Please wait a minute...
Journal of Arid Land  2024, Vol. 16 Issue (3): 431-446    DOI: 10.1007/s40333-024-0009-z     CSTR: 32276.14.s40333-024-0009-z
Research article     
Effects of long-term fencing on soil microbial community structure and function in the desert steppe, China
PAN Yaqing1, KANG Peng2, QU Xuan2, RAN Yichao2, LI Xinrong1,*()
1Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
2School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
Download: HTML     PDF(2143KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

One of the goals of grazing management in the desert steppe is to improve its ecosystem. However, relatively little is known about soil microbe communities in the desert steppe ecosystem under grazing management. In this study, we investigated the diversity and aboveground biomass of Caragana korshinskii Kom. shrub communities in long-term fencing and grazing areas, combined with an analysis of soil physical-chemical properties and genomics, with the aim of understanding how fence management affects plant-soil-microbial inter-relationships in the desert steppe, China. The results showed that fence management (exclosure) increased plant diversity and aboveground biomass in C. korshinskii shrub area and effectively enhanced soil organic carbon (233.94%), available nitrogen (87.77%), and available phosphorus (53.67%) contents. As well, the Shannon indices of soil bacteria and fungi were greater in the fenced plot. Plant-soil changes profoundly affected the alpha- and beta-diversity of soil bacteria. Fence management also altered the soil microbial community structure, significantly increasing the relative abundances of Acidobacteriota (5.31%-8.99%), Chloroflexi (3.99%-5.58%), and Glomeromycota (1.37%-3.28%). The soil bacterial-fungal co-occurrence networks under fence management had higher complexity and connectivity. Based on functional predictions, fence management significantly increased the relative abundance of bacteria with nitrification and nitrate reduction functions and decreased the relative abundance of bacteria with nitrate and nitrite respiration functions. The relative abundances of ecologically functional fungi with arbuscular mycorrhizal fungi, ectomycorrhizal fungi, and saprotrophs also significantly increased under fence management. In addition, the differential functional groups of bacteria and fungi were closely related to plant-soil changes. The results of this study have significant positive implications for the ecological restoration and reconstruction of dry desert steppe and similar areas.



Key wordsdesert steppe      fence management      Caragana korshinskii      soil physical-chemical property      soil microorganism     
Received: 01 November 2023      Published: 31 March 2024
Corresponding Authors: *LI Xinrong (E-mail: lxinrong@lzb.ac.cn)
About author: First author contact:

The first and the second authors contributed equally to this work.

Cite this article:

PAN Yaqing, KANG Peng, QU Xuan, RAN Yichao, LI Xinrong. Effects of long-term fencing on soil microbial community structure and function in the desert steppe, China. Journal of Arid Land, 2024, 16(3): 431-446.

URL:

http://jal.xjegi.com/10.1007/s40333-024-0009-z     OR     http://jal.xjegi.com/Y2024/V16/I3/431

Fig. 1 Study area (a) and study plots (b and c) in the Otog Front Banner, Inner Mongolia Autonomous Region, China
Fig. S1 Sampling diagram of Caragana korshinskii Kom. shrub in the desert steppe
Fig. 2 Plant community indices (a) of Caragana korshinskii shrub and their correlation with soil physical-chemical properties of the GRA (b) and FEN (c) plots in the desert steppe. GRA, grazing; FEN, fencing. In Figure 1a, different lowercase letters indicate significant differences between the two plots at P<0.050 level. Lines in the box are median values. Bars are standard errors. *, P<0.050 level; **, P<0.010 level; ***, P<0.001 level. AGB, above-ground biomass; SWC, soil water content; EC, electrical conductivity; TC, total carbon; TN, total nitrogen; TP, total phosphorus; SOC, soil organic carbon; AN, available nitrogen; AP, available phosphorus. The abbreviations are the same in the following figures.
