Please wait a minute...
Journal of Arid Land  2024, Vol. 16 Issue (7): 925-942    DOI: 10.1007/s40333-024-0060-9
Research article     
Climate and topography regulate the spatial pattern of soil salinization and its effects on shrub community structure in Northwest China
DU Lan1,2,3, TIAN Shengchuan1,2,3, ZHAO Nan1,2,3, ZHANG Bin1,2,3, MU Xiaohan1,2,3, TANG Lisong1,3, ZHENG Xinjun1,3,*(), LI Yan4
1State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
2University of Chinese Academy of Sciences, Beijing 100049, China
3Fukang Station of Desert Ecology, Chinese Academy of Sciences, Fukang 831505, China
4State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
Download: HTML     PDF(1361KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Soil salinization may affect biodiversity and species composition, leading to changes in the plant community structure. However, few studies have explored the spatial pattern of soil salinization and its effects on shrub community structure at the ecosystem scale. Therefore, we conducted a transect sampling of desert shrublands in Northwest China during the growing season (June-September) in 2021. Soil salinization (both the degree and type), shrub community structure (e.g., shrub density and height), and biodiversity parameters (e.g., Simpson diversity, Margalf abundance, Shannon-Wiener diversity, and Pielou evenness indices) were used to assess the effects of soil salinization on shrub community structure. The results showed that the primary degree of soil salinization in the study area was light salinization, with the area proportion of 69.8%. Whereas the main type of soil salinization was characterized as sulfate saline soil, also accounting for 69.8% of the total area. Notably, there was a significant reduction in the degree of soil salinization and a shift in the type of soil salinization from chloride saline soil to sulfate saline soil, with an increase in longitude. Regional mean annual precipitation (MAP), mean annual evapotranspiration (MAE), elevation, and slope significantly contributed to soil salinization and its geochemical differentiation. As soil salinization intensified, shrub community structure displayed increased diversity and evenness, as indicated by the increases in the Simpson diversity, Shannon-Wiener diversity, and Pielou evenness indices. Moreover, the succulent stems and leaves of Chenopodiaceae and Tamaricaceae exhibited clear advantages under these conditions. Furthermore, regional climate and topography, such as MAP, MAE, and elevation, had greater effects on the distribution of shrub plants than soil salinization. These results provide a reference for the origin and pattern of soil salinization in drylands and their effects on the community structure of halophyte shrub species.



Key wordssoil salinization      halophytes      shrubland      climate change      biodiversity      drylands      Northwest China     
Received: 31 January 2024      Published: 31 July 2024
Corresponding Authors: * ZHENG Xinjun (E-mail: zhengxj@ms.xjb.ac.cn)
Cite this article:

DU Lan, TIAN Shengchuan, ZHAO Nan, ZHANG Bin, MU Xiaohan, TANG Lisong, ZHENG Xinjun, LI Yan. Climate and topography regulate the spatial pattern of soil salinization and its effects on shrub community structure in Northwest China. Journal of Arid Land, 2024, 16(7): 925-942.

URL:

http://jal.xjegi.com/10.1007/s40333-024-0060-9     OR     http://jal.xjegi.com/Y2024/V16/I7/925

Fig. 1 Geographical overview of the study area and location of the sampling plots. MAP, mean annual precipitation. Note that the figure is based on the standard map (GS(2023)2767) from the Standard Map Service System (http://bzdt.ch.mnr.gov.cn/index.html) marked by the Ministry of Natural Resources of the People's Republic of China, and the standard map has not been modified.
