Please wait a minute...
Journal of Arid Land
Research Articles     
Magnetic property of loess strata recorded by Kansu profile in Tianshan Mountains
Jia JIA, XianBin LIU, DunSheng XIA, HaiTao WEI, Bo WANG
1 Key Laboratory of West China’s Environmental Systems (Ministry of Education), College of Earth Sciences and Environments , Lanzhou University, Lanzhou 730000, China; 2 Key Laboratory of Desert and Desertification, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China
Download:   PDF(406KB)
Export: BibTeX | EndNote (RIS)      

Abstract  Kansu (KS) profile is located in the east of Yili basin, western Xinjiang, where typical loess sediments are distributed. The magnetic parameters (such as IRM, SIRM SOFT, and M) and grain size in the KS profile were analyzed in the study. The results showed that the magnetic property of KS loess is dominated by ferrimagnetic minerals, such as magnetite and maghemite. Antiferromagnetic and superparamagnetic minerals also exist in the profile, but had less impact on magnetic susceptibility. Compared with the typical loess sediments of the central Loess Plateau in China, the strata of Kansu profile contained more magnetic minerals and hard magnetic minerals. The analysis of grain size for magnetic minerals indicated that the properties of loess and paleosol were respectively dominated by PSD/MD and coarse SSD magnetite. The research found that the contents of magnetic minerals in loess and paleosol sequences in Kansu profile were similar, but the proportion of fine grained magnetite and soft magnetic minerals were varying, which implies a positive relationship between the value of magnetic susceptibility and intensity of pedogenesis.

Key wordsNDVI      vegetation cover      climate change      human activity      northwest China     
Published: 07 September 2011
Corresponding Authors:
Cite this article:

Jia JIA, XianBin LIU, DunSheng XIA, HaiTao WEI, Bo WANG. Magnetic property of loess strata recorded by Kansu profile in Tianshan Mountains. Journal of Arid Land, 2011, 3(3): 191-198.

URL:

http://jal.xjegi.com/10.3724/SP.J.1227.2011.00191     OR     http://jal.xjegi.com/Y2011/V3/I3/191

[1] ZHAO Xuqin, LUO Min, MENG Fanhao, SA Chula, BAO Shanhu, BAO Yuhai. Spatiotemporal changes of gross primary productivity and its response to drought in the Mongolian Plateau under climate change[J]. Journal of Arid Land, 2024, 16(1): 46-70.
[2] Mitiku A WORKU, Gudina L FEYISA, Kassahun T BEKETIE, Emmanuel GARBOLINO. Projecting future precipitation change across the semi-arid Borana lowland, southern Ethiopia[J]. Journal of Arid Land, 2023, 15(9): 1023-1036.
[3] QIN Guoqiang, WU Bin, DONG Xinguang, DU Mingliang, WANG Bo. Evolution of groundwater recharge-discharge balance in the Turpan Basin of China during 1959-2021[J]. Journal of Arid Land, 2023, 15(9): 1037-1051.
[4] MA Jinpeng, PANG Danbo, HE Wenqiang, ZHANG Yaqi, WU Mengyao, LI Xuebin, CHEN Lin. Response of soil respiration to short-term changes in precipitation and nitrogen addition in a desert steppe[J]. Journal of Arid Land, 2023, 15(9): 1084-1106.
[5] ZHANG Hui, Giri R KATTEL, WANG Guojie, CHUAI Xiaowei, ZHANG Yuyang, MIAO Lijuan. Enhanced soil moisture improves vegetation growth in an arid grassland of Inner Mongolia Autonomous Region, China[J]. Journal of Arid Land, 2023, 15(7): 871-885.
[6] ZHANG Zhen, XU Yangyang, LIU Shiyin, DING Jing, ZHAO Jinbiao. Seasonal variations in glacier velocity in the High Mountain Asia region during 2015-2020[J]. Journal of Arid Land, 2023, 15(6): 637-648.
[7] GAO Xiang, WEN Ruiyang, Kevin LO, LI Jie, YAN An. Heterogeneity and non-linearity of ecosystem responses to climate change in the Qilian Mountains National Park, China[J]. Journal of Arid Land, 2023, 15(5): 508-522.
[8] Reza DEIHIMFARD, Sajjad RAHIMI-MOGHADDAM, Farshid JAVANSHIR, Alireza PAZOKI. Quantifying major sources of uncertainty in projecting the impact of climate change on wheat grain yield in dryland environments[J]. Journal of Arid Land, 2023, 15(5): 545-561.
[9] Sakine KOOHI, Hadi RAMEZANI ETEDALI. Future meteorological drought conditions in southwestern Iran based on the NEX-GDDP climate dataset[J]. Journal of Arid Land, 2023, 15(4): 377-392.
[10] Mehri SHAMS GHAHFAROKHI, Sogol MORADIAN. Investigating the causes of Lake Urmia shrinkage: climate change or anthropogenic factors?[J]. Journal of Arid Land, 2023, 15(4): 424-438.
[11] ZHANG Yixin, LI Peng, XU Guoce, MIN Zhiqiang, LI Qingshun, LI Zhanbin, WANG Bin, CHEN Yiting. Temporal and spatial variation characteristics of extreme precipitation on the Loess Plateau of China facing the precipitation process[J]. Journal of Arid Land, 2023, 15(4): 439-459.
[12] Adnan ABBAS, Asher S BHATTI, Safi ULLAH, Waheed ULLAH, Muhammad WASEEM, ZHAO Chengyi, DOU Xin, Gohar ALI. Projection of precipitation extremes over South Asia from CMIP6 GCMs[J]. Journal of Arid Land, 2023, 15(3): 274-296.
[13] ZHANG Wensheng, AN Chengbang, LI Yuecong, ZHANG Yong, LU Chao, LIU Luyu, ZHANG Yanzhen, ZHENG Liyuan, LI Bing, FU Yang, DING Guoqiang. Modern pollen assemblages and their relationships with vegetation and climate on the northern slopes of the Tianshan Mountains, Xinjiang, China[J]. Journal of Arid Land, 2023, 15(3): 327-343.
[14] ZHAO Lili, LI Lusheng, LI Yanbin, ZHONG Huayu, ZHANG Fang, ZHU Junzhen, DING Yibo. Monitoring vegetation drought in the nine major river basins of China based on a new developed Vegetation Drought Condition Index[J]. Journal of Arid Land, 2023, 15(12): 1421-1438.
[15] CAO Yijie, MA Yonggang, BAO Anming, CHANG Cun, LIU Tie. Evaluation of the water conservation function in the Ili River Delta of Central Asia based on the InVEST model[J]. Journal of Arid Land, 2023, 15(12): 1455-1473.