation in forest and grassland in the north slope of the Tianshan Mountains, Central Asia[J]. Journal of Arid Land, 2022, 14(3): 297-309.
[11] ZHANG Xueting, CHEN Rensheng, LIU Guohua. Economic losses from reduced freshwater under future climate scenarios: An example from the Urumqi River, Tianshan Mountains[J]. Journal of Arid Land, 2022, 14(2): 139-153.
[12] QIU Dong, TAO Ye, ZHOU Xiaobing, Bagila MAISUPOVA, YAN Jingming, LIU Huiliang, LI Wenjun, ZHUANG Weiwei, ZHANG Yuanming. Spatiotemporal variations in the growth status of declining wild apple trees in a narrow valley in the western Tianshan Mountains, China[J]. Journal of Arid Land, 2022, 14(12): 1413-1439.
[13] JI Huiping, CHEN Yaning, FANG Gonghuan, LI Zhi, DUAN Weili, ZHANG Qifei. Adaptability of machine learning methods and hydrological models to discharge simulations in data-sparse glaciated watersheds[J]. Journal of Arid Land, 2021, 13(6): 549-567.
[14] MU Le, LU Yixiao, LIU Minguo, YANG Huimin, FENG Qisheng. Characterizing the spatiotemporal variations of evapotranspiration and aridity index in mid-western China from 2001 to 2016[J]. Journal of Arid Land, 2021, 13(12): 1230-1243.
[15] SUN Chen, MA Yonggang, GONG Lu. Response of ecosystem service value to land use/cover change in the northern slope economic belt of the Tianshan Mountains, Xinjiang, China[J]. Journal of Arid Land, 2021, 13(10): 1026-1040.