Please wait a minute...
Journal of Arid Land  2011, Vol. 3 Issue (4): 254-260    DOI: 10.3724/SP.J.1227.2011.00254
Research Articles     
Altitudinal patterns of stand structure and herb layer diversity of Picea schrenkiana forests in the central Tianshan Mountains, Northwest China
LiPing LI1,2*, XiangPing WANG3, Stefan ZERBE2, LiYun ZHANG4, JingYun FANG1
1 Department of Ecology, College of Urban and Environmental Sciences & Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China;
2 Faculty of Science and Technology, Free University of Bolzano, Bolzano 39100, Italy;
3 The Key Laboratory of Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China;
4 Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
Download:   PDF(727KB)
Export: BibTeX | EndNote (RIS)      

Abstract  Altitude is a useful indicator to examine patterns of forest structure and species diversity in relation to environmental factors. In this study, the altitude patterns of forest stand structure and species diversity were analyzed across 20 plots in the Tianchi Nature Reserve, Northwest China. The results showed that mean stem height (Hm), maximum stem height (Hmax) and mean stem diameter at breast height (Dm) of Picea schrenkiana trees all decreased significantly with increasing altitude. Potential tree height (H*) decreased while stem taper increased significantly as altitude increased, suggesting remarkable altitudinal changes in biomass allocation between the diameter and height growth of Picea schrenkiana. Understory herbaceous richness increased significantly with increasing altitude, or with decreasing total basal area (TBA), Hm and stand volume (Volume). High light availability for understory herbs might account for the higher species richness at high altitude. Sorensen Index decreased significantly with the increase in altitude intervals, while the Cody Index demonstrated a converse pattern, suggesting greater differences in species composition with larger distances.

Key wordsNDVI      temperature      precipitation      correlation      scale     
Received: 13 April 2011      Published: 07 December 2011

The National Basic Research Program of China (2010CB950602).

Corresponding Authors: LiPing LI     E-mail:
Cite this article:

LiPing LI, XiangPing WANG, Stefan ZERBE, LiYun ZHANG, JingYun FANG. Altitudinal patterns of stand structure and herb layer diversity of Picea schrenkiana forests in the central Tianshan Mountains, Northwest China. Journal of Arid Land, 2011, 3(4): 254-260.

URL:     OR

[1] WANG Junjie, SHI Bing, ZHAO Enjin, CHEN Xuguang, YANG Shaopeng. Synergistic effects of multiple driving factors on the runoff variations in the Yellow River Basin, China[J]. Journal of Arid Land, 2021, 13(8): 835-857.
[2] Brian COLLINS, Hadi RAMEZANI ETEDALI, Ameneh TAVAKOL, Abbas KAVIANI. Spatiotemporal variations of evapotranspiration and reference crop water requirement over 1957-2016 in Iran based on CRU TS gridded dataset[J]. Journal of Arid Land, 2021, 13(8): 858-878.
[3] CHEN Li, XU Changchun, LI Xiaofei. Projections of temperature extremes based on preferred CMIP5 models: a case study in the Kaidu-Kongqi River basin in Northwest China[J]. Journal of Arid Land, 2021, 13(6): 568-580.
[4] LIU Benli, WANG Zhaoyun, NIU Baicheng, QU Jianjun. Large scale sand saltation over hard surface: a controlled experiment in still air[J]. Journal of Arid Land, 2021, 13(6): 599-611.
[5] Nirmal M DAHAL, XIONG Donghong, Nilhari NEUPANE, Belayneh YIGEZ, ZHANG Baojun, YUAN Yong, Saroj KOIRALA, LIU Lin, FANG Yiping. Spatiotemporal analysis of drought variability based on the standardized precipitation evapotranspiration index in the Koshi River Basin, Nepal[J]. Journal of Arid Land, 2021, 13(5): 433-454.
[6] Türkan BAYER ALTIN, Bekir N ALTIN. Response of hydrological drought to meteorological drought in the eastern Mediterranean Basin of Turkey[J]. Journal of Arid Land, 2021, 13(5): 470-486.
[7] ZHOU Siyuan, DUAN Yufeng, ZHANG Yuxiu, GUO Jinjin. Vegetation dynamics of coal mining city in an arid desert region of Northwest China from 2000 to 2019[J]. Journal of Arid Land, 2021, 13(5): 534-547.
[8] Ayad M F AL-QURAISHI, Heman A GAZNAYEE, Mattia CRESPI. Drought trend analysis in a semi-arid area of Iraq based on Normalized Difference Vegetation Index, Normalized Difference Water Index and Standardized Precipitation Index[J]. Journal of Arid Land, 2021, 13(4): 413-430.
[9] XIANG Longwei, WANG Hansheng, JIANG Liming, SHEN Qiang, Holger STEFFEN, LI Zhen. Glacier mass balance in High Mountain Asia inferred from a GRACE release-6 gravity solution for the period 2002-2016[J]. Journal of Arid Land, 2021, 13(3): 224-238.
[10] TENG Zeyu, XIAO Shengchun, CHEN Xiaohong, HAN Chao. Soil bacterial characteristics between surface and subsurface soils along a precipitation gradient in the Alxa Desert, China[J]. Journal of Arid Land, 2021, 13(3): 257-273.
[11] HUANG Xiaotao, LUO Geping, CHEN Chunbo, PENG Jian, ZHANG Chujie, ZHOU Huakun, YAO Buqing, MA Zhen, XI Xiaoyan. How precipitation and grazing influence the ecological functions of drought-prone grasslands on the northern slopes of the Tianshan Mountains, China?[J]. Journal of Arid Land, 2021, 13(1): 88-97.
[12] Arvind BHATT, David J GALLACHER, Paulo R M SOUZA-FILHO. Germination strategies of annual and short-lived perennial species in the Arabian Desert[J]. Journal of Arid Land, 2020, 12(6): 1071-1082.
[13] Mahsa MIRDASHTVAN, Mohsen MOHSENI SARAVI. Influence of non-stationarity and auto-correlation of climatic records on spatio-temporal trend and seasonality analysis in a region with prevailing arid and semi-arid climate, Iran[J]. Journal of Arid Land, 2020, 12(6): 964-983.
[14] Esmail HEYDARI ALAMDARLOO, Hassan KHOSRAVI, Sahar NASABPOUR, Ahmad GHOLAMI. Assessment of drought hazard, vulnerability and risk in Iran using GIS techniques[J]. Journal of Arid Land, 2020, 12(6): 984-1000.
[15] YANG Meilin, YU Yang, ZHANG Haiyan, WANG Qian, GAN Miao, YU Ruide. Tree ring based drought variability in Northwest Tajikistan since 1895 AD[J]. Journal of Arid Land, 2020, 12(3): 413-422.