Please wait a minute...
Journal of Arid Land  2024, Vol. 16 Issue (1): 29-45    DOI: 10.1007/s40333-024-0003-5
Research article     
Regulation effects of water and nitrogen on yield, water, and nitrogen use efficiency of wolfberry
GAO Yalin1, QI Guangping1,*(), MA Yanlin1, YIN Minhua1, WANG Jinghai1, WANG Chen1, TIAN Rongrong1, XIAO Feng1, LU Qiang1, WANG Jianjun2
1College of Water Conservancy and Hydropower Engineering, Gansu Agricultural University, Lanzhou 730070, China
2Jingtaichuan Electric Power Irrigation Water Resource Utilization Center in Gansu Province, Baiyin 730900, China
Download: HTML     PDF(1369KB)
Export: BibTeX | EndNote (RIS)      


Wolfberry (Lycium barbarum L.) is important for health care and ecological protection. However, it faces problems of low productivity and resource utilization during planting. Exploring reasonable models for water and nitrogen management is important for solving these problems. Based on field trials in 2021 and 2022, this study analyzed the effects of controlling soil water and nitrogen application levels on wolfberry height, stem diameter, crown width, yield, and water (WUE) and nitrogen use efficiency (NUE). The upper and lower limits of soil water were controlled by the percentage of soil water content to field water capacity (θf), and four water levels, i.e., adequate irrigation (W0, 75%-85% θf), mild water deficit (W1, 65%-75% θf), moderate water deficit (W2, 55%-65% θf), and severe water deficit (W3, 45%-55% θf) were used, and three nitrogen application levels, i.e., no nitrogen (N0, 0 kg/hm2), low nitrogen (N1, 150 kg/hm2), medium nitrogen (N2, 300 kg/hm2), and high nitrogen (N3, 450 kg/hm2) were implied. The results showed that irrigation and nitrogen application significantly affected plant height, stem diameter, and crown width of wolfberry at different growth stages (P<0.01), and their maximum values were observed in W1N2, W0N2, and W1N3 treatments. Dry weight per plant and yield of wolfberry first increased and then decreased with increasing nitrogen application under the same water treatment. Dry weight per hundred grains and dry weight percentage increased with increasing nitrogen application under W0 treatment. However, under other water treatments, the values first increased and then decreased with increasing nitrogen application. Yield and its component of wolfberry first increased and then decreased as water deficit increased under the same nitrogen treatment. Irrigation water use efficiency (IWUE, 8.46 kg/(hm2·mm)), WUE (6.83 kg/(hm2·mm)), partial factor productivity of nitrogen (PFPN, 2.56 kg/kg), and NUE (14.29 kg/kg) reached their highest values in W2N2, W1N2, W1N2, and W1N1 treatments. Results of principal component analysis (PCA) showed that yield, WUE, and NUE were better in W1N2 treatment, making it a suitable water and nitrogen management mode for the irrigation area of the Yellow River in the Gansu Province, China and similar planting areas.

Key wordswater deficit      growth characteristics      yield      water and nitrogen use efficiency      principal component analysis     
Received: 21 September 2023      Published: 31 January 2024
Corresponding Authors: *QI Guangping (E-mail:
Cite this article:

GAO Yalin, QI Guangping, MA Yanlin, YIN Minhua, WANG Jinghai, WANG Chen, TIAN Rongrong, XIAO Feng, LU Qiang, WANG Jianjun. Regulation effects of water and nitrogen on yield, water, and nitrogen use efficiency of wolfberry. Journal of Arid Land, 2024, 16(1): 29-45.

