Please wait a minute...
Journal of Arid Land  2015, Vol. 7 Issue (5): 687-695    DOI: 10.1007/s40333-015-0083-3     CSTR: 32276.14.s40333-015-0083-3
Research Articles     
Effects of atmospheric circulation on summertime precipitation variability and glacier mass balance over the Tuyuksu Glacier in Tianshan Mountains, Kazakhstan
Nina K KONONOVA1, Nina V PIMANKINA2, Lyudmila A YERISKOVSKAYA2, LI Jing3, BAO Weijia3, LIU Shiyin3
1 Institute of Geography, Russian Academy of Sciences, Moscow 117312, Russia;
2 Institute of Geography, Ministry of Education and Science, Almaty 050010, Kazakhstan;
3 State Key Laboratory of Cryospheric Sciences, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China
Download:   PDF(250KB)
Export: BibTeX | EndNote (RIS)      

Abstract  The amount and the form of precipitation have significant effects on glacier mass balances in high al-titude mountain areas by controlling the accumulation, the ablation and the energy balance of a glacier through impact on the surface albedo. The liquid precipitation has negative effects on glacier accumulation and may in-crease the ablation of surface ice through the heat input for melting. The timing and the forms of precipitation over glacierized regions depend on the weather processes both locally and regionally. Early studies showed that regional to large-scale atmospheric circulation processes play a key role in affecting the precipitation events over glaciers. This paper analyzed the relationship between the inter-annual variability of the summertime precipitation over the Tuyuksu Glacier and the atmospheric circulation types, which related to various atmospheric circulation types in the Northern Hemisphere. Results indicated that the decrease in the duration of zonal processes and the increase in the meridional northern processes were observed in the last decade. The total summer precipitation associated with these processes also increased along with an increase of summertime solid precipitation. Although the decadal fluctuation of glaciological parameters were found in dependent of the above large-scale atmospheric circulation processes, global warming was a dominant factor leading to the mass loss in the recent decades under the back-ground of the increase in precipitation over the Tuyuksu Glacier.

Key wordsclimate change      erosion      rill and interrill      physically based model      sediment transport     
Received: 04 November 2014      Published: 05 October 2015
Fund:  

International Science & Technology Cooperation Program of China (2010DFA92720-23, 2012BAC19B07), Knowledge Innovation Project of the Chi-nese Academy of Sciences (KZCX2-YW-GJ04) and carried out by the Institute of Geography, Republic of Kazakhstan with the support from the Ministry of Education and Science of Kazakhstan.

Corresponding Authors:
Cite this article:

Nina K KONONOVA, Nina V PIMANKINA, Lyudmila A YERISKOVSKAYA, LI Jing, BAO Weijia, LIU Shiyin. Effects of atmospheric circulation on summertime precipitation variability and glacier mass balance over the Tuyuksu Glacier in Tianshan Mountains, Kazakhstan. Journal of Arid Land, 2015, 7(5): 687-695.

URL:

http://jal.xjegi.com/10.1007/s40333-015-0083-3     OR     http://jal.xjegi.com/Y2015/V7/I5/687

Baidal M H. 1964. Long-term weather forecasts and climate fluctuations in Kazakhstan. Leningrad Gidrometeoizdat, 446. (In Russian)

Bolch T. 2007. Climate change and glacier retreat in northern Tien Shan (Kazakhstan/Kyrgyzstan) using remote sensing data. Global and Planetary Change, 56: 1–12

Cherkasov P A, Yeliskovskaya L A. 1997. Phase and composition of warm season precipitation in the glacier areas in Alto Mountains. In: The effects of human activities on water resources and environment in Central Asia and evaluation of snow resources on Tianshan mountains. Urumqi, China, 215–223. (in Chinese)

Denisova T Ya, Makarevich K G, Panova E N, et al. 1986. The influence of macro-scale atmospheric processes on the fluctuations of gla-ciers.Data of Glaciological Studies, 57: 52–58. (in Russian)

 Dzerdzeevskii B. 1962. Fluctuations of climate and of general circu-laionof the atmosphere in extra-tropical latitudes of the Northern Hemisphere and some problems of dynamic climatology. Tellus A, 14(3): 328–336.

