Please wait a minute...
Journal of Arid Land  2020, Vol. 12 Issue (3): 495-507    DOI: 10.1007/s40333-020-0012-y     CSTR: 32276.14.s40333-020-0012-y
Research article     
Evaluation of the efficiency of irrigation methods on the growth and survival of tree seedlings in an arid climate
Zahra JAFARI1,*(), SayedHamid MATINKHAH1, Mohammad R MOSADDEGHI2, Mostafa TARKESH1
1 Department of Natural Resources, Isfahan University of Technology, Isfahan 8415683111, Iran
2 Department of Soil Science, Department of Agriculture, Isfahan University of Technology, Isfahan 8415683111, Iran
Download: HTML     PDF(529KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Scarce and scattered precipitation in arid regions is detrimental for newly planted seedlings. It is essential to provide required water storage for seedlings in restoration projects in the first year of their establishment. The subsurface irrigation can be much more effective than the surface irrigation because of the regulation of water availability and reduction in water evaporation. We studied the effect of surface and subsurface irrigation methods on the growth and survival of four common tree species including heaven tree (Ailanthus altissima (Mill.) Swingle), China berry (Melia azedarach L.), white mulberry (Morus alba L.), and black locust (Robinia pseudoacacia L.) by installing underground clay reservoirs with different permeabilities in Isfahan City, Iran. Different amounts of animal manure and wheat straw were mixed with clay fraction and cooked in a pottery kiln at 900°C to produce reservoirs with different permeabilities. The experimental treatments consisting of irrigation and tree species were considered with a factorial arrangement in a completely randomized design with three replications in 2016 and 2017. Leaf water potential of seedlings, which is indirectly related to drought resistance, was measured by a portable pressure chamber. The results showed that saplings height, basal diameter, number of leaves, chlorophyll content and stomatal conductance were significantly (P<0.05) higher in the subsurface irrigation with low permeability than in the surface irrigation, but the number of branches of the studied species were not significantly (P>0.05) affected by the irrigation methods and different permeabilities of clay reservoirs. The clay reservoirs with low and medium permeabilities constantly provide better conditions for plant growth, and water with lower pressure and longer time intervals to the plant roots as compared with the reservoirs with high permeability. Analysis of variance of the data showed that year and interaction between year and permeability of reservoir had significant effects (P<0.05) on all growth parameters, except for the chlorophyll content. In addition, the highest percentage of survival was 100% associated with the subsurface irrigation and the control treatment had the lowest survival percentages of 60%, 70%, 80% and 100% for M. alba, M. azedarach, A. altissima and R. pseudoacacia, respectively. Finally, the values of leaf water potential showed that R. pseudoacacia was the most drought resistant species.



Key wordssubsurface irrigation      clay reservoirs      permeability      restoration      arid area     
Received: 07 June 2019      Published: 10 May 2020
Corresponding Authors:
About author: *Corresponding author: Zahra JAFARI (E-mail: jafariz68@yahoo.com)
Cite this article:

Zahra JAFARI, SayedHamid MATINKHAH, Mohammad R MOSADDEGHI, Mostafa TARKESH. Evaluation of the efficiency of irrigation methods on the growth and survival of tree seedlings in an arid climate. Journal of Arid Land, 2020, 12(3): 495-507.

URL:

http://jal.xjegi.com/10.1007/s40333-020-0012-y     OR     http://jal.xjegi.com/Y2020/V12/I3/495

Fig. 1 Clay reservoirs used in this study (a) and view of the project implementation (b)
Reservoir dimension Parameter
1.00 Thickness (cm)
50.00 Height (cm)
10.00 Inner diameter (cm)
11.00 Outer diameter (cm)
1916.97 Area (cm2)
4749.25 Volume (cm3)
Table 1 Geometric properties of the clay reservoirs used in this study
SAR Mg2++Ca2+
(mmol/L)
Na+
(mmol/L)
Cl-
(mmol/L)
HCO3-
(mmol/L)
CO3- (mmol/L) pH EC
(dS/m)
1.44 2.40 1.57 13.00 6.00 2.00 8.04 0.29
Table 2 Chemical properties of the irrigation water
Porosity
(m3/100 m3)
BD
(Mg/m3)
PWP
(kg/100 kg)
FC
(kg/100 kg)
Silt
(kg/100 kg)
Clay (kg/100 kg) Sand (kg/100 kg) EC
(dS/m)
pH Depth
(cm)
51.00 1.36 8.40 13.50 29.50 21.80 48.70 2.00 8.81 0-50
Table 3 Soil physical and chemical properties
Permeability Percentage of water depletion after 24 h (%) Materials used for preparation Clay reservoir type
Low 0.22 95% clay+5% manure R1
0.24 95% clay+5% wheat straw R2
Medium 0.30 100% clay soil R3
High 0.48 60% clay+40% manure R4
0.50 60% clay+40% wheat straw R5
Table 4 Water depletion percentage of the clay reservoirs with different permeabilities after 24 h
Fig. 2 Water depletion percentage of the clay reservoirs with different permeabilities with time. The clay reservoir types of R1-R5 are explained in Table 4.