Plot ID Latitude Longitude Elevation
(m)
Dominant species
A 45°21′20′′N 85°00′17′′E 280 Nitraria tangutorum, Tamarix ramosissima, Anabasis brevifolia, and Haloxylon ammodendron#
B 45°10′30′′N 84°58′58′′E 290 Nitraria tangutorum, Tamarix ramosissima, Reaumuria songarica, and Haloxylon ammodendron#
C 45°29′50′′N 85°30′24′′E 260 Nitraria tangutorum, Tamarix ramosissima, Anabasis brevifolia, Reaumuria songarica, and Haloxylon ammodendron#
D 45°30′20′′N 85°12′27′′E 280 Anabasis brevifolia, Haloxylon ammodendron#, and Kalidium foliatum
E 45°07′22′′N 86°01′41′′E 340 Tamarix ramosissima#, Reaumuria songarica, Nitraria tangutorum, and Haloxylon ammodendron
F 44°09′48′′N 88°42′32′′E 610 Tamarix ramosissima#, Anabasis brevifolia, Reaumuria songarica, Haloxylon ammodendron, Suaeda microphylla, and Kalidium foliatum
G 44°45′42′′N 89°13′05′′E 540 Nitraria tangutorum, Anabasis brevifolia, Ephedra major, Reaumuria songarica, Calligonum mongolicum, and Haloxylon ammodendron#
H 44°51′08′′N 90°01′06′′E 650 Haloxylon ammodendron# and Halostachys caspica
I 44°23′45′′N 90°38′47′′ 830 Anabasis brevifolia, Reaumuria songarica, Haloxylon ammodendron#, and Kalidium foliatum
J 44°04′28′′N 90°26′52′′E 920 Nitraria tangutorum# and Ceratoides latens
K 44°12′01′′N 90°08′37′′E 760 Haloxylon persicum#, Atraphaxis bracteata, Anabasis brevifolia, Calligonum mongolicum, Artemisia ordosica, Haloxylon ammodendron, and Ceratoides latens
L 45°17′14′′N 90°09′54′′E 1200 Anabasis brevifolia, Reaumuria songarica, and Haloxylon ammodendron#
M 46°55′54′′N 88°54′11′′E 830 Anabasis brevifolia and Haloxylon ammodendron#
N 46°43′28′′N 87°43′32′′E 570 Salsola laricifolia, Tamarix ramosissima, Halimodendron halodendron, Reaumuria songarica, Haloxylon ammodendron#, and Ceratoides latens
O 45°58′52′′N 85°50′28′′E 280 Tamarix ramosissima#, Anabasis brevifolia, Reaumuria songarica, and Haloxylon ammodendron
P 46°00′43′′N 86°24′44′′E 320 Tamarix ramosissima, Nitraria roborowskii, Nitraria sibirica, Haloxylon ammodendron#, and Kalidium foliatum
Q 41°49′04′′N 97°02′10′′E 1740 Nitraria tangutorum, Reaumuria songarica, Haloxylon ammodendron#, and Halostachys caspica
R 42°12′21′′N 101°05′60′′E 920 Tamarix ramosissima#
S 41°52′03′′N 100°32′52′′E 970 Nitraria tangutorum, Tamarix ramosissima#, and Lycium ruthenicum
T 41°48′56′′N 100°28′05′′E 980 Nitraria tangutorum, Tamarix ramosissima#, Reaumuria songarica, and Calligonum mongolicum
U 41°41′49′′N 103°07′57′′E 1010 Reaumuria songarica#
V 41°17′58′′N 104°08′37′′E 800 Nitraria tangutorum, Tamarix ramosissima#, Haloxylon ammodendron, and Kalidium foliatum
W 40°43′59′′N 104°30′36′′E 1320 Nitraria tangutorum# and Reaumuria songarica
X 40°51′29′′N 106°44′31′′E 1040 Haloxylon ammodendron#
Y 40°33′55′′N 106°22′33′′E 1040 Nitraria tangutorum, Tamarix ramosissima, and Haloxylon ammodendron#
Z 40°34′24′′N 106°22′00′′E 1050 Nitraria tangutorum, Sarcozygium xanthoxylum#, and Ammopiptanthus mongolicus
A1 40°45′41′′N 105°22′37′′E 1180 Nitraria tangutorum, Potaninia mongolica, Reaumuria songarica, and Kalidium foliatum#
B1 40°39′50′′N 107°33′49′′E 1040 Artemisia ordosica and Salix cheilophila#
C1 40°25′48′′N 108°39′24′′E 1120 Artemisia ordosica and Salix cheilophila#
D1 40°21′48′′N 109°25′23′′E 1080 Hedysarum scoparium#, Caragana sinica, and Artemisia ordosica
E1 40°22′20′′N 109°26′35′′E 1070 Caragana sinica, Artemisia ordosica, and Salix cheilophila#
F1 40°12′20′′N 110°50′23′′E 1040 Caragana sinica, Artemisia ordosica, and Salix cheilophila#
Table S1 Summary of the shrub plant communities in the 72 sampling plots in Northwest China
Classification system Soil type Criteria