Soil physical-chemical property GRA FEN
pH 8.84±0.02a 8.65±0.01b
SWC 13.87±0.56a 14.41±0.64a
EC (μS/cm) 74.37±2.57a 64.08±1.62b
TC (g/kg) 4.23±0.22b 9.31±0.50a
TN (g/kg) 0.28±0.005b 0.40±0.025a
TP (g/kg) 0.12±0.005b 0.22±0.012a
SOC (g/kg) 0.63±0.05b 2.11±0.12a
SOC/TN 2.82±0.16b 5.33±0.22a
SOC/TP 5.41±0.38b 9.61±0.62a
TN/TP 2.40±0.11a 1.81±0.11b
AN (mg/kg) 6.22±0.37b 11.68±0.99a
AP (mg/kg) 1.26±0.08b 1.94±0.14a
Table 1 Soil physical-chemical properties of the GRA and FEN plots in the desert steppe
Fig. 3 Alpha- and beta-diversity of soil bacterial (a1-a3 and c) and fungal (b1-b3 and d) communities of the GRA and FEN plots in the desert steppe. In Figure 3a and b, different lowercase letters indicate significant differences between the two plots at P<0.050 level. Lines in the box are median values. Bars are standard errors. OTUs, operational taxonomic units; ACE, abundance-based coverage estimator; NMDS, non-metric multidimensional scaling.
Fig. 4 Relative abundance of bacteria (a) and fungi (b) greater than 1% at the phylum level, and the difference of relative abundance of bacteria (c) and fungi (d) of the GRA and FEN plots in the desert steppe. Bars are standard errors.
Fig. 5 Co-occurrence network of soil bacteria and fungi of the GRA (a) and FEN (b) plots in the desert steppe
Network parameter GRA FEN
Node 1311 1715
Edge 2926 3706
Positive edge 2216 1965
Negative edge 710 1741
Number of modules 201 187
Modularity 0.76 0.77
Average path length 7.32 7.51
Graph diameter 18.42 21.33
Clustering coefficient 0.33 0.33
Degree centralization 0.015 0.007
Table 2 Network topological features of the GRA and FEN plots in the desert steppe
Fig. 6 RDA (redundancy analysis) of plant community indices (a) and soil physical-chemical properties (b) of the GRA and FEN plots in the desert steppe
Functional taxa GRA FEN P-value Q-value Interval lower limit Interval upper limit
Mean SD Mean SD
Aerobic ammonia oxidation 0.0099 0.0076 0.0349 0.0162 0.0014 -0.0279 -0.0380 -0.0118
Nitrification 0.0099 0.0076 0.0349 0.0162 0.0014 -0.0279 -0.0380 -0.0119
Denitrification 0.0012 0.0009 0.0003 0.0002 0.0219 -0.0279 0.0002 0.0016
Nitrite respiration 0.0023 0.0011 0.0008 0.0008 0.0040 -0.0279 0.0006 0.0025
Fermentation 0.0096 0.0042 0.0058 0.0014 0.0273 -0.0279 0.0005 0.0070
Aerobic chemoheterotrophy 0.1611 0.0526 0.1103 0.0078 0.0200 -0.0279 0.0103 0.0914
Human pathogens septicemia 0.0001 0.0001 0.0000 0.0035 0.0433 -0.0279 0.0003 0.0002
Animal parasites or symbionts 0.0066 0.0031 0.0034 0.0019 0.0232 -0.0279 0.0005 0.0059
Plant pathogen 0.0001 0.0001 0.0002 0.0026 0.0206 -0.0279 0.0002 0.0002
Aromatic hydrocarbon degradation 0.0003 0.0090 0.0069 0.0042 0.0077 -0.0279 0.0001 0.0003
Aromatic compound degradation 0.0081 0.0042 0.0044 0.0007 0.0266 -0.0279 0.0006 0.0070
Aliphatic non methane hydrocarbon degradation 0.0002 0.0093 0.0063 0.0037 0.0027 -0.0279 0.0005 0.0002
Hydrocarbon degradation 0.0003 0.0086 0.0069 0.0042 0.0041 -0.0279 0.0001 0.0003
Nitrate respiration 0.0026 0.0011 0.0010 0.0007 0.0021 -0.0279 0.0007 0.0026
Nitrate reduction 0.0229 0.0070 0.0424 0.0107 0.0004 -0.0279 -0.0287 -0.0105
Nitrogen respiration 0.0028 0.0009 0.0010 0.0007 0.0002 -0.0279 0.0010 0.0026
Ureolysis 0.0105 0.0062 0.0029 0.0014 0.0064 -0.0279 0.0027 0.0123