Species Source of variation df Mean square
Height Basal diameter Number of branches Number of leaves Chlorophyll content Stomatal conductance
A. altissima Permeability 3 1070.83* 26.06* 0.15ns 135.15* 69.59* 906.80*
Replication (Permeability) 8 191.66ns 7.86* 0.12ns 2.25ns 11.66ns 9.09ns
Year 1 4537.50* 270.68* 22.04* 1365.04* 44.17ns 181.50*
Permeability×Year 3 2181.94* 104.17* 0.70ns 3.15* 199.69ns 5.91*
Error 8 133.33 2.13 0.29 4.50 14.10 20.54
R2 - 0.93 0.97 0.91 0.98 0.86 0.94
CV - 10.78 5.91 21.96 7.63 17.00 15.11
M. azadirachta Permeability 3 1310.50* 123.56* 0.37ns 11,929.15* 661.19* 2512.60*
Replication (Permeability) 8 41.79ns 3.42ns 0.37ns 318.70* 33.75ns 54.56ns
Year 1 7848.16* 1757.53* 3.37* 1998.37* 287.38ns 490.51*
Permeability×Year 3 1097.16* 111.94* 1.04ns 84.37* 788.71ns 25.73*
Error 8 24.29 1.80 0.37 33.12 67.48 47.57
R2 - 0.98 0.99 0.77 0.99 0.90 0.95
CV - 3.56 4.47 18.14 2.77 20.60 16.77
M. alba Permeability 3 1393.04* 41.08* 11.93ns 21,643.15* 244.58* 1041.38*
Replication (Permeability) 8 62.91ns 3.23ns 1.08ns 770.75* 60.57ns 10.78ns
Year 1 187.04* 244.60* 12.04* 2147.04* 565.60ns 1.38*
Permeability×Year 3 278.04* 32.52* 0.37ns 16.15* 226.85ns 28.21*
Error 8 47.91 1.19 0.41 113.50 66.58 5.64
R2 - 0.93 0.98 0.94 0.98 0.82 0.98
CV - 5.80 4.89 4.38 3.91 46.68 7.85
R. pseudoacacia Permeability 3 2861.77* 184.93* 25.37ns 2761.48* 81.90* 983.84*
Replication (Permeability) 8 334.00ns 33.54ns 6.66ns 63.83ns 11.76ns 26.53ns
Year 1 3174.00* 96.12* 18.37* 1426.04* 0.46ns 1323.13*
Permeability×Year 3 1251.77* 253.37* 2.37ns 90.26* 29.94ns 28.23*
Error 8 332.33 1.58 4.00 118.33 13.51 13.06
R2 - 0.87 0.97 0.82 0.91 0.79 0.97
CV - 15.10 6.50 24.87 23.71 30.95 11.32
Table 5 Analysis of variance of the growth indicators of plant species under different treatments
Year Species Growth indicator Reservoir's permeability treatment
Low Medium High Control
2016 A. altissima Height (cm) 115.0±0.01a 105.3±5.77a 90.7±15.27b 80.3±25.10b
Basal diameter (cm) 24.5±1.5a 22.9±0.8a 20. 6±3.9a 15.0±3.6b
No. of branches 2±0.5a 2±0.9a 2±1.0a 2±1.0a
No. of leaves 26±1.5a 24±3.2a 19±3.1b 16±5.1c
Relative chlorophyll content 27.69±5.1a 25.39±3.8a 20.44±7.1b 17.40±2.1c
Stomatal conductance (mmol/(m2?s)) 40.86±3.3a 37.47±1.5a 29.36±5.9b 23.26±4.6c
M. azedarach Height (cm) 143.3±0.10a 133.3±2.80a 110.0±5.80b 103.3±5.70b
Basal diameter (cm) 23.5±0.2a 22.7±2.5a 19.6±0.2a 19.4±0.1a
No. of branches 3±2.0a 3±1.2a 3±3.0a 3±1.0a
No. of leaves 234±1.0a 218±1.5a 195±4.9b 168±6.2c
Chlorophyll content 60.15±5.0a 57.67±3.9a 45.95±7.2b 40.82±2.0c
Stomatal conductance (mmol/(m2?s)) 60.96±3.0a 55.90±6.9a 47.46±1.8b 39.93±1.9c
M. alba Height (cm) 130.0±0.01a 123.6±6.01a 110.0±8.00b 101.6±2.88b
Basal diameter 23.0±2.0a 20.6±1.2a 20.0±1.3a 17.3±0.2b
No. of branches 14±3.0a 14±3.0a 13±3.0a 13±3.0a
No. of leaves 232±7.8a 328±3.0a 288±10.0b 250±9.0c
Relative chlorophyll content 39.47±7.3a 36.10±3.0a 27.16±2.1b 25.13±2.3b
