Please wait a minute...
Journal of Arid Land  2017, Vol. 9 Issue (1): 87-97    DOI: 10.1007/s40333-016-0021-z     CSTR: 32276.14.s40333-016-0021-z
Orginal Article     
Spatial and temporal patterns of the inter-annual oscillations of glacier mass over Central Asia inferred from Gravity Recovery and Climate Experiment (GRACE) data
Chuandong ZHU1,2,*(), Yang LU1,2, Hongling SHI1,2, Zizhan ZHANG1,2,3
1 State Key Laboratory of Geodesy and Earth’s Dynamics, Chinese Academy of Sciences, Wuhan 430077, China
2University of Chinese Academy of Sciences, Beijing 100049, China
3Center for Space Research, University of Texas at Austin, Austin 78759, USA
Download: HTML     PDF(432KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Monitoring glacier mass balance is crucial to managing water resources and also to understanding climate change for the arid and semi-arid regions of Central Asia. This study extracted the inter-annual oscillations of glacier mass over Central Asia from the first ten principal components (S-PCs) of filtered variability via multichannel singular spectral analysis (MSSA), based on gridded data of glacier mass inferred from Gravity Recovery and Climate Experiment (GRACE) data obtained from July 2002 to March 2015. Two significant cycles of glacier mass balance oscillations were identified. The first cycle with a period of 6.1-year accounted for 54.5% of the total variance and the second with a period of 2.3-year accounted for 4.3%. The 6.1-year oscillation exhibited a stronger variability compared with the 2.3-year oscillation. For the 6.1-year oscillation, the results from lagged cross-correlation function suggested that there were significant correlations between glacier mass balances and precipitation variations with the precipitation variations leading the response of glacier mass balances by 9-16 months.



Key wordsGravity Recovery and Climate Experiment      glacier mass balance      multichannel singular spectral analysis      Central Asia     
Received: 04 November 2015      Published: 31 July 2017
Corresponding Authors:
Cite this article:

Chuandong ZHU, Yang LU, Hongling SHI, Zizhan ZHANG. Spatial and temporal patterns of the inter-annual oscillations of glacier mass over Central Asia inferred from Gravity Recovery and Climate Experiment (GRACE) data. Journal of Arid Land, 2017, 9(1): 87-97.

URL:

http://jal.xjegi.com/10.1007/s40333-016-0021-z     OR     http://jal.xjegi.com/Y2017/V9/I1/87

1 Arendt A, Bolch T, Cogley J G, et al.2012. Randolph Glacier Inventory-A Dataset of Global Glacier Outlines: Version 3.2. Boulder Colorado, USA: Global Land Ice Measurements from Space.
2 Bettadpur S.2003. Level-2 Gravity Field Product User Handbook. The GRACE Project. University of Texas: CSR Publication.
3 Burg J P.1967. Maximum entropy spectral analysis. In: Proceedings of the 37th Annual International Meeting. Society of Exploration Geophysics. Oklahoma, USA.
4 Chambers D P, Bonin J A.2012. Evaluation of Release-05 GRACE time-variable gravity coefficients over the ocean. Ocean Science Discussions, 9(3): 2187-2214.
5 Chen J L, Wilson C R, Tapley B D.2006. Satellite gravity measurements confirm accelerated melting of Greenland ice sheet. Science, 313(5795): 1958-1960.
6 Chen J L, Wilson C R, Tapley B D.2011. Interannual variability of Greenland ice losses from satellite gravimetry. Journal of Geophysical Research: Solid Earth, 116(B7): B07406.
7 Chen J L, Wilson C R, Tapley B D.2013. Contribution of ice sheet and mountain glacier melt to recent sea level rise. Nature Geoscience, 6(7): 549-552.
8 Cheng M K, Tapley B D.2004. Variations in the Earth’s oblateness during the past 28 years. Journal of Geophysical Research: Solid Earth, 109(B9): B09402.
