Please wait a minute...
Journal of Arid Land  2014, Vol. 6 Issue (3): 255-263    DOI: 10.1007/s40333-013-0245-0     CSTR: 32276.14.s40333-013-0245-0
Research Articles     
Quantitative analysis on the dynamic characteristics of megadunes around the Crescent Moon Spring, China
YingJun PANG1,2, JianJun QU1,2,3, KeCun ZHANG1,2,3, ZhiShan AN1,2,3, QingHe NIU1,2,3
1 Key Laboratory of Desert and Desertification, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China;
2 Dunhuang Gobi and Desert Research Station, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Dunhuang 736200, China;
3 Gansu Center for Sand Hazard Reduction Engineering and Technology, Lanzhou 730000, China
Download:   PDF(487KB)
Export: BibTeX | EndNote (RIS)      

Abstract  The Crescent Moon Spring is a precious natural heritage. However, the dynamic characteristics of megadunes around the Crescent Moon Spring are not well known. This paper quantitatively studied the character-istics and changes of megadunes around the Crescent Moon Spring by interpreting aerial photographs taken in 1985 and 2004 and analysing the dune crestlines and the wind data collected from 2011 to 2012. Results revealed that pyramid dunes were formed by a complex wind regime. The Crescent Moon Spring was not buried by shifting sands because of the stable wind regime and relative stability of pyramid dunes. The crestlines of the dunes around the spring moved northward between 1985 and 2004. The south-facing slip faces were also exposed to wind ero-sion, whereas the other faces were under deposition, thus indicating that the southerly wind was relatively en-hanced. Limiting the scale of tall windbreaks and architectures in the Dunhuang oasis at the north of the spring was necessary to maintain the dynamic equilibrium of the wind regime and sand transport.

Key wordselevational gradient      net primary production      water-use efficiency      climate     
Received: 06 May 2013      Published: 10 June 2014
Fund:  

The National Key Technology R&D Program of China (2013BAC07B02), the National Natural Science Foundation of China (41071009), and the West Light Foundation of Chinese Academy of Sciences (29Y128841).

Corresponding Authors:
Cite this article:

YingJun PANG, JianJun QU, KeCun ZHANG, ZhiShan AN, QingHe NIU. Quantitative analysis on the dynamic characteristics of megadunes around the Crescent Moon Spring, China. Journal of Arid Land, 2014, 6(3): 255-263.

URL:

http://jal.xjegi.com/10.1007/s40333-013-0245-0     OR     http://jal.xjegi.com/Y2014/V6/I3/255

An Z S, Zhang K C, Wang X L, et al. 2013. Dynamic monitoring of sand hill and wind-blown sand environment in the scenic spots of Crescent Moon Spring in Dunhuang, China. Journal of Arid Land Re-sources and Environment, 27(3): 115–120.

Breed C S, Grow T. 1979. Morphology and distribution of dunes in sand seas observed by remote sensing. In: McKee E D. A Study of Global Sand Seas. U.S. Geological Survey, 253–302.

Ding H W, Gong K C. 2004. Analysis of the reasons and countermeasures for the decline in the water level of the Crescent Moon Spring near Dunhuang. Hydrogeology & Engineering Geology, 31(6): 74–77.

Dong J H, Bian Z F. 2004. Proposal for the protection of natural heritage of Singing Sand Mountain and Crescent Moon Spring in Dunhuang City, China. Journal of Natural Resources, 19(5): 561–566.

Fryberger S G, Dean G. 1979. Dune forms and wind regime. In: McKee E D. A Study of Global Sand Seas. U.S. Geological Survey, 137–169.

Lancaster N. 1983. Controls of dune morphology in the Namib sand sea. Developments in Sedimentology, 38: 261–289.

Lancaster N. 1989. The dynamic of star dunes–an example from the gran desierto, Mexico. Sedimentology, 36(2): 273–289.

Lang L L, Wang X M, Hasi E, et al. 2013. Nebkha (coppice dune) formation and significance to environmental change reconstructions in arid and semiarid areas. Journal of Geographical Sciences, 23(2): 344–358.

McKee E D. 1982. Sedimentary structures in dunes of the Namib desert, south west Africa. Geological Society of America Special Papers, 188: 1–2.

Nielson J, Kocurek G. 1987. Surface processes, deposits, and development of star dunes-Dunmont dune field, Califoria. Geological Soci-ety of America Bulletin, 99 (2): 177–186.

Sharp R P. 1966. Kelso dunes, Mojave Desert, California. Geological Society of America Bulletin, 77(10): 1045–1074.

Tang G A, Yang X. 2010. Spatial analysis experiment course of ArcGIS geographic information system. Beijing: Science Press, 92–96.

Tsoar H, Blumberg D G. 2002. Formation of parabolic dunes from barchan and transverse dunes along Israel’s Mediterranean coast. Earth Surface Processes and Landforms, 27(11): 1147–1161.

Wang J P. 2009. Geological causes and the protection of Lake Grescent Moon Spring in Dunhuang. Water Sciences and Engineering Technology, doi: 10.3969/j.issn.1672-9900.2009.04.013.

Wilson I G. 1973. ERGS. Sedimentary Geology, 10(2): 77–106.

Wang T, Zhang W M, Dong Z B, et al. 2005. The dynamic characteristics and migration of a pyramid dune. Sedimentology, 52(3): 429–440.

Wu Z. 1987. Aeolian Landform. Beijing: Science Press, 157–166.

Wu Z. 2009. Sandy Deserts and Its Control in China. Beijing: Science Press, 142–152.

