|
Separating emitted dust from the total suspension in airflow based on the characteristics of PM10 vertical concentration profiles on a Gobi surface in northwestern China
ZHANG Chunlai, WANG Xuesong, CEN Songbo, ZHENG Zhongquan Charlie, WANG Zhenting
Journal of Arid Land. 2022, 14 (6): 589-603.
DOI: 10.1007/s40333-022-0066-0
CSTR: 32276.14.s40333-022-0066-0
During aeolian processes, the two most critical factors related to dust emissions are soil particle and aggregate saltation, which greatly affect the vertical profiles of near-surface dust concentrations. In this study, we measured PM10 concentrations at four different heights (0.10, 0.50, 1.00 and 2.00 m) with and without continuous and simultaneous aeolian saltation processes on a Gobi surface in northwestern China from 31 March to 10 April, 2017. We found that the vertical concentration profiles of suspended PM10 matched the log-law model well when there was no aeolian saltation. For the erosion process with saltation, we divided the vertical concentration profiles of PM10 into the saltation-affected layer and the airflow-transport layer according to two different dust sources (i.e., locally emitted PM10 and upwind transported PM10). The transition height between the saltation-affected layer and the airflow-transport layer was not fixed and varied with saltation intensity. From this new perspective, we calculated the airflow-transport layer and the dust emission rate at different times during a wind erosion event occurred on 5 April 2017. We found that dust emissions during wind erosion are primarily controlled by saltation intensity, contributing little to PM10 concentrations above the ground surface compared to PM10 concentrations transported from upwind directions. As erosion progresses, the surface supply of erodible grains is the most crucial factor for saltation intensity. When there was a sufficient amount of erodible grains, there was a significant correlation among the friction velocity, saltation intensity and dust emission rate. However, when supply is limited by factors such as surface renewal or an increase in soil moisture, the friction velocity will not necessarily correlate with the other two factors. Therefore, for the Gobi surface, compared to limiting dust emissions from upwind directions, restricting the transport of suspended dust in its path is by far a more efficient and realistic option for small areas that are often exposed to dust storms. This study provides some theoretical basis for correctly estimating PM10 concentrations in the Gobi areas.
|
|
Sheltering effect of punched steel plate sand fences for controlling blown sand hazards along the Golmud-Korla Railway: Field observation and numerical simulation studies
ZHANG Kai, TIAN Jianjin, QU Jianjun, ZHAO Liming, LI Sheng
Journal of Arid Land. 2022, 14 (6): 604-619.
DOI: 10.1007/s40333-022-0019-7
CSTR: 32276.14.s40333-022-0019-7
Sand fences made of punched steel plate (PSP) have recently been applied to control wind-blown sand in desertified and Gobi areas due to their strong wind resistance and convenient in situ construction. However, few studies have assessed the protective effect of PSP sand fences, especially through field observations. This study analyzes the effects of double-row PSP sand fences on wind and sand resistance using field observations and a computational fluid dynamics (CFD) numerical simulation. The results of field observations showed that the average windproof efficiencies of the first-row and second-row sand fences were 79.8% and 70.8%, respectively. Moreover, the average windproof efficiencies of the numerical simulation behind the first-row and second-row sand fences were 89.8% and 81.1%, respectively. The sand-resistance efficiency of the double-row PSP sand fences was 65.4%. Sand deposition occurred close to the first-row sand fence; however, there was relatively little sand on the leeward side of the second-row sand fence. The length of sand accumulation near PSP sand fences obtained by numerical simulation was basically consistent with that through field observations, indicating that field observations combined with numerical simulation can provide insight into the complex wind-blown sand field over PSP sand fences. This study indicates that the protection efficiency of the double-row PSP sand fences is sufficient for effective control of sand hazards associated with extremely strong wind in the Gobi areas. The output of this work is expected to improve the future application of PSP sand fences.
|
|
Transformation among precipitation, surface water, groundwater, and mine water in the Hailiutu River Basin under mining activity
LI Qian, MA Long, LIU Tingxi
Journal of Arid Land. 2022, 14 (6): 620-636.