Stomatal conductance (mmol/(m2?s)) 44.70±2.5a 42.20±1.4a 36.60±2.7b 30.50±2.1c
R. pseudoacacia Height (cm) 130.0±5.70a 126.5±3.00a 113.3±0.50b 96.6±5.80c
Basal diameter (cm) 19.4±0.4a 19.3±2.0a 18.3±0.8a 14.3±0.0b
No. of branches 6±3.0a 6±3.0a 6±3.0a 6±3.0a
No. of leaves 59±3.0a 50±1.0a 40±3.1b 32±2.0c
Relative chlorophyll content 18.19±2.5a 17.77±1.4a 12.95±7.6b 12.02±5.7a
Stomatal conductance (mmol/(m2?s)) 28.60±3.5a 28.60±2.0a 21.23±3.6b 21.00±1.3b
2017 A. altissima Height (cm) 146.6±5.77a 137.3±5.01a 113.3±3.01b 90.0±5.10c
Basal diameter (cm) 35.1±2.2a 30.1±2.9a 26.64±1.1a 17.6±3.1b
No. of branches 5±3.0a 5±3.0a 5±3.0a 5±3.0a
No. of leaves 40±1.2a 37±1.0a 31±3.6b 29±1.5b
Chlorophyll content 29.20±0.0a 27.31±3.1a 22.19±1.6b 19.26±1.0c
Stomatal conductance (mmol/(m2?s)) 41.26±6.0a 37.46±4.5a 30.86±6.0b 23.36±10.0c
M. azedarach Height (cm) 175.6±4.10a 168.3±3.77a 147.3±5.13b 133.3±2.09b
Basal diameter (cm) 31.0±1.5a 29.6±2.0a 26.8±0.3a 20.6±4.0b
No. of branches 8±3.0a 8±3.0a 8±3.0a 8±3.0a
No. of leaves 360±7.0a 341±7.5a 314±3.1b 280±4.5c
Relative chlorophyll content 62.00±2.0a 57.75±3.3a 47.16±6.0b 40.31±1.2b
Stomatal conductance (mmol/(m2?s)) 60.70±3.8a 58.00±3.2a 49.13±5.0b 40.73±2.3c
M. alba Height (cm) 158.6±1.76a 145.0±7.00a 128.0±3.21b 115.3±3.16c
Basal diameter (cm) 26.6±3.0a 23.1±3.0a 23.0±2.0a 20.7±0.0b
No. of branches 27±3.0a 27±2.0a 26±3.0a 26±2.5a
No. of leaves 500±9.1a 470±6.9a 391±5.7b 360±6.1c
Relative chlorophyll content 48.47±1.8a 46.1±7.5a 38.16±3.7b 32.13±1.3b
Stomatal conductance (mmol/(m2?s)) 46.80±1.6a 42.23±1.01a 30.86±4.6b 29.60±4.0b
R. pseudoacacia Height (cm) 146.6±8.01a 139.6±5.77a 123.6±3.01b 106.6±3.20c
Basal diameter (cm) 27.5±2.0a 26.1±2.0a 25.6±1.0a 18.0±3.1b
No. of branches 14±0.0a 14±3.0a 15±3.0a 16±3.0a
No. of leaves 83±1.3a 79±2.1a 69±3.0b 60±6.0c
Relative chlorophyll content 17.57±2.5a 16.81±0.0a 12.55±1.3b 11.12±5.4c
Stomatal conductance (mmol/(m2?s)) 34.46±5.8a 32.30±0.0a 24.46±4.5b 22.00±3.7b
Table 6 Means' comparisons of growth indictors of plant species under different treatments
Surface irrigation (%) Subsurface irrigation (%) Species
80 100 A. altissima
70 100 M. azedarach
60 100 M. alba
100 100 R. pseudoacacia
Table 7 Survival percentage of the tree saplings as affected by the irrigation systems
Species Treatment Mean±SE (bar) Mean square F P
R. pseudoacacia Before irrigation -31.33±7.20 652.68 24.57 0.01
After irrigation -16.58±1.11
A. altissima Before irrigation -42.00±10.55 1788.52 30.69 0.01
After irrigation -17.58±2.24
M. azedarach Before irrigation -45.25±10.60 1575.52 19.81 0.01
After irrigation -22.33±6.83
M. alba Before irrigation -50.00±6.48 588.00 7.33 0.02
After irrigation -36.00±0.88
Table 8 Analysis of variance of leaf water potential of the tree saplings as affected by the irrigation systems