Girs A A. 1974. Macro-circulation method of long-term meteorological forecasts. Leningrad Gidrometeoizdat, 488. (In Russian)

Golovkova R G, Denisova T Y, Tokmagambetov G A. 1986. The influ-ence of atmospheric circulation onto the energy balance and ablation of the Tuyuksu Glacier. Data of Glaciological Studies, 58: 29–34.

Hagg W, Braun L N, Kuhn M, et al. 2007. Modelling of hydrological response to climate change in glacierized Central Asian catchments. Journal of Hydrology, 332: 40–53.

Kononova N K. 2010. Long-term fluctuations of the Northern Hemi-sphere atmospheric circulation according to Dzerdzeevskii’s classi-fication. Geography, Environment, Sustainability, 1(3): 25–43.

Kononova N K, Pimankina N V, Yeriskovskaya L A. 2014. The Influ-ence of Modern Climate Fluctuations on the Conditions of the Tu-yuksu Glacier. In: The Influence of Climate Changes on Snow, Ice and Water Resources, Bishkek, Kyrghyzstan, 52–53.

Makarevich K G, Kasatkin N E. 2008. 50 years of the studies of the balance of masses of the Central Tuyuksu Glacier in the Zailiiskiy Alatau. In: Medeu A, GEOGRAPHICAL PROBLEMS OF SUSTAINABLE DEVELOPMENT: THEORY AND PRACTICE. Almaty, Print-S, 99–111 (in Russian).

Matskovsky V V, Kononova N K. 2011. Research of fluctuations of the northern hemisphere atmospheric circulation by the method digital mapping. Izvestiya Akademii Nauk Seriya Geograficheskaya, 6: 100–114. (in Russian)

Narama C, Kaab A, Duishonakunov M, et al. 2010. Spatial variability of recent glacier area changes in the Tien Shan Mountains, Central Asia, using Corona (similar to 1970), Landsat (similar to 2000), and ALOS (similar to 2007) satellite data. Global and Planetary Change, 71: 42–54.

Shahgedanova M, Stokes C R, Gurney S D, et al. 2005. Interactions between mass balance, atmospheric circulation, and recent climate change on the Djankuat Glacier, Caucasus Mountains, Russia. Journal of Geophysical Research-Atmospheres, 110(D4), doi: 10.1029/2004JD005213.

Pimankina N, Kononova N K, Yeriskovskaya L A. 2013. Analysis of the influence of atmospheric circulation onto the fluctuations of the Tuyuksu Glacier mass balance (Ile Alatau mountains). //Abstract Proceedings of Davos Atmosphere and Cryosphere Assembly DACA-13. July 8–12, 2013. P. 1116.

Vangengeim G Y. 1952. Principles of macro-circulation method of long-term meteorological forecast for the Arctic, In: Proceedings of the Arctic Research Institute. Leningrad Gidrometeoizdat, 34: 312. (In Russian)

Yeriskovskaya L, Pimankina N. 2009. Climate fluctuations and mass-balance of the tuyuksu glacier (Ile Alatau). Hydrometeorology and Ecology, 3: 78–84.

