Please wait a minute...
Journal of Arid Land  2014, Vol. 6 Issue (4): 389-399    DOI: 10.1007/s40333-014-0008-6     CSTR: 32276.14.s40333-014-0008-6
Research Articles     
Effects of shrub species and microhabitats on dew formation in a revegetation-stabilized desert ecosystem in Shapotou, northern China
YanXia PAN, XinPing WANG
Shapotou Desert Experimental Research Station, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China
Download:   PDF(257KB)
Export: BibTeX | EndNote (RIS)      

Abstract  Dew is an important supplement water source in arid and semi-arid areas. In order to determine the dew formation on different kinds of soils associated with various shrub species and microhabitats, we performed measurement of accumulated dew formation amount and duration in October 2009 in a revegetation-stabilized arid desert ecosystem in Shapotou area, northern China. The results indicated that the accumulated dew formation amount was four times larger at open spaces as compared to under the canopy, and it was nearly twice as much under living Artemisia ordosica plants (L.A.) as compared to under living Caragana korshinskii plants (L.C.). The opposite characteristics were found for dew duration between different microhabitats. Dew amounts at different vertical heights around the shrub stands were in the order of 50 cm above the canopy>the canopy edge>under the canopy. Dew amount continued to increase after dawn, and the proportion of average accumulated dew amount after dawn ac-counting for the average maximum amount increased from above the canopy to under the canopy. Dew formation duration after sunrise accounted for more than 50% of the total formation duration during the day time. Contrary to the distribution characteristics of dew amount, dew duration after dawn and total dew formation duration during the day time were both highest under the canopy, followed by at the canopy edge and then at 50 cm above the canopy. The portion of dew duration after dawn accounting for the total dew duration during the day time increased from above the canopy to under the canopy. From these results, we may conclude that dew availability as a supple-mental water resource for improving the microhabitats in water-limited arid ecosystems is position dependent es-pecially for the plant microhabitats at different stands layers.

Key wordsdesertification      net primary productivity (NPP)      climate change      human activities      quantitative assessment      Heihe River Basin     
Received: 16 November 2013      Published: 12 August 2014
Fund:  

The National Natural Science Foundation of China (41201085) and the 100 Talents Program of the Chinese Academy of Sciences.

Corresponding Authors:
Cite this article:

YanXia PAN, XinPing WANG. Effects of shrub species and microhabitats on dew formation in a revegetation-stabilized desert ecosystem in Shapotou, northern China. Journal of Arid Land, 2014, 6(4): 389-399.

URL:

http://jal.xjegi.com/10.1007/s40333-014-0008-6     OR     http://jal.xjegi.com/Y2014/V6/I4/389

Agam N, Berliner P R. 2002. The role of dew in the water and heat balance of bare loess soil in the Negev Desert: quantifying the actual dew deposition on the soil surface. Atmosphere Research, 64(1−4): 323−334.

Agam N, Berliner P R. 2006. Dew formation and water-vapour adsorption in semiarid environments: a review. Journal of Arid Environ-ments, 65: 572−590.

Barradas V L, Glez-Medellin M G. 1999. Dew and its effect on two heliophile understorey species of a tropical dry deciduous forest in Mexico. International Journal of Biometeorology, 43: 1−7.

Bourque C P A, Arp P A. 1994. Dawn-to-dusk evolution of air turbu-lence, temperature and sensible and latent heat fluxes above a forest canopy: concepts, model and field comparisons. Atmosphere-Ocean, 32(2): 299−334.

Breshears D D,  McDowell N G, Goddard K L, et al. 2008. Foliar absorption of intercepted rainfall improves woody plant water status most during drought. Ecology, 89(1): 41−47.

Brown R, Mills A J, Jack C. 2008. Non-rainfall moisture inputs in the Knersvlakte: methodology and preliminary findings. Water SA, 34: 275−278.

Del-Val E, Armesto J J, Barbosa O, et al. 2006. Rain forest islands in the Chilean semi-arid region: fog-dependency, ecosystem persistence and tree regeneration. Ecosystems, 9: 598−608.

Gouvra E, Grammatikopoulos G. 2003. Beneficial effects of direct foliar water uptake on shoot water potential of five chasmophytes. Canadian Journal of Botany, 81(12): 1278−1284.

Hao X M, Li C, Guo B, et al. 2012. Dew formation and its long-term trend in a desert riparian forest ecosystem on the eastern edge of the Taklimakan Desert in China. Journal of Hydrology, 472−473: 90−98.

Jacobs A F G, van Pul A, El-Kilani R M M. 1994. Dew formation and the drying process within a maize canopy. Boundary-Layer Meteorology, 69: 367−378.