Classification system based on American Soil Salinity Classification System# Non-salinized soil TS≤5 mg/kg
Slightly salinized soil 5 mg/kg<TS≤10 mg/kg
Moderately salinized soil 10 mg/kg<TS≤15 mg/kg
Severely salinized soil 15 mg/kg<TS≤20 mg/kg
Classification system based on anion of salt types## Sulfate saline soil Cl-/SO42-≤0.2
Chloride-sulfate saline soil 0.2<Cl-/SO42-≤1.0
Sulfate-chloride saline 1.0<Cl-/SO42-≤4.0
Chloride saline soil Cl-/SO42->4.0
Table 1 Classification of soil salinization
Fig. 2 Variations of soil salinization degree, MAP, and elevation (a) and soil salinization type, mean annual evapotranspiration (MAE), and slope (b) along the longitudinal gradient. Note that soil salinization degree and type are expressed as soil total salt (TS) and Cl-/SO42-, respectively. Black solid line indicates significant relationship between soil salinization and longitude (P<0.050). Shaded area represents 95% confidence interval. R2 and P values represent the linear relationship between soil salinization and longitude.
Fig. 3 Effects of topographical (a, b, c, and d) and climatic (e, f, g, and h) factors on soil salinization degree and type. Different lowercase letters indicate significant differences at the P<0.050 level. Since there were few sampling plots with non-salinized soil (n=2, where n is the total number of sampling plots), they were not plotted in this figure. Black dots indicate the data points of elevation, slope, MAP, and MAE. Box boundaries indicate the 25th and 75th percentiles, and whiskers below and above the box indicate the 10th and 90th percentiles, respectively. The black horizontal line within each box indicates the median of data points.
Fig. 4 TWINSPAN tree classification of the 78 sampling plots. The heat map shows data on the abundance of the dominant species in the corresponding quadrats below the cluster tree. The clustering results of the quadrats (four-layer classification) are at the top of the figure, and the clustering results of shrub species are on the left of the figure. n is the total number of sampling plots. The dominant species and sampling plots in each association are shown in Table S2.
Fig. S1 Geographical distribution of shrub associations along the longitudinal gradient in Northwest China
Fig. S2 Pearson's correlations among longitude, soil salinization, and parameters of shrub community structure. The size of the colored circle indicates the degree of correlation. *, P<0.050 level; **, P<0.010 level; ***, P<0.001 level.
Association Cluster name Sampling plots
I Haloxylon ammodendron+Haloxylon persicum+Ceratoides latens K, W2, Y2, and Z2
II Haloxylon ammodendron+Anabasis brevifolia+Tamarix ramosissima A, C, D, E, G, H, I, L, M, O, P, R, U2, V, X, and X2
III Nitraria tangutorum+Reaumuria songarica+ Tamarix ramosissima N, S, V2, and Y
IV Reaumuria songarica+Nitraria tangutorum+Salsola passerina A1, A2, B, D2, E2, F, F2, I2, J, J2, M2, N2, O1, O2, P2, Q, Q2, R2, S2, T, T2, U, W, X1, and Z1
V Reaumuria songarica+Nitraria tangutorum+Kalidium foliatum L2, M1, and N1
VI Calligonum mongolicum+Reaumuria songarica+Halostachys caspica H2, K2, U1, and Z
VII Reaumuria songarica+Tetraena mongolica+
Salix cheilophila
B1, B2, C1, C2, D1, E1, F1, G1, G2, H1, J1, K1, P1, R1, S1, T1, V1, W1, and Y1
VIII Tetraena mongolica+Suaeda microphylla I1, L1, and Q1
Table S2 Dominant species and sampling plots in each association
Fig. 5 Comparison of shrub density (a), shrub height (b), aboveground biomass (c), and shrub canopy (d) among the eight shrub associations. Different lowercase letters indicate significant differences among different associations at the P<0.050 level. Bars mean standard errors.