DOI: 10.1007/s40333-022-0020-1
CSTR: 32276.14.s40333-022-0020-1
Coal mining has changed the hydrogeological conditions of river basins, and studying how the relationship among different types of water body has changed under the influence of coal mining is of great significance for understanding the regional hydrological cycle. We analyzed the temporal and spatial distribution of hydrochemical properties and environmental isotopes in the Hailiutu River Basin (HRB), China with a mixed model. The results showed that: (1) human activity (e.g., coal mining and agricultural production) causes considerable changes in the hydrochemical properties of surface water in and around the mining areas, and leads to significant increases in the concentrations of Na+ and SO2- 4; (2) precipitation is the main source of water vapour in the HRB. The transformation between surface water and groundwater in the natural watershed is mainly affected by precipitation; and (3) in the mining areas, the average contribution rates of precipitation to the recharge of surface water and groundwater increased by 2.6%-7.9% and 2.7%-9.9%, respectively. Groundwater in the Salawusu Formation constitutes up to 61.3%-72.4% of mine water. Overall, this study is beneficial for quantifying the effects of coal mining on local hydrological cycles. The research results can provide a reference for local water resources management and ecological environment improvement.
|
|
Spatiotemporal variations and driving factors of habitat quality in the loess hilly area of the Yellow River Basin: A case study of Lanzhou City, China
DONG Jianhong, ZHANG Zhibin, LIU Benteng, ZHANG Xinhong, ZHANG Wenbin, CHEN Long
Journal of Arid Land. 2022, 14 (6): 637-652.
DOI: 10.1007/s40333-022-0097-6
CSTR: 32276.14.s40333-022-0097-6
Rapid industrialization and urbanization have led to the most serious habitat degradation in China, especially in the loess hilly area of the Yellow River Basin, where the ecological environment is relatively fragile. The contradiction between economic development and ecological environment protection has aroused widespread concern. In this study, we used the habitat quality of Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST-HQ) model at different scales to evaluate the dynamic evolution characteristics of habitat quality in Lanzhou City, Gansu Province of China. The spatiotemporal variations of habitat quality were analyzed by spatial autocorrelation. A Geographical Detector (Geodetector) model was used to explore the driving factors that influencing the spatial differentiation of habitat quality, including natural factors, socio-economic factors, and ecological protection factors. The results showed that the habitat quality index of Lanzhou City decreased from 0.4638 to 0.4548 during 2000-2018. The areas with reduced the habitat quality index were mainly located in the Yellow River Basin and Qinwangchuan Basin, where are the main urban areas and the new economic development areas, respectively. The spatial distribution of habitat quality presented a trend of high in the surrounding areas and low in the middle, and showed a significant positive spatial autocorrelation. With the increase of study scale, the spatial distribution of habitat quality changed from concentrated to dispersed. The spatial differentiation of habitat quality in the study area was the result of multiple factors. Among them, topographic relief and slope were the key factors. The synergistic enhancement among these driving factors intensified the spatial differentiation of habitat quality. The findings of this study can provide a scientific basis for land resources utilization and ecosystem restoration in the arid and semi-arid land.
|
|
Water use characteristics of different pioneer shrubs at different ages in western Chinese Loess Plateau: Evidence from δ2H offset correction
ZHANG Yu, ZHANG Mingjun, QU Deye, WANG Shengjie, Athanassios A ARGIRIOU, WANG Jiaxin, YANG Ye
Journal of Arid Land. 2022, 14 (6): 653-672.
DOI: 10.1007/s40333-022-0018-8
CSTR: 32276.14.s40333-022-0018-8
Caragana korshinskii Kom. and Tamarix ramosissima Ledeb. are pioneer shrubs for water and soil conservation, and for windbreak and sand fixation in arid and semi-arid areas. Understanding the water use characteristics of different pioneer shrubs at different ages is of great importance for their survival when extreme rainfall occurs. In recent years, the stable isotope tracing technique has been used in exploring the water use strategies of plants. However, the widespread δ2H offsets of stem water from its potential sources result in conflicting interpretations of water utilization of plants in arid and semi-arid areas. In this study, we used three sets of hydrogen and oxygen stable isotope data (δ2H and δ18O, corrected δ2H_c1 based on SW-excess and δ18O, and corrected δ2H_c2 based on -8.1‰ and δ18O) as inputs for the MixSIAR model to explore the water use characteristics of C. korshinskii and T. ramosissima at different ages and in response to rainfall. The results showed that δ2H_c1 and δ18O have the best performance, and the contribution rate of deep soil water was underestimated because of δ2H offset. During the dry periods, C. korshinskii and T. ramosissima at different ages both obtained mostly water from deeper soil layers. After rainfall, the proportions of surface (0-10 cm) and shallow (10-40 cm) soil water for C. korshinskii and T. ramosissima at different ages both increased. Nevertheless, there were different response mechanisms of these two plants for rainfall. In addition, C. korshinskii absorbed various potential water sources, while T. ramosissima only used deep water. These flexible water use characteristics of C. korshinskii and T. ramosissima might facilitate the coexistence of plants once extreme rainfall occurs. Thus, reasonable allocation of different plants may be a good vegetation restoration program in western Chinese Loess Plateau.
|
|
Tree-ring δ15N of Qinghai spruce in the central Qilian Mountains of China: Is pre-treatment of wood samples necessary?