Chemoheterotrophy 0.1751 0.0599 0.1161 0.0074 0.0183 -0.0279 0.0128 0.1051
Animal pathogen-Plant pathogen- Soil saprotroph-Undefined saprotroph 0.0002 0.0002 0.0016 0.0014 0.0223 0.0530 -0.0024 -0.0003
Arbuscular mycorrhizal 0.0136 0.0075 0.0328 0.0138 0.0031 0.0114 -0.0305 -0.0078
Ectomycorrhizal 0.0055 0.0054 0.0486 0.0463 0.0235 0.0530 -0.0788 -0.0074
Endophyte-Plant pathogen-Wood saprotroph 0.0070 0.0086 0.0003 0.0001 0.0025 0.0114 -0.0003 -0.0078
Plant pathogen 0.1481 0.1355 0.0325 0.0227 0.0341 0.0640 0.0110 0.2202
Table S1 Differential functional taxa of bacterial and fungal communities of the GRA and FEN plots in the desert steppe
Fig. 7 Spearman's correlation of differential functioning of soil bacteria and fungi with soil physical-chemical properties of the GRA (a) and FEN (b) plots in the desert steppe. *, P<0.050 level, **, P<0.010 level.
[1]   Aubault H, Webb N P, Strong C L, et al. 2015. Grazing impacts on the susceptibility of rangelands to wind erosion: The effects of stocking rate, stocking strategy and land condition. Aeolian Research, 17: 89-99.
doi: 10.1016/j.aeolia.2014.12.005
[2]   Bai Y F, Wu L J, Zhao M L, et al. 2020. Grazing regulation of phosphorus cycling in grassland ecosystems: Advances and prospects. Chinese Science Bulletin, 65(23): 2469-2482.
[3]   Bao S D. 2000. Soil and Agricultural Chemistry Analysis. Beijing: China Agriculture Publication. (in Chinese)
[4]   Bell T H, El-Din Hassan S, Lauron-Moreau A, et al. 2014. Linkage between bacterial and fungal rhizosphere communities in hydrocarbon-contaminated soils is related to plant phylogeny. International Society for Microbial Ecology Journal, 8(2): 331-343.
[5]   Bettinelli M, Beone G M, Spezia S, et al. 2000. Determination of heavy metals in soils and sediments by microwave-assisted digestion and inductively coupled plasma optical emission spectrometry analysis. Analytica Chimica Acta, 424(2): 289-296.
doi: 10.1016/S0003-2670(00)01123-5
[6]   Caporaso J G, Lauber C L, Walters W A, et al. 2012. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. International Society for Microbial Ecology Journal, 6(8): 1621-1624.
[7]   Chen M, Zhao X Y, Yue P, et al. 2022. Effect of grazing disturbance on floral display, pollen limitation and plant pollination efficiency in the desert steppe. BMC Plant Biology, 22(1): 514, doi: 10.1186/s12870-022-03899-w.
pmid: 36329386
[8]   Chen X, Li Q, Chen D D, et al. 2023. Restoration measures of fencing after tilling guided succession of grassland soil microbial community structure to natural grassland in the Sanjiangyuan agro-pasture ecotone of the Qinghai-Tibetan Plateau. Microbial Ecology, 86(4): 2870-2881.
doi: 10.1007/s00248-023-02287-7 pmid: 37620628
[9]   Cheng H, Yuan M, Tang L, et al. 2022. Integrated microbiology and metabolomics analysis reveal responses of soil microorganisms and metabolic functions to phosphorus fertilizer on semi-arid farm. Science of the Total Environment, 817: 152878, doi: 10.1016/j.scitotenv.2021.152878.
[10]   Claesson M J, O'Sullivan O, Wang Q, et al. 2009. Comparative analysis of pyrosequencing and a phylogenetic microarray for exploring microbial community structures in the human distal intestine. PLoS ONE, 4(8): e6669, doi: 10.1371/journal.pone.0006669.