[1]   Abubaker B M A, Yu S E, Shao G S, et al.2014. Effect of irrigation levels on the growth, yield and quality of potato. Journal of Agricultural Science, 20(2): 303-309.
[2]   Amoud A I.2010. Subsurface drip irrigation for date palm trees to conserve water. Acta Horticulturae, 882: 103-114.
[3]   Ansari H, Naderainfar M, Ramazani H, et al.2014. Comparison and evaluation of some of growth indices of the dominant species of urban green spaces in the jar subsurface, drip and surface irrigation systems. Iranian Journal of Irrigation and Drainage, 2: 402-412.
[4]   Ashrafi S, Gupta A D, Babel M S, et al.2002. Simulation of infiltration from porous clay pipe in subsurface irrigation. Hydrological Sciences Journal, 47: 253-268.
doi: 10.1080/02626660209492928
[5]   Ayars J, Phene C, Hutmacher R, et al.1999. Subsurface drip irrigation of row crops: a review of 15 years of research at the water management research laboratory. Agricultural Water Management, 42(1): 1-27.
doi: 10.1016/S0378-3774(99)00025-6
[6]   Azizi S. Tabari Kochaksarai M.et al.2015. Responding of the survival and growth of the Populus euphratica Oliv. to the waterlogging-salinity stresses. Desert Ecosystem Engineering Journal, 4: 9-20.
[7]   Bainbridge D A.2001. Buried clay pot irrigation: a little known but very efficient traditional method of irrigation. Agricultural Water Management, 48(2): 79-88.
doi: 10.1016/S0378-3774(00)00119-0
[8]   Bhatt N, Kanzariya B, Motiani A, et al.2013. An experimental investigation on pitcher irrigation technique on alkaline soil with saline irrigation water. International Journal of Engineering Science and Innovative Technology (IJESIT), 6(2):206-211.
[9]   Bouyoucos G J.1962. Hydrometer method improved for making particle size analyses of soils. Agronomy Journal, 54: 464-465.
doi: 10.2134/agronj1962.00021962005400050028x
[10]   Camilli K.2006. Chinaberry: a threat to Texas forests-eleventh of the "dirty dozen". In: Texas Forestry, Newsletter of the Texas Forestry Association, 13-14.
[11]   Camp C.1998. Subsurface drip irrigation: a review. Transactions of the ASAE, 41: 1353.
doi: 10.13031/2013.17309
[12]   Chang S X, Robison D J.2003. Nondestructive and rapid estimation of hardwood foliar nitrogen status using the SPAD-502 chlorophyll meter. Forest Ecology Management, 181(3): 331-338.
doi: 10.1016/S0378-1127(03)00004-5
[13]   Cutler D F.1978. Survey and identification of tree roots. Journal of Arboricultural, 3: 243-246.
doi: 10.1080/03071375.1978.10590523
[14]   Elhindi E, El-Hendawy S, Abdel-Salam E, et al.2016. Impacts of fertigation via surface and subsurface drip irrigation on growth rate, yield and flower quality of Zinnia elegans. Bragantia, 75(1), 96-107.
doi: 10.1590/1678-4499.176
[15]   El-Shikha D M. 2008. Optimum plant-pan coefficient for surface and subsurface drip irrigated potato grown under Egyptian weather conditions. In: American Society of Agricultural and Biological Engineers 2008 Providence, Rhode Island, June 29-July 2.