WANG Ziyi, LIU Xiaohong, WANG Keyi, ZENG Xiaomin, ZHANG Yu, GE Wensen, KANG Huhu, LU Qiangqiang
Journal of Arid Land. 2022, 14 (6): 673-690.
DOI: 10.1007/s40333-022-0065-1
CSTR: 32276.14.s40333-022-0065-1
A knowledge of the tree-ring stable nitrogen isotope ratio (δ15N) can deepen our understanding of forest ecosystem dynamics by indicating the long-term availability, cycling and sources of nitrogen (N). However, the radial mobility of N blurs the interannual variations in the long-term N records. Previous studies of the chemical extraction of tree rings before analysis had produced inconsistent results and it is still unclear whether it is necessary to pre-treat wood samples from specific tree species to remove soluble N compounds before determining the δ15N values. We compared the effects of pre-treatment with organic solvents and hot ultrapure water on the N concentration and δ15N of tree rings from endemic Qinghai spruce (Picea crassifolia) growing in the interior of the central Qilian Mountains, China, during the last 60 a. We assessed the effects of different preparation protocols on the removal of the labile N compounds and investigated the need to pre-treat wood samples before determining the δ15N values of tree rings. Increasing trends of the tree-ring N concentration were consistently observed in both the extracted and unextracted wood samples. The total N removed by extraction with organic solvents was about 17.60%, with a significantly higher amount in the sapwood section (P<0.01). The δ15N values of tree rings decreased consistently from 1960 to 2019 in both the extracted and unextracted wood samples. Extraction with organic solvents increased the δ15N values markedly by about 5.2‰ and reduced the variations in the δ15N series. However, extraction with hot ultrapure water had little effect, with only a slight decrease in the δ15N values of about 0.5‰. Our results showed that the radial pattern in the inter-ring movement of N in Qinghai spruce was not minimized by extraction with either organic solvents or hot ultrapure water. It is unnecessary to conduct hot ultrapure water extraction for the wood samples from Qinghai spruce because of its negligible effect on the removal of the labile N. The δ15N variation trend of tree rings in the unextracted wood samples was not influenced by the heartwood-sapwood transition zone. We suggest that the δ15N values of the unextracted wood samples of the climate-sensitive Qinghai spruce could be used to explore the ecophysiological dynamics while focusing on the long-term variations.
|
|
Dependency of litter decomposition on litter quality, climate change, and grassland type in the alpine grassland of Tianshan Mountains, Northwest China
SU Yuan, GONG Yanming, HAN Wenxuan, LI Kaihui, LIU Xuejun
Journal of Arid Land. 2022, 14 (6): 691-703.
DOI: 10.1007/s40333-022-0096-7
CSTR: 32276.14.s40333-022-0096-7
Litter decomposition is an important component of the nutrient recycling process and is highly sensitive to climate change. However, the impacts of warming and increased precipitation on litter decomposition have not been well studied, especially in the alpine grassland of Tianshan Mountains. We conducted a manipulative warming and increased precipitation experiment combined with different grassland types to examine the impact of litter quality and climate change on the litter decomposition rate based on three dominant species (Astragalus mongholicus, Potentilla anserina, and Festuca ovina) in Tianshan Mountains from 2019 to 2021. The results of this study indicated there were significant differences in litter quality, specific leaf area, and leaf dry matter content. In addition, litter quality exerted significant effects on litter decomposition, and the litter decomposition rate varied in different grassland types. Increased precipitation significantly accelerated the litter decomposition of P. anserina; however, it had no significant effect on the litter decomposition of A. mongholicus and F. ovina. However, warming consistently decreased the litter decomposition rate, with the strongest impact on the litter decomposition of F. ovina. There was a significant interaction between increased precipitation and litter type, but there was no significant interaction between warming and litter type. These results indicated that warming and increased precipitation significantly influenced litter decomposition; however, the strength was dependent on litter quality. In addition, soil water content played a crucial role in regulating litter decomposition in different grassland types. Moreover, we found that the litter decomposition rate exhibited a hump-shaped or linear response to the increase of soil water content. Our study emphasizes that ongoing climate change significantly altered litter decomposition in the alpine grassland, which is of great significance for understanding the nutrient supply and turnover of litter.
|
|