[11]   Conti G, Gorné L D, Zeballos S R, et al. 2019. Developing allometric models to predict the individual aboveground biomass of shrubs worldwide. Global Ecology and Biogeography, 28(7): 961-975.
doi: 10.1111/geb.12907
[12]   da Costa D P, Araujo A S F, Pereira A P D, et al. 2022. Forest-to-pasture conversion modifies the soil bacterial community in Brazilian dry forest Caatinga. Science of the Total Environment, 810: 151943, doi: 10.1016/j.scitotenv.2021.151943.
[13]   de Vries F T, Wallenstein M D. 2017. Below-ground connections underlying above-ground food production: A framework for optimizing ecological connections in the rhizosphere. Journal of Ecology, 105(4): 913-920.
doi: 10.1111/jec.2017.105.issue-4
[14]   Deng L, Zhang Z N, Shangguan Z P. 2014. Long-term fencing effects on plant diversity and soil properties in China. Soil and Tillage Research, 137: 7-15.
doi: 10.1016/j.still.2013.11.002
[15]   Doll N M. 2023. Eternal nodules to fix the nitrogen issue: Promotion of soybean nodule senescence by a NAC/CYP module. Plant Cell, 35(8): 2709-2710.
doi: 10.1093/plcell/koad154
[16]   Edgar R C. 2013. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nature Methods, 10: 996-998.
doi: 10.1038/nmeth.2604 pmid: 23955772
[17]   Eldridge D J, Delgado-Baquerizo M. 2018. Functional groups of soil fungi decline under grazing. Plant and Soil, 426(1-2): 51-60.
doi: 10.1007/s11104-018-3617-6
[18]   Faghihinia M, Zou Y, Chen Z, et al. 2020. The response of grassland mycorrhizal fungal abundance to a range of long-term grazing intensities. Rhizosphere, 13: 100178, doi: 10.1016/j.rhisph.2019.100178.
[19]   Fan D D, Kong W D, Wang F, et al. 2020. Fencing decreases microbial diversity but increases abundance in grassland soils on the Tibetan Plateau. Land Degradation & Development, 31(17): 2577-2590.
doi: 10.1002/ldr.v31.17
[20]   Fan J L, Jin H, Zhang C H, et al. 2021. Grazing intensity induced alternations of soil microbial community composition in aggregates drive soil organic carbon turnover in a desert steppe. Agriculture, Ecosystems & Environment, 313: 107387, doi: 10.1016/j.agee.2021.107387.
[21]   Fei S, Kivlin S N, Domke G M, et al. 2022. Coupling of plant and mycorrhizal fungal diversity: Its occurrence, relevance, and possible implications under global change. New Phytologist, 234(6): 1960-1966.
doi: 10.1111/nph.17954 pmid: 35014033
[22]   Fu L J, Yan Y, Li X Q, et al. 2022. Rhizosphere soil microbial community and its response to different utilization patterns in the semi-arid alpine grassland of northern Tibet. Frontiers in Microbiology, 13: 931795, doi: 10.3389/fmicb.2022.931795.
[23]   Gao J J, Carmel Y. 2020. Can the intermediate disturbance hypothesis explain grazing-diversity relations at a global scale? Oikos, 129(4): 493-502.
doi: 10.1111/oik.2020.v129.i4
[24]   Hao G, Dong K, Yang N, et al. 2021. Both fencing duration and shrub cover facilitate the restoration of shrub-encroached grasslands. Catena, 207: 105587, doi: 10.1016/j.catena.2021.105587.
[25]   Hao L, Sun G, Liu Y Q, et al. 2014. Effects of precipitation on grassland ecosystem restoration under grazing exclusion in Inner Mongolia, China. Landscape Ecology, 29(10): 1657-1673.
doi: 10.1007/s10980-014-0092-1
[26]   Herrero-Jáuregui C, Oesterheld M. 2018. Effects of grazing intensity on plant richness and diversity: A meta-analysis. Oikos, 127(6): 757-766.
doi: 10.1111/oik.2017.v127.i6
[27]   Hu Y F, Peng J J, Yuan S, et al. 2016. Influence of ecological restoration on vegetation and soil microbiological properties in alpine-cold semi-humid desertified land. Ecological Engineering, 94: 88-94.
doi: 10.1016/j.ecoleng.2016.05.061
[28]   Jing L H, Mipam T D, Ai Y, et al. 2023. Grazing intensity alters soil microbial diversity and network complexity in alpine meadow on the Qinghai-Tibet Plateau. Agriculture, Ecosystems & Environment, 353: 108541, doi: 10.1016/j.agee.2023.108541.