Yang J C, Zhang C. 2003. The selection of leaking-flow fields mathematical model and harnessing program in Yueya spring. Northewest Water Resources & Water Engineering, 14(3): 25–28.

Yin N W, Wei Y T. 2010. The analysis on the formation of the Crescent Moon Spring. Groundwater, 32 (2): 20–22.

Yue F, Dong J H, Wen X Q. 2007. The decadent reason and countermeasure of Crescent Moon Spring view of Dunhuang City. Research of Soil and Water Conservation, 14(2): 200–206.

Zhang K C, Niu Q H, Qu J J, et al. 2012. Analysis of wind-blown sand environment in the Singing Sand Mountain & Crescent Moon Spring scenic spot in Dunhuang, China. Journal of Desert Research, 32(4): 896–900.

Zhang W M, Qu J J, Dong Z B, et al. 2000. The airflow field and dynamic processes of pyramid dunes. Journal of Arid Environments, 45(4): 357–368. 

Zhu Z D, Chen Z P, Wu Z, et al. 1981. Study on Aeolian Sand Land-forms of Taklimakan Desert. Beijing: Science Press, 27–55.

 

 
 
[1] WANG Xiangyu, XU Min, KANG Shichang, LI Xuemei, HAN Haidong, LI Xingdong. Comprehensive applicability evaluation of four precipitation products at multiple spatiotemporal scales in Northwest China[J]. Journal of Arid Land, 2024, 16(9): 1232-1254.
[2] CHEN Zhuo, SHAO Minghao, HU Zihao, GAO Xin, LEI Jiaqiang. Potential distribution of Haloxylon ammodendron in Central Asia under climate change[J]. Journal of Arid Land, 2024, 16(9): 1255-1269.
[3] LI Mingqian, WANG He, DU Wei, GU Hongbiao, ZHOU Fanchao, CHI Baoming. Responses of runoff to changes in climate and human activities in the Liuhe River Basin, China[J]. Journal of Arid Land, 2024, 16(8): 1023-1043.
[4] SUN Chao, BAI Xuelian, WANG Xinping, ZHAO Wenzhi, WEI Lemin. Response of vegetation variation to climate change and human activities in the Shiyang River Basin of China during 2001-2022[J]. Journal of Arid Land, 2024, 16(8): 1044-1061.
[5] YAN Yujie, CHENG Yiben, XIN Zhiming, ZHOU Junyu, ZHOU Mengyao, WANG Xiaoyu. Impacts of climate change and human activities on vegetation dynamics on the Mongolian Plateau, East Asia from 2000 to 2023[J]. Journal of Arid Land, 2024, 16(8): 1062-1079.
[6] YANG Jianhua, LI Yaqian, ZHOU Lei, ZHANG Zhenqing, ZHOU Hongkui, WU Jianjun. Effects of temperature and precipitation on drought trends in Xinjiang, China[J]. Journal of Arid Land, 2024, 16(8): 1098-1117.
[7] HAN Qifei, XU Wei, LI Chaofan. Effects of nitrogen deposition on the carbon budget and water stress in Central Asia under climate change[J]. Journal of Arid Land, 2024, 16(8): 1118-1129.
[8] WANG Tongxia, CHEN Fulong, LONG Aihua, ZHANG Zhengyong, HE Chaofei, LYU Tingbo, LIU Bo, HUANG Yanhao. Glacier area change and its impact on runoff in the Manas River Basin, Northwest China from 2000 to 2020[J]. Journal of Arid Land, 2024, 16(7): 877-894.
[9] DU Lan, TIAN Shengchuan, ZHAO Nan, ZHANG Bin, MU Xiaohan, TANG Lisong, ZHENG Xinjun, LI Yan. Climate and topography regulate the spatial pattern of soil salinization and its effects on shrub community structure in Northwest China[J]. Journal of Arid Land, 2024, 16(7): 925-942.
[10] Haq S MARIFATUL, Darwish MOHAMMED, Waheed MUHAMMAD, Kumar MANOJ, Siddiqui H MANZER, Bussmann W RAINER. Predicting potential invasion risks of Leucaena leucocephala (Lam.) de Wit in the arid area of Saudi Arabia[J]. Journal of Arid Land, 2024, 16(7): 983-999.
[11] Seyed Morteza MOUSAVI, Hossein BABAZADEH, Mahdi SARAI-TABRIZI, Amir KHOSROJERDI. Assessment of rehabilitation strategies for lakes affected by anthropogenic and climatic changes: A case study of the Urmia Lake, Iran[J]. Journal of Arid Land, 2024, 16(6): 752-767.
[12] ZHANG Wenwen, PAN Yue, WEN Fuqi, FU Juanjuan, HAO Yanbin, HU Tianming, YANG Peizhi. Extreme drought with seasonal timing consistently promotes CH4 uptake through inconsistent pathways in a temperate grassland, China[J]. Journal of Arid Land, 2024, 16(6): 768-778.
[13] LI Chuanhua, ZHANG Liang, WANG Hongjie, PENG Lixiao, YIN Peng, MIAO Peidong. Influence of vapor pressure deficit on vegetation growth in China[J]. Journal of Arid Land, 2024, 16(6): 779-797.
[14] LU Haitian, ZHAO Ruifeng, ZHAO Liu, LIU Jiaxin, LYU Binyang, YANG Xinyue. Impact of climate change and human activities on the spatiotemporal dynamics of surface water area in Gansu Province, China[J]. Journal of Arid Land, 2024, 16(6): 798-815.
[15] CAO Wenyu, BAI Jianjun, YU Leshan. Grassland-type ecosystem stability in China differs under the influence of drought and wet events[J]. Journal of Arid Land, 2024, 16(5): 615-631.