[16]   Ekren S, Sönmez Ç, Özçakal E, et al.2012. The effect of different irrigation water levels on yield and quality characteristics of purple basil (Ocimum basilicum L.). Agricultural Water Management, 109: 155-161.
doi: 10.1016/j.agwat.2012.03.004
[17]   Fitter A H, Hay R K M. 1987. Environmental Physiology of Plants (2nd ed). New York: Academic Press, 423.
[18]   Gemborys S R, Hodgkins Earl J.1971. Forests of small stream bottoms in the coastal plain of southwestern Alabama. Journal of Ecology, 52: 70-84.
[19]   Grossman R B, Reinsch T G.2002. Bulk density and linear extensibility. In: Dick W A. Methods of Soil Analysis: Physical Methods. Madison: Soil Science Society of America, 201-228.
[20]   Gunston H, Ali M H.2012. Practices of Irrigation and On-Farm Water Management-Volume 2. Heidelberg: Springer, 155.
[21]   Heitzman P G.1977. "Subsurface infiltration system" for tree irrigation. In: Roadway Development Division, Washington State Department of Transportation, Washington, USA.
[22]   Hoshovsky M C.1988. Element Stewardship Abstract for Ailanthus altissima. Arlington: The Nature Conservancy, 11-88.
[23]   Hu H, Zhang G, Zheng K.2014. Modeling leaf image, chlorophyll fluorescence, reflectance from SPAD readings. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(11): 4368-4373.
doi: 10.1109/JSTARS.2014.2325812
[24]   Hu S Y.1979. Ailanthus altissima. Arnoldia, 39: 29-50.
[25]   Huang X, Liu Y, Li J, et al.2013. The response of mulberry trees after seedling hardening to summer drought in the hydro-fluctuation belt of Three Gorges Reservoir areas. Environmental Science and Pollution Research, 20: 7103-7111.
doi: 10.1007/s11356-012-1395-x
[26]   Islam T, Sarker H, Alam J.1990. Water use and yield relationships of irrigated potato. Agricultural Water Management, 18(2): 173-179.
doi: 10.1016/0378-3774(90)90029-X
[27]   Kirkham M B.2014. Principles of Soil and Plant Water Relations (2nd ed.). Pittsburgh: Academic Press, 598.
[28]   Klute A.1986. Methods of Soil Analysis, Part 1. Physical and Mineralogical Properties (2nd ed). Madison: American Society of Agronomy and Soil Science Society of America, 1188.
[29]   Levidow L, Zaccaria D, Maia R, et al.2014. Improving water-efficient irrigation: Prospects and difficulties of innovative practices. Agricultural Water Management, 146: 84-94.
doi: 10.1016/j.agwat2014.07.012
[30]   Lloret F, Penuelas J, Ogaya R.2004. Establishment of co-existing Mediterranean tree species under a varying soil moisture regime. Journal of Vegetation Science, 15(2): 237-244.
doi: 10.1111/jvs.2004.15.issue-2
[31]   Moghbeli Moheni Dorodi A, Delbari M, Koohi N.2014. Investigation of vegetative and reproductive traits of Rosa damascena in different drip and surface irrigation regimes. Iranian Journal of Water and Soil Research, 46(4): 673-683. (in Arabic)
[32]   Minucci J M, Miniat C F, Teskey R O, et al.2017. Tolerance or avoidance: drought frequency determines the response of an N2-fixing tree. New Phytologist, 215(1): 434-442.
doi: 10.1111/nph.14558
[33]   Naik B, Panda R, Nayak S, et al.2008. Hydraulics and salinity profile of pitcher irrigation in saline water condition. Agricultural Water Management, 95(10): 1129-1134.
doi: 10.1016/j.agwat.2008.04.010
[34]   Nielsen D C, Nelson N O.1998. Black bean sensitivity to water stress at various growth stages. Crop Science, 38(2): 422-427.
doi: 10.2135/cropsci1998.0011183X003800020025x
[35]   Pagola M, Ortiz R, Irigoyen I, et al.2009. New method to assess barley nitrogen nutrition status based on image colour analysis: Comparison with SPAD-502. Computers and Electronics in Agriculture, 65(2): 213-218.
doi: 10.1016/j.compag.2008.10.003
[36]   Pask A J D, Pietragalla J, Mullan D M.et al.2012. Physiological Breeding II: A Field Guide to Wheat Phenotyping. Mexico: Cimmyt, 132.