[29]   Kang L, Han X G, Zhang Z B, et al. 2007. Grassland ecosystems in China: Review of current knowledge and research advancement. Philosophical Transactions of the Royal Society B-Biological Sciences, 362(1482): 997-1008.
doi: 10.1098/rstb.2007.2029 pmid: 17317645
[30]   Kang P, Pan Y Q, Yang P, et al. 2022. A comparison of microbial composition under three tree ecosystems using the stochastic process and network complexity approaches. Frontiers in Microbiology, 13: 1018077, doi: 10.3389/fmicb.2022.1018077.
[31]   Kang P, Pan Y Q, Ran Y C, et al. 2023. Soil saprophytic fungi could be used as an important ecological indicator for land management in desert steppe. Ecological Indicators, 150: 110224, doi: 10.1016/j.ecolind.2023.110224.
[32]   Li Q, Zhou D W, Jin Y H, et al. 2014. Effects of fencing on vegetation and soil restoration in a degraded alkaline grassland in northeast China. Journal of Arid Land, 6(4): 478-487.
doi: 10.1007/s40333-013-0207-6
[33]   Li W, Cao W X, Wang J L, et al. 2017. Effects of grazing regime on vegetation structure, productivity, soil quality, carbon and nitrogen storage of alpine meadow on the Qinghai-Tibetan Plateau. Ecological Engineering, 98: 123-133.
doi: 10.1016/j.ecoleng.2016.10.026
[34]   Li Y, Dong S K, Gao Q Z, et al. 2022. Grazing changed plant community composition and reduced stochasticity of soil microbial community assembly of alpine grasslands on the Qinghai-Tibetan Plateau. Frontiers in Plant Science, 13: 864085, doi: 10.3389/fpls.2022.864085.
[35]   Liu J K, Bian Z, Zhang K B, et al. 2019. Effects of different fencing regimes on community structure of degraded desert grasslands on Mu Us Desert, China. Ecology and Evolution, 9(6): 3367-3377.
doi: 10.1002/ece3.2019.9.issue-6
[36]   Louca S, Parfrey L W, Doebeli M. 2016. Decoupling function and taxonomy in the global ocean microbiome. Science, 353(6305): 1272-1277.
doi: 10.1126/science.aaf4507 pmid: 27634532
[37]   Lu J N, Feng S, Wang S K, et al. 2023. Patterns and driving mechanism of soil organic carbon, nitrogen, and phosphorus stoichiometry across northern China's desert-grassland transition zone. Catena, 220: 106695, doi: 10.1016/j.catena.2022.106695.
[38]   Mekuria W, Veldkamp E. 2012. Restoration of native vegetation following exclosure establishment on communal grazing lands in Tigray, Ethiopia. Applied Vegetation Science, 15(1): 71-83.
doi: 10.1111/avsc.2011.15.issue-1
[39]   Munkhtsetseg E, Shinoda M, Ishizuka M, et al. 2017. Anthropogenic dust emissions due to livestock trampling in a Mongolian temperate grassland. Atmospheric Chemistry and Physics, 17(18): 11389-11401.
[40]   Nguyen N H, Song Z, Bates S T, et al. 2016. FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecology, 20: 241-248.
doi: 10.1016/j.funeco.2015.06.006
[41]   Olsen Y S, Dausse A, Garbutt A, et al. 2011. Cattle grazing drives nitrogen and carbon cycling in a temperate salt marsh. Soil Biology and Biochemistry, 43(3): 531-541.
doi: 10.1016/j.soilbio.2010.11.018
[42]   Pan H, Liu H Y, Liu Y W, et al. 2018. Understanding the relationships between grazing intensity and the distribution of nitrifying communities in grassland soils. Science of the Total Environment, 634: 1157-1164.
doi: 10.1016/j.scitotenv.2018.04.117
[43]   Pan Y Q, Kang P, Hu J P, et al. 2021. Bacterial community demonstrates stronger network connectivity than fungal community in desert-grassland salt marsh. Science of the Total Environment, 798: 149118, doi: 10.1016/j.scitotenv.2021.149118.