9 Cowan P J.2007. Geographic usage of the terms Middle Asia and Central Asia. Journal of Arid Environments, 69(2): 359-363.
10 de Linage C, Kim H, Famiglietti J S, et al.2013. Impact of Pacific and Atlantic sea surface temperatures on interannual and decadal variations of GRACE land water storage in tropical South America. Journal of Geophysical Research: Atmospheres, 118(19): 10811-10829.
11 Duan J B, Shum C K, Guo J Y, et al.2012. Uncovered spurious jumps in the GRACE atmospheric de-aliasing data: potential contamination of GRACE observed mass change. Geophysical Journal International, 191(1): 83-87.
12 Farinotti D, Longuevergne L, Moholdt G, et al.2015. Substantial glacier mass loss in the Tien Shan over the past 50 years. Nature Geoscience, 8(9): 716-722.
13 Flechtner F.2007. AOD1B Product Description Document for Product Releases 01 to 04 (Rev. 3.1, April 13, 2007). Postdam: University of Texas, 327-750.
14 Gardner A S, Moholdt G, Cogley J G, et al.2013. A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science, 340(6134): 852-857.
15 Geruo A, Wahr J, Zhong S J.2013. Computations of the viscoelastic response of a 3-D compressible Earth to surface loading: an application to Glacial Isostatic Adjustment in Antarctica and Canada. Geophysical Journal International, 192(2): 557-572.
16 Ghil M, Allen M R, Dettinger M D, et al.2002. Advanced spectral methods for climatic time series. Reviews of Geophysics, 40(1): 1-41.
17 Huffman G J, Bolvin D T, Nelkin E J, et al.2007. The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. Journal of Hydrometeorology, 8(1): 38-55.
18 Immerzeel W W, Van Beek L P H, Bierkens M F P.2010. Climate change will affect the Asian water towers. Science, 328(5984): 1382-1385.
19 Jacob T, Wahr J, Pfeffer W T, et al.2012. Recent contributions of glaciers and ice caps to sea level rise. Nature, 482(7386): 514-518.
20 Kononova N K, Pimankina N V, Yeriskovskaya L A, et al.2015. Effects of atmospheric circulation on summertime precipitation variability and glacier mass balance over the Tuyuksu Glacier in Tianshan Mountains, Kazakhstan. Journal of Arid Land, 7(5): 687-695.
21 Lioubimtseva E, Henebry G M.2009. Climate and environmental change in arid Central Asia: Impacts, vulnerability, and adaptations. Journal of Arid Environments, 73(11): 963-977.
22 Luthcke S B, Arendt A A, Rowlands D D, et al.2008. Recent glacier mass changes in the Gulf of Alaska region from GRACE mascon solutions. Journal of Glaciology, 54(188): 767-777.
23 Matsuo K, Heki K.2010. Time-variable ice loss in Asian high mountains from satellite gravimetry. Earth and Planetary Science Letters, 290(1-2): 30-36.
24 Plaut G, Vautard R.1994. Spells of low-frequency oscillations and weather regimes in the Northern Hemisphere. Journal of the Atmospheric Sciences, 51(2): 210-236.
25 Rodell M, Houser P R, Jambor U, et al.2004. The global land data assimilation system. Bulletin of the American Meteorological Society, 85(3): 381-394.
26 Sasgen I, Dobslaw H, Martinec Z, et al.2010. Satellite gravimetry observation of Antarctic snow accumulation related to ENSO. Earth and Planetary Science Letters, 299(3-4): 352-358.
27 Schrama E J O, Wouters B, Rietbroek R.2014. A mascon approach to assess ice sheet and glacier mass balances and their uncertainties from GRACE data. Journal of Geophysical Research: Solid Earth, 119(7): 6048-6066.
28 Sorg A, Bolch T, Stoffel M, et al.2012. Climate change impacts on glaciers and runoff in Tien Shan (Central Asia). Nature Climate Change, 2(10): 725-731.