[37]   Phene C J, Davis K R, Hutmacher R B, et al.1987. Advantages of subsurface irrigation for processing tomatoes. Acta Horticulturae, 200: 101-114.
[38]   Postel S L.2000. Entering an era of water scarcity: the challenges ahead. Ecological Applications, 10(4): 941-948.
doi: 10.1890/1051-0761(2000)010[0941:EAEOWS]2.0.CO;2
[39]   Raij B V.1966. Determination of calcium and magnesium by EDTA in extracts from soils. Bragantia, 25: 317-326.
doi: 10.1590/S0006-87051966000200004
[40]   Rao K V R, Gangwar S, Aherwar P, et al.2019. Growth, yield, economics and water use efficiency of onion (Allium cepa L.) under different micro irrigation systems. Journal of Pharmacognosy and Phytochemistry, 8(3): 3866-3869.
[41]   Sanches A C, Gomes E P, Azevedo E P G.2017. Canola yield under different irrigation frequencies and nitrogen levels in the Brazilian Cerrado. Ciência e Agrotecnologia, 41(4): 367-377.
doi: 10.1590/1413-70542017414003317
[42]   Savé R, Castell C, Terradas J.1999. Gas exchange and water relations. In: Rodà F, Retana J, Gracia C A, et al. Ecology of Mediterranean Evergreen Oak Forests. Berlin: Springer-Verlag, 135-147.
[43]   Sims D A, Gamon J A.2002. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sensing of Environment, 81(2-3): 337-354.
doi: 10.1016/S0034-4257(02)00010-X
[44]   Slavich P, Petterson G.1993. Estimating the electrical conductivity of saturated paste extracts from 1:5 soil, water suspensions and texture. Soil Research, 31(1): 73-81.
doi: 10.1071/SR9930073
[45]   Tallant B, Pelkki M.2004. A comparison of four forest inventory tools in southeast Arkansas. In: Proceedings of the Southern Forest Economics Workshop, 23-34.
[46]   Thompson T L, Doerge T A.1996. Nitrogen and water interactions in subsurface trickle-irrigated leaf lettuce II. Agronomic, economic, and environmental outcomes. Soil Science Society of America Journal, 60(1): 168-173.
doi: 10.2136/sssaj1996.03615995006000010027x
[47]   Vines Robert A.1960. Trees, Shrubs, and Woody Vines of the Southwest. Austin: University of Texas Press, 1104.
[48]   Warren L W, Derral R Herbst, Sohmer S H.1999. Manual of the Flowering Plants of Hawai'i. Revised Edition: Volume 1. Honolulu: Bishop Museum Press, 988.
[49]   Water U N.2007. Coping with water scarcity: challenge of the twenty-first century. In: World Water Day, United Nations, Rome, Italy, 1-29.
[50]   Zaccaria D, Carrillo-Cobo M T, Montazar A, et al.2017. Assessing the viability of sub-surface drip irrigation for resource-efficient alfalfa production in Central and Southern California. Water, 9: 837.
doi: 10.3390/w9110837
[51]   Zhang J.1996. Interactive effects of soil nutrients, moisture and sand burial on the development, physiology, biomass and fitness of Cakile edentula. Annals of Botany, 78(5): 591-598.
doi: 10.1006/anbo.1996.0165
[52]   Zhang J, Niu W, Zhang L L, et al.2012. Experimental study on characters of wetted soil in moist-tube irrigation. Science of Soil and Water Conservation, 10: 32-38.
[1] YANG Jianhua, LI Yaqian, ZHOU Lei, ZHANG Zhenqing, ZHOU Hongkui, WU Jianjun. Effects of temperature and precipitation on drought trends in Xinjiang, China[J]. Journal of Arid Land, 2024, 16(8): 1098-1117.
[2] LU Haitian, ZHAO Ruifeng, ZHAO Liu, LIU Jiaxin, LYU Binyang, YANG Xinyue. Impact of climate change and human activities on the spatiotemporal dynamics of surface water area in Gansu Province, China[J]. Journal of Arid Land, 2024, 16(6): 798-815.