[44]   Pan Y Q, Kang P, Tan M, et al. 2022. Root exudates and rhizosphere soil bacterial relationships of Nitraria tangutorum are linked to K-strategists bacterial community under salt stress. Frontiers in Plant Science, 13: 997292, doi: 10.3389/fpls.2022.997292.
[45]   Penner J F, Frank D A. 2019. Litter decomposition in Yellowstone grasslands: The roles of large herbivores, litter quality, and climate. Ecosystems, 22(4): 929-937.
doi: 10.1007/s10021-018-0310-9
[46]   Quast C, Pruesse E, Yilmaz P, et al. 2013. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research, 41: 590-596.
[47]   Shannon C E. 1948. A mathematical theory of communication. The Bell System Technical Journal, 27: 379-423.
doi: 10.1002/bltj.1948.27.issue-3
[48]   Šmilauer P, Košnar J, Kotilínek M, et al. 2021. Host age and surrounding vegetation affect the community and colonization rates of arbuscular mycorrhizal fungi in a temperate grassland. New Phytologist, 232(1): 290-302, doi: 10.1111/nph.17550.
[49]   Sun S S, Zhao S L, Liu X P, et al. 2023. Grazing impairs ecosystem stability through changes in species asynchrony and stability rather than diversity across spatial scales in desert steppe, Northern China. Agriculture, Ecosystems & Environment, 346: 108343, doi: 10.1016/j.agee.2023.108343.
[50]   Sunagawa S, Coelho L P, Chaffron S, et al. 2015. Structure and function of the global ocean microbiome. Science, 348(6237): 1261359, doi: 10.1126/science.1261359.
[51]   Tang J, Davy A J, Jiang D M, et al. 2016. Effects of excluding grazing on the vegetation and soils of degraded sparse-elm grassland in the Horqin Sandy Land, China. Chinese Science Bulletin, 235: 340-348.
[52]   Veresoglou S D, Halley J M, Rillig M C. 2015. Extinction risk of soil biota. Nature Communications, 6(1): 8862, doi: 10.1038/ncomms9862.
[53]   Wang F, Kong W D, Ji M K, et al. 2022. Grazing greatly reduces the temporal stability of soil cellulolytic fungal community in a steppe on the Tibetan Plateau. Journal of Environmental Sciences, 121: 48-57.
doi: 10.1016/j.jes.2021.09.023 pmid: 35654515
[54]   Wang K B, Deng L, Ren Z P, et al. 2016. Grazing exclusion significantly improves grassland ecosystem C and N pools in a desert steppe of Northwest China. Catena, 137: 441-448.
doi: 10.1016/j.catena.2015.10.018
[55]   Wang L, Gan Y T, Wiesmeier M, et al. 2018. Grazing exclusion-An effective approach for naturally restoring degraded grasslands in Northern China. Land Degradation & Development, 29(12): 4439-4456.
doi: 10.1002/ldr.v29.12
[56]   Wang Q, Garrity G M, Tiedje J M, et al. 2007. Naive Bayesian classifier for rapid as assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology, 73: 5261-5267.
doi: 10.1128/AEM.00062-07
[57]   Wilson C H, Strickland M S, Hutchings J A, et al. 2018. Grazing enhances belowground carbon allocation, microbial biomass, and soil carbon in a subtropical grassland. Global Change Biology, 24(7): 2997-3009.
doi: 10.1111/gcb.14070 pmid: 29377461
[58]   Wu X, Li Z S, Fu B J, et al. 2014. Restoration of ecosystem carbon and nitrogen storage and microbial biomass after grazing exclusion in semi-arid grasslands of Inner Mongolia. Ecological Engineering, 73: 395-403.
