Please wait a minute...
Journal of Arid Land
Research Articles     
Hydraulic resistance partitioning between shoot and root system and plant water status of Haloxyolon ammodendron growing at sites of contrasting soil texture
GuiQing XU, Yan LI, Ting ZOU
1 Fukang Station of Desert Ecology and Key Laboratory of Oasis Ecology and Desert Environment, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; 2 Graduate University of Chinese Academy of Sciences, Beijing 100049, China
Download:   PDF(427KB)
Export: BibTeX | EndNote (RIS)      

Abstract  Hydraulic resistance components and water relations were studied on Haloxyolon ammodendron, a small xeric tree, growing at sites significantly differed in soil texture. Soil water content, leaf water potential (ψl), xylem water potential (ψx), root water potential (ψroot), leaf transpiration rate (TR) and stomatal conductance (gs) were measured at the two sites during the growing season of 2005 and 2006. Leaf specific hydraulic resistance (Rplant) during the whole growing season, hydraulic resistance of plants (Rp), shoots (Rshoot) and roots (Rroot) in the August of both years were calculated and expressed on leaf area basis. The results showed the proportion of the hydraulic resistance of the aerial part (Rshoot) to the Rp was the same to the proportion of the hydraulic resistance of the soil part (Rroot) to the Rp, indicating that both parts were equivalent important to plant water hydraulic system from soil to leaf. Positive significant correlations were found between Rp and Rroot, suggesting that root hydraulics resistance was a major determinant of plant hydraulic resistance (Rp) and transpiration rate. The integrated effect of stomatal control, hydraulic regulation and morphology adjustment enabled plants at heavy soil site surviving the extreme water deficit period.

Key wordschange detection      spatial pattern      land cover      semiarid zone of China      remote sensing      human activities     
Received: 11 March 2010      Published: 07 June 2010
Corresponding Authors:
Cite this article:

GuiQing XU, Yan LI, Ting ZOU. Hydraulic resistance partitioning between shoot and root system and plant water status of Haloxyolon ammodendron growing at sites of contrasting soil texture. Journal of Arid Land, 2010, 2(2): 98-106.

URL:

http://jal.xjegi.com/10.3724/SP.J.1227.2010.00098     OR     http://jal.xjegi.com/Y2010/V2/I2/98

[1] WANG Yinping, JIANG Rengui, YANG Mingxiang, XIE Jiancang, ZHAO Yong, LI Fawen, LU Xixi. Spatiotemporal characteristics and driving mechanisms of land use/land cover (LULC) changes in the Jinghe River Basin, China[J]. Journal of Arid Land, 2024, 16(1): 91-109.
[2] QIN Guoqiang, WU Bin, DONG Xinguang, DU Mingliang, WANG Bo. Evolution of groundwater recharge-discharge balance in the Turpan Basin of China during 1959-2021[J]. Journal of Arid Land, 2023, 15(9): 1037-1051.
[3] ZHAO Xiaohan, HAN Dianchen, LU Qi, LI Yunpeng, ZHANG Fangmin. Spatiotemporal variations in ecological quality of Otindag Sandy Land based on a new modified remote sensing ecological index[J]. Journal of Arid Land, 2023, 15(8): 920-939.
[4] Orhan DENGİZ, İnci DEMİRAĞ TURAN. Soil quality assessment for desertification based on multi-indicators with the best-worst method in a semi-arid ecosystem[J]. Journal of Arid Land, 2023, 15(7): 779-796.
[5] LONG Yi, JIANG Fugen, DENG Muli, WANG Tianhong, SUN Hua. Spatial-temporal changes and driving factors of eco- environmental quality in the Three-North region of China[J]. Journal of Arid Land, 2023, 15(3): 231-252.
[6] WU Jingyan, LUO Jungang, ZHANG Han, YU Mengjie. Driving forces behind the spatiotemporal heterogeneity of land-use and land-cover change: A case study of the Weihe River Basin, China[J]. Journal of Arid Land, 2023, 15(3): 253-273.
[7] CAO Yijie, MA Yonggang, BAO Anming, CHANG Cun, LIU Tie. Evaluation of the water conservation function in the Ili River Delta of Central Asia based on the InVEST model[J]. Journal of Arid Land, 2023, 15(12): 1455-1473.
[8] YAN Xue, LI Lanhai. Spatiotemporal characteristics and influencing factors of ecosystem services in Central Asia[J]. Journal of Arid Land, 2023, 15(1): 1-19.
[9] SUN Liquan, GUO Huili, CHEN Ziyu, YIN Ziming, FENG Hao, WU Shufang, Kadambot H M SIDDIQUE. Check dam extraction from remote sensing images using deep learning and geospatial analysis: A case study in the Yanhe River Basin of the Loess Plateau, China[J]. Journal of Arid Land, 2023, 15(1): 34-51.
[10] LIU Yifeng, GUO Bing, LU Miao, ZANG Wenqian, YU Tao, CHEN Donghua. Quantitative distinction of the relative actions of climate change and human activities on vegetation evolution in the Yellow River Basin of China during 1981-2019[J]. Journal of Arid Land, 2023, 15(1): 91-108.
[11] JIN Junfang, YIN Shuyan, YIN Hanmin. Impact of land use/land cover types on surface humidity in northern China in the early 21st century[J]. Journal of Arid Land, 2022, 14(7): 705-718.
[12] HUANG Xiaoran, BAO Anming, GUO Hao, MENG Fanhao, ZHANG Pengfei, ZHENG Guoxiong, YU Tao, QI Peng, Vincent NZABARINDA, DU Weibing. Spatiotemporal changes of typical glaciers and their responses to climate change in Xinjiang, Northwest China[J]. Journal of Arid Land, 2022, 14(5): 502-520.
[13] YAO Kaixuan, Abudureheman HALIKE, CHEN Limei, WEI Qianqian. Spatiotemporal changes of eco-environmental quality based on remote sensing-based ecological index in the Hotan Oasis, Xinjiang[J]. Journal of Arid Land, 2022, 14(3): 262-283.
[14] CHEN Haiyan, CHEN Yaning, LI Dalong, LI Weihong, YANG Yuhui. Identifying water vapor sources of precipitation in forest and grassland in the north slope of the Tianshan Mountains, Central Asia[J]. Journal of Arid Land, 2022, 14(3): 297-309.
[15] LI Feng, LI Yaoming, ZHOU Xuewen, YIN Zun, LIU Tie, XIN Qinchuan. Modeling and analyzing supply-demand relationships of water resources in Xinjiang from a perspective of ecosystem services[J]. Journal of Arid Land, 2022, 14(2): 115-138.