[3] SHEN Jianxiang, WANG Xin, WANG Lei, WANG Jiahui, QU Wenjie, ZHANG Xue, CHANG Xuanxuan, YANG Xinguo, CHEN Lin, QIN Weichun, ZHANG Bo, NIU Jinshuai. Spatiotemporal characteristics of seed rain and soil seed bank of artificial Caragana korshinskii Kom. forest in the Tengger Desert, China[J]. Journal of Arid Land, 2024, 16(4): 550-566.
[4] TANG Xiaoyan, FENG Yongjiu, LEI Zhenkun, CHEN Shurui, WANG Jiafeng, WANG Rong, TANG Panli, WANG Mian, JIN Yanmin, TONG Xiaohua. Urban growth scenario projection using heuristic cellular automata in arid areas considering the drought impact[J]. Journal of Arid Land, 2024, 16(4): 580-601.
[5] BAO Anming, YU Tao, XU Wenqiang, LEI Jiaqiang, JIAPAER Guli, CHEN Xi, Tojibaev KOMILJON, Shomurodov KHABIBULLO, Xabibullaev B SAGIDULLAEVICH, Idirisov KAMALATDIN. Ecological problems and ecological restoration zoning of the Aral Sea[J]. Journal of Arid Land, 2024, 16(3): 315-330.
[6] MAO Zhengjun, WANG Munan, CHU Jiwei, SUN Jiewen, LIANG Wei, YU Haiyong. Feature extraction and analysis of reclaimed vegetation in ecological restoration area of abandoned mines based on hyperspectral remote sensing images[J]. Journal of Arid Land, 2024, 16(10): 1409-1425.
[7] NAN Weige, DONG Zhibao, ZHOU Zhengchao, LI Qiang, CHEN Guoxiang. Ecological effect of the plantation of Sabina vulgaris in the Mu Us Sandy Land, China[J]. Journal of Arid Land, 2024, 16(1): 14-28.
[8] LI Wenye, ZHANG Jianfeng, SONG Shuangshuang, LIANG Yao, SUN Baoping, WU Yi, MAO Xiao, LIN Yachao. Combination of artificial zeolite and microbial fertilizer to improve mining soils in an arid area of Inner Mongolia, China[J]. Journal of Arid Land, 2023, 15(9): 1067-1083.
[9] Mohsen SHARAFATMANDRAD, Azam KHOSRAVI MASHIZI. Evaluation of restoration success in arid rangelands of Iran based on the variation of ecosystem services[J]. Journal of Arid Land, 2023, 15(11): 1290-1314.
[10] WANG Yaobin, SHANGGUAN Zhouping. Formation mechanisms and remediation techniques for low-efficiency artificial shelter forests on the Chinese Loess Plateau[J]. Journal of Arid Land, 2022, 14(8): 837-848.
[11] Keiichi KIMURA, Akito KONO, Susumu YAMADA, Tomoyo F KOYANAGI, Toshiya OKURO. Grazing and heat stress protection of native grass by a sand-fixing shrub in the arid lands of northern China[J]. Journal of Arid Land, 2022, 14(8): 867-876.
[12] WANG Yuxia, ZHANG Jing, YU Xiaojun. Effects of mulch and planting methods on Medicago ruthenica seed yield and soil physical-chemical properties[J]. Journal of Arid Land, 2022, 14(8): 894-909.
[13] WANG Kun, WANG Xiaoxia, FEI Hongyan, WAN Chuanyu, HAN Fengpeng. Changes in diversity, composition and assembly processes of soil microbial communities during Robinia pseudoacacia L. restoration on the Loess Plateau, China[J]. Journal of Arid Land, 2022, 14(5): 561-575.
[14] YAO Kaixuan, Abudureheman HALIKE, CHEN Limei, WEI Qianqian. Spatiotemporal changes of eco-environmental quality based on remote sensing-based ecological index in the Hotan Oasis, Xinjiang[J]. Journal of Arid Land, 2022, 14(3): 262-283.
[15] LI Feng, LI Yaoming, ZHOU Xuewen, YIN Zun, LIU Tie, XIN Qinchuan. Modeling and analyzing supply-demand relationships of water resources in Xinjiang from a perspective of ecosystem services[J]. Journal of Arid Land, 2022, 14(2): 115-138.