29 Stocker T F, Qin D H, Plattner G-K, et al.2013. Climate Change 2013: The Physical Science Basis. Intergovernmental Panel on Climate Change, Working Group I Contribution to the IPCC Fifth Assessment Report (AR5). New York: Cambridge University Press.
30 Swenson S, Chambers D, Wahr J.2008. Estimating geocenter variations from a combination of GRACE and ocean model output. Journal of Geophysical Research: Solid Earth, 113(B8): B08410.
31 Swenson S, Wahr J.2006. Post-processing removal of correlated errors in GRACE data. Geophysical Research Letters, 33(8): L08402.
32 Tapley B D, Bettadpur S, Ries J C, et al.2004a. GRACE measurements of mass variability in the Earth system. Science, 305(5683): 503-505.
33 Tapley B D, Bettadpur S, Watkins M, et al.2004b. The gravity recovery and climate experiment: Mission overview and early results. Geophysical Research Letters, 31(9): L09607.
34 Unal Y S, Ghil M.1995. Interannual and interdecadal oscillation patterns in sea level. Climate Dynamics, 11(5): 255-278.
35 Unger-Shayesteh K, Vorogushyn S, Farinotti D, et al.2013. What do we know about past changes in the water cycle of Central Asian headwaters? A review. Global and Planetary Change, 110: 4-25.
36 Vautard R, Ghil M.1989. Singular spectrum analysis in nonlinear dynamics, with applications to paleoclimatic time series. Physica D: Nonlinear Phenomena, 35(3): 395-424.
37 Vautard R, Yiou P, Ghil M.1992. Singular-spectrum analysis: A toolkit for short, noisy chaotic signals. Physica D: Nonlinear Phenomena, 58(1-4): 95-126.
38 Velicogna I, Wahr J.2006. Measurements of time-variable gravity show mass loss in Antarctica. Science, 311(5768): 1754-1756.
39 Velicogna I, Wahr J.2013. Time-variable gravity observations of ice sheet mass balance: Precision and limitations of the GRACE satellite data. Geophysical Research Letters, 40(12): 3055-3063.
40 Wahr J, Molenaar M, Bryan F.1998. Time variability of the Earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE. Journal of Geophysical Research: Solid Earth, 103(B12): 30205-30229.
41 Wouters B, Chambers D, Schrama E J O.2008. GRACE observes small-scale mass loss in Greenland. Geophysical Research Letters, 35(20): L20501.
42 Xu L G, Zhou H F, Du L, et al.2015. Precipitation trends and variability from 1950 to 2000 in arid lands of Central Asia. Journal of Arid Land, 7(4): 514-526.
43 Yao T D, Wang Y Q, Liu S Y, et al.2004. Recent glacial retreat in High Asia in China and its impact on water resource in Northwest China. Science in China Series D: Earth Sciences, 47(12): 1065-1075.
44 Yao T D, Thompson L, Yang W, et al.2012. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nature Climate Change, 2(9): 663-667.
45 Yi S, Sun W K.2014. Evaluation of glacier changes in high-mountain Asia based on 10 year GRACE RL05 models. Journal of Geophysical Research: Solid Earth, 119(3): 2504-2517.
[1] CHEN Zhuo, SHAO Minghao, HU Zihao, GAO Xin, LEI Jiaqiang. Potential distribution of Haloxylon ammodendron in Central Asia under climate change[J]. Journal of Arid Land, 2024, 16(9): 1255-1269.
[2] BAO Anming, YU Tao, XU Wenqiang, LEI Jiaqiang, JIAPAER Guli, CHEN Xi, Tojibaev KOMILJON, Shomurodov KHABIBULLO, Xabibullaev B SAGIDULLAEVICH, Idirisov KAMALATDIN. Ecological problems and ecological restoration zoning of the Aral Sea[J]. Journal of Arid Land, 2024, 16(3): 315-330.