Fig. 6 Comparison of the Simpson diversity (a), Shannon-Wiener diversity (b), Pielou evenness (c), and Margalf abundance (d) indices among the eight shrub associations. Different lowercase letters indicate significant differences among different associations at the P<0.050 level. Bars mean standard errors.
Fig. 7 Canonical correlation analysis (CCA) of the eight shrub associations (a) and their affecting variables of soil salinization, climate, and topography (b). In the left panel, different colors and areas correspond to the distribution ranges of shrub associations. CCA1 and CCA2 are the first and second axes of CCA, respectively. EBC, exchangeable base cation.
[1]   Adhikari S, Adhikari A, Weaver D K, et al. 2019. Impacts of agricultural management systems on biodiversity and ecosystem services in highly simplified dryland landscapes. Sustainability, 11(11): 3223, doi: 10.3390/su11113223.
[2]   Akhtar M, Zhao Y, Gao G, et al. 2022. Assessment of spatiotemporal variations of ecosystem service values and hotspots in a dryland: A case-study in Pakistan. Land Degradation and Development, 33(9): 1383-1397.
[3]   Bao S D. 2000. Soil Agrochemical Analysis (3rd ed.). Beijing: China Agriculture Press, 25-114. (in Chinese)
[4]   Bao X T, Ding L B, Yao S C, et al. 2019. Quantitative classification and ordination of grassland communities on the Lhasa River Basin. Acta Ecologica Sinica, 39(3): 779-786. (in Chinese)
[5]   Cao C Y, Jiang D M, Zhu L H, et al. 2006. Degradation and diversity changes of meadow grassland in Keerqin Sandy Land. Acta Prataculturae Sinica, 15(3): 18-26. (in Chinese)
[6]   Chen B M, Jing X, Liu S S, et al. 2022a. Intermediate human activities maximize dryland ecosystem services in the long-term land-use change: Evidence from the Sangong River watershed, Northwest China. Journal of Environmental Management, 319: 115708, doi: 10.1016/j.jenvman.2022.115708.
[7]   Chen X, Luo M, Tan J, et al. 2022b. Salt-tolerant plant moderates the effect of salinity on soil organic carbon mineralization in a subtropical tidal wetland. Science of the Total Environment, 837: 155855, doi: 10.1016/j.scitotenv.2022.155855.
[8]   Corwin D L. 2021. Climate change impacts on soil salinity in agricultural areas. European Journal of Soil Science, 72(2): 842-862.
[9]   Deinlein U, Stephan A B, Horie T, et al. 2014. Plant salt-tolerance mechanisms. Trends in Plant Science, 19(6): 371-379.
doi: 10.1016/j.tplants.2014.02.001 pmid: 24630845
[10]   Ding J L, Chen W Q, Chen Y. 2016. Soil salinization disaster warning in arid zones: A case study in the Ugan-Kuqa oasis. Journal of Desert Research, 36(4): 1079-1086. (in Chinese)
doi: 10.7522/j.issn.1000-694X.2015.00067
[11]   Dixon P. 2003. VEGAN, a package of R functions for community ecology. Journal of Vegetation Science, 14(6): 927-930.
[12]   Duan H L, Zhao A, Yao Z. 2017. Overview of ordination methods application in relationship between plant community and environment. Journal of Tropical and Subtropical Botany, 25(2): 202-208. (in Chinese)
[13]   Fick S E, Hijmans R J. 2017. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12): 4302-4315.
[14]   Glenn E P, Brown J J, Blumwald E. 1999. Salt tolerance and crop potential of halophytes. Critical Reviews in Plant Sciences, 18(2): 227-255.
[15]   Gui D W, Lei J Q, Zeng F J, et al. 2010. Effect of ecological factors on plant communities of the Cele River Basin on the north slope of the middle Kunlun Mountains. Acta Prataculturae Sinica, 19(3): 38-46. (in Chinese)
[16]   Hassani A, Azapagic A, Shokri N. 2021. Global predictions of primary soil salinization under changing climate in the 21st century. Nature Communications, 12(1): 6663, doi: 10.1038/s41467-021-26907-3.
[17]   Jolly I D, McEwan K L, Holland K L. 2008. A review of groundwater-surface water interactions in arid/semi-arid wetlands and the consequences of salinity for wetland ecology. Ecohydrology, 1(1): 43-58.