Jacobs A F G, Nieveen J P. 1995. Formation of dew and the drying process within crop canopies. Meteorological Applications, 2: 249−256.

Jacobs A F G, van Boxel J H, Nieveen J. 1996. Nighttime exchange processes near the soil surface of a maize canopy. Agricultural and Forest Meteorology, 82(1−4): 155−169.

Jacobs A F G, Heusinkveld B G, Berkowicz S M. 2000. Dew meas-urements along a longitudinal sand dune transect, Negev Desert, Is-rael. International Journal of Biometeorology, 43(4): 184−190.

Jacobs A F G, Heusinkveld B G, Klok E J. 2005. Leaf wetness within a lily canopy. Meteorological Applications, 12: 193−198.

Kidron G J. 2005. Angle and aspect dependent dew and fog precipitation in the Negev desert. Journal of Hydrology, 301: 66−74.

Kosmas C, Danalatos N G, Poesen J, et al. 1998. The effect of water vapour adsorption on soil moisture content under Mediterranean climatic conditions. Agricultural Water Management, 36: 157−168.

Lekouch I, Muselli M, Kabbachi B, et al. 2011. Dew, fog, and rain as supplementary sources of water in south-western Morocco. Energy, 36(4): 2257−2265.

Li X R, Kong D S, Tan H J, et al. 2007. Changes in soil and vegetation following stabilization of dunes in the southeastern fringe of the Tengger Desert, China. Plant and Soil, 300: 221−231.

Li X Y. 2002. Effects of gravel and sand mulches on dew deposition in the semiarid region of China. Journal of Hydrology, 260: 151−160.

Lloyd M G. 1961. The contribution of dew to the summer water budget of northern Idaho. Bulletin of the American Meteorological Society, 42: 572−580.

Mao W, Zhang T H, Li Y L, et al. 2012. Allometric response of peren-nial Pennisetum centrasiaticum Tzvel to nutrient and water limitation in the Horqin Sand Land of China. Journal of Arid Land, 4(2): 161−170.

Martin C E, Willert D J. 2000. Leaf epidermal hydathodes and the ecophysiological consequences of foliar water uptake in species of Crassula from the Namib Desert in southern Africa. Plant Biology, 2(2): 229−242.

Moffett M W. 1985. An Indian ant’s novel method for obtaining water. National Geographic Research, 1(1): 146-149.

Pan Y X, Wang X P. 2009. Factors controlling the spatial variability of surface soil moisture within revegetated-stabilized desert ecosystems of the Tengger Desert, Northern China. Hydrological Processes, 23(11): 1591−1601.

Pan Y X, Wang X P, Zhang Y F. 2010. Dew formation characteristics in a revegetation-stabilized desert ecosystem in Shapotou area, Northern China. Journal of Hydrology, 387: 265−272.

Pitacco A, Gallinaro N, Giulivo C. 1992. Evaluation of actual evapotranspiration of a Quercus ilex L. stand by the Bowen Ratio-Energy Budget method. Vegetation, 99−100: 163−168.

Shachak M, Leeper A, Degen A A. 2002. Effect of population density on water influx and distribution in the desert snail Trochoidea seetzenii. Ecoscience, 9: 287−292.

Shapotou Desert Experimental Research Station, Chinese Academy of Sciences. 1991. Study on Shifting Sand Control in Shapotou Region of the Tengger Desert (2). Yinchuan: Ningxia People’s Publishing House, 101−119.

Simonin K A, Santiago L S, Dawson T E. 2009. Fog interception by Sequoia sempervirens (D. Don) crowns decouples physiology from soil water deficit. Plant, Cell & Environment, 32(7): 882−892.

Sudmayer R A, Nulsen R A, Scott W D. 1994. Measured dewfall and potential condensation on grazed pasture in the Collie River basin, southwestern Australia. Journal of Hydrology, 154: 255−269.

Wang S, Zhang Q. 2011. Atmospheric physical characteristics of dew formation in a semi-arid loess plateau. Acta Physica Sinica, 60(5): 059203.

Xiao H, Meissner R, Seeger J, et al. 2009. Effect of vegetation type and growth stage on dewfall, determined with high precision weighing lysimeters at a site in northern Germany. Journal of Hydrology, 377: 43−49.

Ye Y H, Zhou K, Song L Y, et al. 2007. Dew amounts and its correla-tions with meteorological factors in urban landscapes of Guangzhou, China. Atmosphere Research, 86(1): 21−29.

Zheng X J, Song L, Yan L. 2011. Leaf water uptake strategy of desert plants in the Junggar Basin, China. Chinese Journal of Plant Ecology, 35(9): 893−905.