doi: 10.1016/j.ecoleng.2014.09.077
[59]   Xiong D P, Shi P L, Zhang X Z, et al. 2016. Effects of grazing exclusion on carbon sequestration and plant diversity in grasslands of China-A meta-analysis. Ecological Engineering, 94: 647-655.
doi: 10.1016/j.ecoleng.2016.06.124
[60]   Xu H J, Wang X P, Zhang X X. 2016. Alpine grasslands response to climatic factors and anthropogenic activities on the Tibetan Plateau from 2000 to 2012. Ecological Engineering, 92: 251-259.
doi: 10.1016/j.ecoleng.2016.04.005
[61]   Xu Z J, Li Z C, Liu H Y, et al. 2018. Soil organic carbon in particle-size fractions under three grassland types in Inner Mongolia, China. Journal of Soils and Sediments, 18(5): 1896-1905.
doi: 10.1007/s11368-018-1951-1
[62]   Yao M J, Rui J P, Li J B, et al. 2018. Soil bacterial community shifts driven by restoration time and steppe types in the degraded steppe of Inner Mongolia. Catena, 165: 228-236.
doi: 10.1016/j.catena.2018.02.006
[63]   Ye R H, Yu W Y, Yang D, et al. 2023. Effects of precipitation and grazing on the diversity and productivity of desert steppe. Land Degradation & Development, 34(9): 2622-2635.
doi: 10.1002/ldr.v34.9
[64]   Zhang C, Liu G B, Xue S, et al. 2016. Soil bacterial community dynamics reflect changes in plant community and soil properties during the secondary succession of abandoned farmland in the Loess Plateau. Soil Biology & Biochemistry, 97: 40-49.
doi: 10.1016/j.soilbio.2016.02.013
[65]   Zhang L, Wang X T, Wang J, et al. 2021. Grazing exclusion reduces soil N2O emissions by regulating nirK- and nosZ-type denitrifiers in alpine meadows. Journal of Soils and Sediments, 21(12): 3753-3769.
doi: 10.1007/s11368-021-03035-5
[66]   Zhang L J, Yue M, Zhang Y D, et al. 2003. Characteristics of plant community species diversity of oasis desert ecotone in Fukang, Xinjiang. Scientia Geologica Sinica, 23: 329-334.
[67]   Zhang M, Song R Q, Zhang R X, et al. 2023. The pattern of soil microbe metabolic limitation was altered by the increased sheep grazing intensity in two contrasting grasslands: Implications for grassland management in semi-arid regions. Land Degradation & Development, 34(1): 72-83.
doi: 10.1002/ldr.v34.1
[68]   Zhang R Y, Wang Z W, Han G D, et al. 2018. Grazing induced changes in plant diversity is a critical factor controlling grassland productivity in the desert steppe, Northern China. Agriculture, Ecosystems & Environment, 265: 73-83.
doi: 10.1016/j.agee.2018.05.014
[69]   Zheng J H, Zhang B, Zhang F, et al. 2023. Effects of fencing on near-term ecosystem multifunctionality in a typical steppe in Inner Mongolia. Agriculture, Ecosystems & Environment, 342: 108238, doi: 10.1016/j.agee.2022.108238.
[70]   Zhu G Q, Yuan C X, Gong H D, et al. 2021. Effects of short-term grazing prohibition on soil physical and chemical properties of meadows in Southwest China. PeerJ, 9: e11598, doi: 10.7717/peerj.11598.
[71]   Zhu G Y, Deng L, Zhang X B, et al. 2016. Effects of grazing exclusion on plant community and soil physicochemical properties in a desert steppe on the Loess Plateau, China. Ecological Engineering, 90: 372-381.
doi: 10.1016/j.ecoleng.2016.02.001
[1] SHEN Jianxiang, WANG Xin, WANG Lei, WANG Jiahui, QU Wenjie, ZHANG Xue, CHANG Xuanxuan, YANG Xinguo, CHEN Lin, QIN Weichun, ZHANG Bo, NIU Jinshuai. Spatiotemporal characteristics of seed rain and soil seed bank of artificial Caragana korshinskii Kom. forest in the Tengger Desert, China[J]. Journal of Arid Land, 2024, 16(4): 550-566.