[18]   Kuang W H, Liu J Y, Tian H Q, et al. 2022. Cropland redistribution to marginal lands undermines environmental sustainability. National Science Review, 9(1): nwab091, doi: 10.1093/nsr/nwab091.
[19]   Lan T. 2023. Geochemical evaluation and cause analysis of soil salinization in the west of Jilin Province. PhD Dissertation. Changchun: Jilin University. (in Chinese)
[20]   Li C J, Fu B J, Wang S, et al. 2021. Drivers and impacts of changes in China's drylands. Nature Reviews Earth and Environment, 2(12): 858-873.
[21]   Li R R. 2016. Spatial pattern of soil salinization in the lower reaches of the plain reservoirs in arid area: A case study of the Liuchengzi reservoir. MSc Thesis. Urumqi: Xinjiang University. (in Chinese)
[22]   Liang M, Mi X J, Li C H, et al. 2022. Salinity characteristics and halophytic vegetation diversity of uncultivated saline-alkali soil in Junggar Basin, Xinjiang. Arid Land Geography, 45(1): 185-196. (in Chinese)
[23]   Liang W J, Ma X L, Wan P, et al. 2018. Plant salt-tolerance mechanism: A review. Biochemical and Biophysical Research Communications, 495(1): 286-291.
doi: S0006-291X(17)32220-9 pmid: 29128358
[24]   Liu H L, Chu G X, Zhao F M, et al. 2010. Study on the variation and trend analysis of soil secondary salinization of cotton field under long-term drip irrigation condition in northern Xinjiang. Soil and Fertilizer Sciences in China, (4): 12-17. (in Chinese)
[25]   Liu J, Su Y G, Li Y, et al. 2021a. Shrub colonization regulates δ13C enrichment between soil and vegetation in deserts by affecting edaphic variables. Catena, 203: 105365, doi: 10.1016/j.catena.2021.105365.
[26]   Liu J L, Liu L, Ma X Y, et al. 2018. Spatial variability of soil salt in different soil layers at different scales. Journal of Basic Science and Engineering, 26(2): 305-312. (in Chinese)
[27]   Liu X H, Zhang Q Q, Xu H L, et al. 2021b. Spatial distribution and species diversity of saline-alkali plant communities in northern Xinjiang. Acta Ecologica Sinica, 41(4): 1501-1513. (in Chinese)
[28]   Liu Y F, Cui Z, Huang Z, et al. 2022. Shrub encroachment in alpine meadows increases the potential risk of surface soil salinization by redistributing soil water. Catena, 219: 106593, doi: 10.1016/j.catena.2022.106593.
[29]   Lu B J, Tian S C, Zuo Z, et al. 2023. Review and prospect on sustainable utilization of salinized land. Journal of Ningxia University (Natural Science Edition), 44(1): 79-88. (in Chinese)
[30]   Lv S L, Jiang P, Chen X Y, et al. 2012. Multiple compartmentalization of sodium conferred salt tolerance in Salicornia europaea. Plant Physiology and Biochemistry, 51: 47-52.
[31]   Ma M J, Zhou X H, Ma Z, et al. 2012. Composition of the soil seed bank and vegetation changes after wetland drying and soil salinization on the Tibetan Plateau. Ecological Engineering, 44: 18-24.
[32]   Masoud A A, El-Horiny M M, Atwia M G, et al. 2018. Assessment of groundwater and soil quality degradation using multivariate and geostatistical analyses, Dakhla Oasis, Egypt. Journal of African Earth Sciences, 142: 64-81.
[33]   McGeorge W T. 1954. Diagnosis and improvement of saline and alkaline soils. Soil Science Society of America Journal, 18(3): 348-348.
[34]   Moeslund J E, Arge L, Bøcher P K, et al. 2011. Geographically comprehensive assessment of salt-meadow vegetation-elevation relations using LiDAR. Wetlands, 31(3): 471-482.
[35]   Mora J L, Herrero J, Weindorf D C. 2017. Multivariate analysis of soil salination-desalination in a semi-arid irrigated district of Spain. Geoderma, 291: 1-10.