[3] WANG Min, CHEN Xi, CAO Liangzhong, KURBAN Alishir, SHI Haiyang, WU Nannan, EZIZ Anwar, YUAN Xiuliang, Philippe DE MAEYER. Correlation analysis between the Aral Sea shrinkage and the Amu Darya River[J]. Journal of Arid Land, 2023, 15(7): 757-778.
[4] LI Wen, MU Guijin, YE Changsheng, XU Lishuai, LI Gen. Aeolian activity in the southern Gurbantunggut Desert of China during the last 900 years[J]. Journal of Arid Land, 2023, 15(6): 649-666.
[5] YAN Xue, LI Lanhai. Spatiotemporal characteristics and influencing factors of ecosystem services in Central Asia[J]. Journal of Arid Land, 2023, 15(1): 1-19.
[6] YAO Linlin, ZHOU Hongfei, YAN Yingjie, LI Lanhai, SU Yuan. Projection of hydrothermal condition in Central Asia under four SSP-RCP scenarios[J]. Journal of Arid Land, 2022, 14(5): 521-536.
[7] PENG Jiajia, LI Zhongqin, XU Liping, MA Yuqing, LI Hongliang, ZHAO Weibo, FAN Shuang. Glacier mass balance and its impacts on streamflow in a typical inland river basin in the Tianshan Mountains, northwestern China[J]. Journal of Arid Land, 2022, 14(4): 455-472.
[8] SONG Yujia, LIU Xijun, XIAO Wenjiao, ZHANG Zhiguo, LIU Pengde, XIAO Yao, LI Rui, WANG Baohua, LIU Lei, HU Rongguo. Neoproterozoic I-type granites in the Central Tianshan Block (NW China): geochronology, geochemistry, and tectonic implications[J]. Journal of Arid Land, 2022, 14(1): 82-101.
[9] YIN Hanmin, Jiapaer GULI, JIANG Liangliang, YU Tao, Jeanine UMUHOZA, LI Xu. Monitoring fire regimes and assessing their driving factors in Central Asia[J]. Journal of Arid Land, 2021, 13(5): 500-515.
[10] LIU Pengde, LIU Xijun, XIAO Wenjiao, ZHANG Zhiguo, SONG Yujia, XIAO Yao, LIU Lei, HU Rongguo, WANG Baohua. Geochronology, geochemistry, and Sr-Nd isotopes of Early Carboniferous magmatism in southern West Junggar, northwestern China: Implications for Junggar oceanic plate subduction[J]. Journal of Arid Land, 2021, 13(11): 1163-1182.
[11] Sanim BISSENBAYEVA, Jilili ABUDUWAILI, Assel SAPAROVA, Toqeer AHMED. Long-term variations in runoff of the Syr Darya River Basin under climate change and human activities[J]. Journal of Arid Land, 2021, 13(1): 56-70.
[12] WANG Jie, LIU Dongwei, MA Jiali, CHENG Yingnan, WANG Lixin. Development of a large-scale remote sensing ecological index in arid areas and its application in the Aral Sea Basin[J]. Journal of Arid Land, 2021, 13(1): 40-55.
[13] Jiaxiu LI, Yaning CHEN, Zhi LI, Xiaotao HUANG. Low-carbon economic development in Central Asia based on LMDI decomposition and comparative decoupling analyses[J]. Journal of Arid Land, 2019, 11(4): 513-524.
[14] Yang YU, Yuanyue PI, Xiang YU, Zhijie TA, Lingxiao SUN, DISSE Markus, Fanjiang ZENG, Yaoming LI, Xi CHEN, Ruide YU. Climate change, water resources and sustainable development in the arid and semi-arid lands of Central Asia in the past 30 years[J]. Journal of Arid Land, 2019, 11(1): 1-14.
[15] Jinping LIU, Wanchang ZHANG, Tie LIU. Monitoring recent changes in snow cover in Central Asia using improved MODIS snow-cover products[J]. Journal of Arid Land, 2017, 9(5): 763-777.