[2] YE He, HONG Mei, XU Xuehui, LIANG Zhiwei, JIANG Na, TU Nare, WU Zhendan. Responses of plant diversity and soil microorganism diversity to nitrogen addition in the desert steppe, China[J]. Journal of Arid Land, 2024, 16(3): 447-459.
[3] MA Jinpeng, PANG Danbo, HE Wenqiang, ZHANG Yaqi, WU Mengyao, LI Xuebin, CHEN Lin. Response of soil respiration to short-term changes in precipitation and nitrogen addition in a desert steppe[J]. Journal of Arid Land, 2023, 15(9): 1084-1106.
[4] LI Hongfang, WANG Jian, LIU Hu, MIAO Henglu, LIU Jianfeng. Responses of vegetation yield to precipitation and reference evapotranspiration in a desert steppe in Inner Mongolia, China[J]. Journal of Arid Land, 2023, 15(4): 477-490.
[5] YANG Xinguo, WANG Entian, QU Wenjie, WANG Lei. Biocrust-induced partitioning of soil water between grass and shrub in a desert steppe of Northwest China[J]. Journal of Arid Land, 2023, 15(1): 63-76.
[6] CHEN Juan, WANG Xing, SONG Naiping, WANG Qixue, WU Xudong. Water utilization of typical plant communities in desert steppe, China[J]. Journal of Arid Land, 2022, 14(9): 1038-1054.
[7] LIU Yabin, SHI Chuan, YU Dongmei, WANG Shu, PANG Jinghao, ZHU Haili, LI Guorong, HU Xiasong. Characteristics of root pullout resistance of Caragana korshinskii Kom. in the loess area of northeastern Qinghai-Tibet Plateau, China[J]. Journal of Arid Land, 2022, 14(7): 811-823.
[8] ZHANG Yu, ZHANG Mingjun, QU Deye, WANG Shengjie, Athanassios A ARGIRIOU, WANG Jiaxin, YANG Ye. Water use characteristics of different pioneer shrubs at different ages in western Chinese Loess Plateau: Evidence from δ2H offset correction[J]. Journal of Arid Land, 2022, 14(6): 653-672.
[9] HU Haiying, ZHU Lin, LI Huixia, XU Dongmei, XIE Yingzhong. Seasonal changes in the water-use strategies of three herbaceous species in a native desert steppe of Ningxia, China[J]. Journal of Arid Land, 2021, 13(2): 109-122.
[10] MA Gailing, GOU Qianqian, WANG Guohua, QU Jianjun. Succession of soil bacterial and fungal communities of Caragana korshinskii plantation in a typical agro-pastoral ecotone in northern China over a 50-a period[J]. Journal of Arid Land, 2021, 13(10): 1071-1086.
[11] Zhongju MENG, Xiaohong DANG, Yong GAO, Xiaomeng REN, Yanlong DING, Meng WANG. Interactive effects of wind speed, vegetation coverage and soil moisture in controlling wind erosion in a temperate desert steppe, Inner Mongolia of China[J]. Journal of Arid Land, 2018, 10(4): 534-547.
[12] Xing WANG, Naiping SONG, Xinguo YANG, Lei WANG, Lin CHEN. Grazing exclusion-induced shifts, the relative importance of environmental filtering, biotic interactions and dispersal limitation in shaping desert steppe communities, northern China[J]. Journal of Arid Land, 2018, 10(3): 402-415.
[13] Fang HAN, Qing ZHANG, Alexander BUYANTUEV, JianMing NIU, PengTao LIU, XingHua LI, Sarula KANG, Jing ZHANG,ChangMing CHANG, YunPeng LI. Effects of climate change on phenology and primary productivity in the desert steppe of Inner Mongolia[J]. Journal of Arid Land, 2015, 7(2): 251-263.
[14] YanMin ZHAO, QingKe ZHU, Ping LI, LeiLei ZHAO, LuLu WANG, XueLiang ZHENG, Huan MA. Effects of artificially cultivated biological soil crusts on soil nutrients and biological activities in the Loess Plateau[J]. Journal of Arid Land, 2014, 6(6): 742-752.