[36]   Oksanen J, Hill M O. 2023. Jarioksa/twinspan: Two-Way Indicator Species Analysis. R package version 0.9-3. [2023-12-02]. https://rdrr.io/github/jarioksa/twinspan/.
[37]   Pauloo R A, Fogg G E, Guo Z, et al. 2021. Anthropogenic basin closure and groundwater salinization (ABCSAL). Journal of Hydrology, 593: 125787, doi: 10.1016/j.jhydrol.2020.125787.
[38]   Pessarakli M. 1991. Formation of saline and sodic soils and their reclamation. Journal of Environmental Science and Health. Part A: Environmental Science and Engineering and Toxicology, 26(7): 1303-1320.
[39]   Prăvălie R, Patriche C, Borrelli P, et al. 2021. Arable lands under the pressure of multiple land degradation processes. A global perspective. Environmental Research, 194: 110697, doi: 10.1016/j.envres.2020.110697.
[40]   R Core Team. 2023. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. [2023-12-02]. https://www.R-project.org/.
[41]   Schild J E M, Vermaat J E, de Groot R S, et al. 2018. A global meta-analysis on the monetary valuation of dryland ecosystem services: The role of socio-economic, environmental and methodological indicators. Ecosystem Services, 32: 78-89.
[42]   Schulz J J, Cayuela L, Echeverria C, et al. 2010. Monitoring land cover change of the dryland forest landscape of Central Chile (1975-2008). Applied Geography, 30(3): 436-447.
[43]   Seydehmet J, Lv G H, Nurmemet I, et al. 2018. Model prediction of secondary soil salinization in the Keriya Oasis, Northwest China. Sustainability, 10(3): 656, doi: 10.3390/su10030656.
[44]   Shi J P, Song G, 2016. Soil type database of China: A nationwide soil dataset based on the second national soil survey. Science Data Bank, 1(2): 86101, doi: 10.11922/csdata.170.2015.0033.
[45]   Sidike A, Zhao S, Wen Y. 2014. Estimating soil salinity in Pingluo County of China using QuickBird data and soil reflectance spectra. International Journal of Applied Earth Observation and Geoinformation, 26: 156-175.
[46]   Singh A. 2021. Soil salinization management for sustainable development: A review. Journal of Environmental Management, 277: 111383, doi: 10.1016/j.jenvman.2020.111383.
[47]   Tian A H, Fu C B, Su X Y, et al. 2019. Classifying and predicting salinization level in arid area soil using a combination of Chua's circuit and fractional order Sprott chaotic system. Sensors, 19(20): 4517, doi: 10.3390/s19204517.
[48]   Tomaz A, Palma P, Fialho S, et al. 2020. Risk assessment of irrigation-related soil salinization and sodification in Mediterranean areas. Water, 12(12): 3569, doi: 10.3390/w12123569.
[49]   Van Couwenberghe R, Collet C, Lacombe E, et al. 2010. Gap partitioning among temperate tree species across a regional soil gradient in windstorm-disturbed forests. Forest Ecology and Management, 260(1): 146-154.
[50]   Wang X S, He J, Ma P, et al. 2023. Responses of the vegetation community structure and carbon storage of temperate meadow steppe to salinization in Huihe Reserve. Acta Agrestia Sinica, 31(4): 1154-1162. (in Chinese)
[51]   Wang Y G, Deng C Y, Liu Y, et al. 2018. Identifying change in spatial accumulation of soil salinity in an inland river watershed, China. Science of the Total Environment, 621: 177-185.
[52]   Wei Y, Ding J L, Wang F, et al. 2016. Analysis of the spatial variational characteristics of saline-alkaline soil types in non-agriculture land in Manas River Basin, Xinjiang, China. Acta Ecologica Sinica, 36(23): 7655-7666. (in Chinese)
[53]   Xiao D N, Li X Y, Song D M, et al. 2007. Temporal and spatial dynamical simulation of groundwater characteristics in Minqin Oasis. Science in China Series D: Earth Sciences, 50(2): 261-273.