Yeriskovskaya L A. 2003. The influence of climatic changes onto the glaciation in alpine zone of the Zailiiskiy Alatau Range (case study of the Tuyuksu Glacier). Hydrometeorology and Ecology, 4: 31–34.
[1] CHEN Zhuo, SHAO Minghao, HU Zihao, GAO Xin, LEI Jiaqiang. Potential distribution of Haloxylon ammodendron in Central Asia under climate change[J]. Journal of Arid Land, 2024, 16(9): 1255-1269.
[2] SUN Chao, BAI Xuelian, WANG Xinping, ZHAO Wenzhi, WEI Lemin. Response of vegetation variation to climate change and human activities in the Shiyang River Basin of China during 2001-2022[J]. Journal of Arid Land, 2024, 16(8): 1044-1061.
[3] YAN Yujie, CHENG Yiben, XIN Zhiming, ZHOU Junyu, ZHOU Mengyao, WANG Xiaoyu. Impacts of climate change and human activities on vegetation dynamics on the Mongolian Plateau, East Asia from 2000 to 2023[J]. Journal of Arid Land, 2024, 16(8): 1062-1079.
[4] YANG Jianhua, LI Yaqian, ZHOU Lei, ZHANG Zhenqing, ZHOU Hongkui, WU Jianjun. Effects of temperature and precipitation on drought trends in Xinjiang, China[J]. Journal of Arid Land, 2024, 16(8): 1098-1117.
[5] HAN Qifei, XU Wei, LI Chaofan. Effects of nitrogen deposition on the carbon budget and water stress in Central Asia under climate change[J]. Journal of Arid Land, 2024, 16(8): 1118-1129.
[6] SUN Hui, ZHAO Yunge, GAO Liqian, XU Mingxiang. Reasonable grazing may balance the conflict between grassland utilization and soil conservation in the semi-arid hilly areas, China[J]. Journal of Arid Land, 2024, 16(8): 1130-1146.
[7] WANG Tongxia, CHEN Fulong, LONG Aihua, ZHANG Zhengyong, HE Chaofei, LYU Tingbo, LIU Bo, HUANG Yanhao. Glacier area change and its impact on runoff in the Manas River Basin, Northwest China from 2000 to 2020[J]. Journal of Arid Land, 2024, 16(7): 877-894.
[8] DU Lan, TIAN Shengchuan, ZHAO Nan, ZHANG Bin, MU Xiaohan, TANG Lisong, ZHENG Xinjun, LI Yan. Climate and topography regulate the spatial pattern of soil salinization and its effects on shrub community structure in Northwest China[J]. Journal of Arid Land, 2024, 16(7): 925-942.
[9] Haq S MARIFATUL, Darwish MOHAMMED, Waheed MUHAMMAD, Kumar MANOJ, Siddiqui H MANZER, Bussmann W RAINER. Predicting potential invasion risks of Leucaena leucocephala (Lam.) de Wit in the arid area of Saudi Arabia[J]. Journal of Arid Land, 2024, 16(7): 983-999.
[10] Seyed Morteza MOUSAVI, Hossein BABAZADEH, Mahdi SARAI-TABRIZI, Amir KHOSROJERDI. Assessment of rehabilitation strategies for lakes affected by anthropogenic and climatic changes: A case study of the Urmia Lake, Iran[J]. Journal of Arid Land, 2024, 16(6): 752-767.
[11] LI Chuanhua, ZHANG Liang, WANG Hongjie, PENG Lixiao, YIN Peng, MIAO Peidong. Influence of vapor pressure deficit on vegetation growth in China[J]. Journal of Arid Land, 2024, 16(6): 779-797.
[12] LU Haitian, ZHAO Ruifeng, ZHAO Liu, LIU Jiaxin, LYU Binyang, YANG Xinyue. Impact of climate change and human activities on the spatiotemporal dynamics of surface water area in Gansu Province, China[J]. Journal of Arid Land, 2024, 16(6): 798-815.
[13] SONG Dacheng, ZHAO Wenzhi, LI Guangyu, WEI Lemin, WANG Lide, YANG Jingyi, WU Hao, MA Quanlin. Utilizing sediment grain size characteristics to assess the effectiveness of clay-sand barriers in reducing aeolian erosion in Minqin desert area, China[J]. Journal of Arid Land, 2024, 16(5): 668-684.
[14] YANG Zhiwei, CHEN Rensheng, LIU Zhangwen, ZHAO Yanni, LIU Yiwen, WU Wentong. Spatiotemporal variability of rain-on-snow events in the arid region of Northwest China[J]. Journal of Arid Land, 2024, 16(4): 483-499.
[15] QIN Xijin, SUN Yiqiu, ZHANG Yan, GUAN Yinghui, WU Hailong, WANG Xinyu, WANG Guangyu. Effect of coir geotextile and geocell on ephemeral gully erosion in the Mollisol region of Northeast China[J]. Journal of Arid Land, 2024, 16(4): 518-530.