Zhuang Y L, Ratcliffe S. 2012. Relationship between dew presence and Bassia dasyphylla plant growth. Journal of Arid Land, 4(1): 11−18.
[1] CHEN Zhuo, SHAO Minghao, HU Zihao, GAO Xin, LEI Jiaqiang. Potential distribution of Haloxylon ammodendron in Central Asia under climate change[J]. Journal of Arid Land, 2024, 16(9): 1255-1269.
[2] LI Mingqian, WANG He, DU Wei, GU Hongbiao, ZHOU Fanchao, CHI Baoming. Responses of runoff to changes in climate and human activities in the Liuhe River Basin, China[J]. Journal of Arid Land, 2024, 16(8): 1023-1043.
[3] SUN Chao, BAI Xuelian, WANG Xinping, ZHAO Wenzhi, WEI Lemin. Response of vegetation variation to climate change and human activities in the Shiyang River Basin of China during 2001-2022[J]. Journal of Arid Land, 2024, 16(8): 1044-1061.
[4] YAN Yujie, CHENG Yiben, XIN Zhiming, ZHOU Junyu, ZHOU Mengyao, WANG Xiaoyu. Impacts of climate change and human activities on vegetation dynamics on the Mongolian Plateau, East Asia from 2000 to 2023[J]. Journal of Arid Land, 2024, 16(8): 1062-1079.
[5] YANG Jianhua, LI Yaqian, ZHOU Lei, ZHANG Zhenqing, ZHOU Hongkui, WU Jianjun. Effects of temperature and precipitation on drought trends in Xinjiang, China[J]. Journal of Arid Land, 2024, 16(8): 1098-1117.
[6] HAN Qifei, XU Wei, LI Chaofan. Effects of nitrogen deposition on the carbon budget and water stress in Central Asia under climate change[J]. Journal of Arid Land, 2024, 16(8): 1118-1129.
[7] WANG Tongxia, CHEN Fulong, LONG Aihua, ZHANG Zhengyong, HE Chaofei, LYU Tingbo, LIU Bo, HUANG Yanhao. Glacier area change and its impact on runoff in the Manas River Basin, Northwest China from 2000 to 2020[J]. Journal of Arid Land, 2024, 16(7): 877-894.
[8] DU Lan, TIAN Shengchuan, ZHAO Nan, ZHANG Bin, MU Xiaohan, TANG Lisong, ZHENG Xinjun, LI Yan. Climate and topography regulate the spatial pattern of soil salinization and its effects on shrub community structure in Northwest China[J]. Journal of Arid Land, 2024, 16(7): 925-942.
[9] Haq S MARIFATUL, Darwish MOHAMMED, Waheed MUHAMMAD, Kumar MANOJ, Siddiqui H MANZER, Bussmann W RAINER. Predicting potential invasion risks of Leucaena leucocephala (Lam.) de Wit in the arid area of Saudi Arabia[J]. Journal of Arid Land, 2024, 16(7): 983-999.
[10] Seyed Morteza MOUSAVI, Hossein BABAZADEH, Mahdi SARAI-TABRIZI, Amir KHOSROJERDI. Assessment of rehabilitation strategies for lakes affected by anthropogenic and climatic changes: A case study of the Urmia Lake, Iran[J]. Journal of Arid Land, 2024, 16(6): 752-767.
[11] LI Chuanhua, ZHANG Liang, WANG Hongjie, PENG Lixiao, YIN Peng, MIAO Peidong. Influence of vapor pressure deficit on vegetation growth in China[J]. Journal of Arid Land, 2024, 16(6): 779-797.
[12] LU Haitian, ZHAO Ruifeng, ZHAO Liu, LIU Jiaxin, LYU Binyang, YANG Xinyue. Impact of climate change and human activities on the spatiotemporal dynamics of surface water area in Gansu Province, China[J]. Journal of Arid Land, 2024, 16(6): 798-815.
[13] ZHU Haiqiang, WANG Jinlong, TANG Junhu, DING Zhaolong, GONG Lu. Spatiotemporal variations of ecosystem services and driving factors in the Tianchi Bogda Peak Natural Reserve of Xinjiang, China[J]. Journal of Arid Land, 2024, 16(6): 816-833.
[14] WANG Xingbo, ZHANG Shuanghu, TIAN Yiman. Assessment of runoff changes in the sub-basin of the upper reaches of the Yangtze River basin, China based on multiple methods[J]. Journal of Arid Land, 2024, 16(4): 461-482.
[15] YANG Zhiwei, CHEN Rensheng, LIU Zhangwen, ZHAO Yanni, LIU Yiwen, WU Wentong. Spatiotemporal variability of rain-on-snow events in the arid region of Northwest China[J]. Journal of Arid Land, 2024, 16(4): 483-499.