[54]   Xu H G, Liu S R. 2004. Effects of soil salinization on halophytic vegetation. Inner Mongolia Prataculture, 16(2): 1-2. (in Chinese)
[55]   Xue Q Q, Zhao L L, Wang Y X, et al. 2021. Research progress on salt tolerance of halophytes. Chinese Wild Plant Resources, 40(5): 60-65. (in Chinese)
[56]   Yan A, Jiang P G, Sheng J D, et al. 2014. Spatial variability of surface soil salinity in Manas River Basin. Acta Pedologica Sinica, 51(2): 410-414. (in Chinese)
[57]   Yang H M, Xu H L, Fan Z L, et al. 2010. Spatial variability and pattern of surface soil salinity in the lower reaches of the Tarim River. Journal of Desert Research, 30(3): 564-570. (in Chinese)
[58]   Yang H T, Wang Z R, Tan H J, et al. 2017. Allometric models for estimating shrub biomass in desert grassland in northern China. Arid Land Research and Management, 31(3): 283-300.
[59]   Yang J S. 2008. Development and prospect of the research on salt-affected soils in China. Acta Pedologica Sinica, 45(5): 837-845. (in Chinese)
[60]   Yao S C, Wang J S, Ding L B, et al. 2018. Quantitative classification and ordination of grassland communities in Lhasa River Valley. Acta Ecologica Sinica, 38(13): 4779-4788. (in Chinese)
[61]   Zhang Z Y, Li X Y, Liu L J, et al. 2020. Influence of mulched drip irrigation on landscape scale evapotranspiration from farmland in an arid area. Agricultural Water Management, 230: 105953, doi: 10.1016/j.agwat.2019.105953.
[62]   Zhao K F, Fan H, Song J, et al. 2005. Two Na+ and Cl- hyperaccumulators of the Chenopodiaceae. Journal of Integrative Plant Biology, 47(3): 311-318.
[63]   Zhao Y T, Wang G D, Zhao M L, et al. 2022a. Direct and indirect effects of soil salinization on soil seed banks in salinizing wetlands in the Songnen Plain, China. Science of the Total Environment, 819: 152035, doi: 10.1016/j.scitotenv.2021.152035.
[64]   Zhao Y T, Wang G D, Zhao M L, et al. 2022b. How soil salinization and alkalinization drive vegetation change in salt-affected inland wetlands. Plant and Soil, 480(1-2): 571-581.
[65]   Zhao Z Z, Chen J S, Peng E R, et al. 2023. Research progress on soil salinization and management. China Rural Water and Hydropower, (6): 202-208. (in Chinese)
[66]   Zheng Q, Wang H J, Li W T, et al. 2016. Factors influencing soil salinization in Manasi River Basin, China. Journal of Agricultural Resources and Environment, 33(3): 214-220. (in Chinese)
[67]   Zhou H Z. 2002. Sharing of soil information data distributed inquiry data base of 1:4M soil information of China. Acta Pedologica Sinica, 39(4): 483-489. (in Chinese)
[68]   Zhou Z M, Zhao S H. 2015. Influencing factors on surface soil salt accumulation in the semi-arid North China Plain. Arid Land Geography, 38(5): 976-984. (in Chinese)
[69]   Zhu H, He Y. 2019. Soil Geography (3rd ed.). Beijing: Higher Education Press, 56-58. (in Chinese)
[70]   Zhu H Q, Li Y H, Li F D. 2018. Characteristics of soil moisture, salinity and nutrients in different plant communities of Ebinur Lake wetland during the past decade. Acta Botanica Boreali-Occidentalia Sinica, 38(3): 535-543. (in Chinese)
[1] WANG Tongxia, CHEN Fulong, LONG Aihua, ZHANG Zhengyong, HE Chaofei, LYU Tingbo, LIU Bo, HUANG Yanhao. Glacier area change and its impact on runoff in the Manas River Basin, Northwest China from 2000 to 2020[J]. Journal of Arid Land, 2024, 16(7): 877-894.
[2] Zulfira RAKHMANKULOVA, Elena SHUYSKAYA, Maria PROKOFIEVA, Kristina TODERICH, Pavel VORONIN. Plasticity of photorespiratory carbon concentration mechanism in Sedobassia sedoides (Pall.) Freitag & G. Kadereit under elevated CO2 concentration and salinity[J]. Journal of Arid Land, 2024, 16(7): 963-982.
[3] Haq S MARIFATUL, Darwish MOHAMMED, Waheed MUHAMMAD, Kumar MANOJ, Siddiqui H MANZER, Bussmann W RAINER. Predicting potential invasion risks of Leucaena leucocephala (Lam.) de Wit in the arid area of Saudi Arabia[J]. Journal of Arid Land, 2024, 16(7): 983-999.
[4] Seyed Morteza MOUSAVI, Hossein BABAZADEH, Mahdi SARAI-TABRIZI, Amir KHOSROJERDI. Assessment of rehabilitation strategies for lakes affected by anthropogenic and climatic changes: A case study of the Urmia Lake, Iran[J]. Journal of Arid Land, 2024, 16(6): 752-767.
[5] LI Chuanhua, ZHANG Liang, WANG Hongjie, PENG Lixiao, YIN Peng, MIAO Peidong. Influence of vapor pressure deficit on vegetation growth in China[J]. Journal of Arid Land, 2024, 16(6): 779-797.
[6] LU Haitian, ZHAO Ruifeng, ZHAO Liu, LIU Jiaxin, LYU Binyang, YANG Xinyue. Impact of climate change and human activities on the spatiotemporal dynamics of surface water area in Gansu Province, China[J]. Journal of Arid Land, 2024, 16(6): 798-815.
[7] YANG Zhiwei, CHEN Rensheng, LIU Zhangwen, ZHAO Yanni, LIU Yiwen, WU Wentong. Spatiotemporal variability of rain-on-snow events in the arid region of Northwest China[J]. Journal of Arid Land, 2024, 16(4): 483-499.
[8] BAO Anming, YU Tao, XU Wenqiang, LEI Jiaqiang, JIAPAER Guli, CHEN Xi, Tojibaev KOMILJON, Shomurodov KHABIBULLO, Xabibullaev B SAGIDULLAEVICH, Idirisov KAMALATDIN. Ecological problems and ecological restoration zoning of the Aral Sea[J]. Journal of Arid Land, 2024, 16(3): 315-330.
[9] ZHANG Mingyu, CAO Yu, ZHANG Zhengyong, ZHANG Xueying, LIU Lin, CHEN Hongjin, GAO Yu, YU Fengchen, LIU Xinyi. Spatiotemporal variation of land surface temperature and its driving factors in Xinjiang, China[J]. Journal of Arid Land, 2024, 16(3): 373-395.
[10] WANG Baoliang, WANG Hongxiang, JIAO Xuyang, HUANG Lintong, CHEN Hao, GUO Wenxian. Runoff change in the Yellow River Basin of China from 1960 to 2020 and its driving factors[J]. Journal of Arid Land, 2024, 16(2): 168-194.
[11] LIU Xinyu, LI Xuemei, ZHANG Zhengrong, ZHAO Kaixin, LI Lanhai. A CMIP6-based assessment of regional climate change in the Chinese Tianshan Mountains[J]. Journal of Arid Land, 2024, 16(2): 195-219.
[12] ZHAO Yaxuan, CAO Bo, SHA Linwei, CHENG Jinquan, ZHAO Xuanru, GUAN Weijin, PAN Baotian. Land use and cover change and influencing factor analysis in the Shiyang River Basin, China[J]. Journal of Arid Land, 2024, 16(2): 246-265.
[13] ZHAO Xuqin, LUO Min, MENG Fanhao, SA Chula, BAO Shanhu, BAO Yuhai. Spatiotemporal changes of gross primary productivity and its response to drought in the Mongolian Plateau under climate change[J]. Journal of Arid Land, 2024, 16(1): 46-70.
[14] Mitiku A WORKU, Gudina L FEYISA, Kassahun T BEKETIE, Emmanuel GARBOLINO. Projecting future precipitation change across the semi-arid Borana lowland, southern Ethiopia[J]. Journal of Arid Land, 2023, 15(9): 1023-1036.
[15] QIN Guoqiang, WU Bin, DONG Xinguang, DU Mingliang, WANG Bo. Evolution of groundwater recharge-discharge balance in the Turpan Basin of China during 1959-2021[J]. Journal of Arid Land, 2023, 15(9): 1037-1051.