URL:     OR

Fig. 1 Precipitation and average temperature at wolfberry growing stage from 2021 to 2022
Fig. 2 Experimental plot design (a) and field map (b) of study area. TDR, time domain reflectometer.
Fig. 3 Effects of water (W) and nitrogen (N) application levels on plant height at different wolfberry growth stages in 2021 (a-d) and 2022 (e-h). Different lowercase letters indicate significant differences in plant height under different water and nitrogen treatments at P<0.05 level. W×N, water and nitrogen interaction. **, P<0.01 level; *, P<0.05 level; ns, no significant difference; W0, 75%-85% field water capacity (θf); W1, 65%-75% θf; W2, 55%-65% θf; W3, 45%-55% θf; N0, 0 kg/hm2; N1, 150 kg/hm2; N2, 300 kg/hm2; N3, 450 kg/hm2. Bars are standard errors. The abbreviations and treatments are the same as in the following figures and tables.
Fig. 4 Effects of water (W) and nitrogen (N) application levels on stem diameter at different wolfberry growth stages in 2021 (a-d) and 2022 (e-h). Different lowercase letters indicate significant differences in stem diameter under different water and nitrogen treatments at P<0.05 level. **, P<0.01 level; *, P<0.05 level; ns, no significant difference; Bars are standard errors.
Year Treat-
Vegetative growth stage Full flowering stage Summer peak fruit stage Autumn peak fruit stage
N-SCW (cm) E-WCW (cm) N-SCW (cm) E-WCW (cm) N-SCW (cm) E-WCW (cm) N-SCW (cm) E-WCW (cm)
2021 W0N0 37.21±1.13cde 38.47±1.75d 49.35±1.98cde 52.68±1.46d 58.45±2.39fg 60.79±1.53ef 61.96±3.28fg 64.29±1.48f
W0N1 38.58±1.70bc 40.12±1.25bcd 51.70±1.1.57bcd 54.67±2.07bcd 60.42±1.70def 63.08±2.24de 64.13±1.31def 66.47±1.74ef
W0N2 40.19±1.24abc 41.52±1.23abc 54.83±2.68ab 55.90±1.74abcd 64.22±2.66bcd 65.88±2.43bcd 68.36±2.93bcd 72.02±1.64bcd
W0N3 40.40±2.05abc 41.87±1.42ab 56.04±2.63ab 57.31±1.92abc 66.75±1.70bc 68.75±3.13abc 71.06±2.36bc 73.72±0.73bc
W1N0 37.34±2.34cde 38.58±1.14b 51.59±3.01bcd 53.26±2.88cd 59.76±1.13efg 61.86±2.93de 63.29±1.06efg 66.49±4.81ef
W1N1 38.15±1.95bcd 39.48±1.11bcd 52.49±2.22bc 54.89±3.24bcd 61.13±2.00def 64.46±2.78de 65.67±1.63def 68.47±3.68de
W1N2 40.94±1.25ab 42.14±1.81ab 56.34±3.79ab 58.52±2.07ab 67.64±3.02ab 69.64±0.87ab 72.02±2.53b 75.41±0.83ab
W1N3 42.03±1.37a 43.30±1.59a 58.77±3.46a 59.97±2.50a 70.89±2.44a 72.22±1.76a 76.96±2.34a 78.96±1.75a
W2N0 34.31±1.29ef 34.65±1.08e 46.94±3.52defg 46.77±2.83ef 52.89±2.97hi 53.59±3.78gh 55.69±3.16hi 58.36±1.60gh
W2N1 35.36±1.41def 35.22±1.34e 48.40±2.53cdef 48.04±1.66e 56.45±1.67gh 57.22±1.27fgh 59.28±1.94gh 60.62±0.76g
W2N2 39.00±1.50abc 39.00±1.50cd 53.59±2.02abc 53.09±2.66cd 63.05±1.39cde 65.93±2.22bcd 67.36±2.56cde 71.03±3.04cd
W2N3 38.79±1.82bc 41.13±2.39abcd 52.31±2.1.98bcd 54.81±1.32bcd 60.82±2.02def 64.82±1.80cde 65.21±1.75def 69.15±2.81de
W3N0 30.01±3.06g 32.95±1.33e 38.97±2.70h 42.27±2.35g 43.49±2.62k 46.82±1.52j 44.97±2.57j 48.07±1.53i
W3N1 33.00±1.24fg 34.33±1.43e 44.92±2.75efg 45.42±2.29efg 49.98±1.42ij 52.64±2.46hi 52.98±1.43ij 54.98±1.42h
W3N2 33.09±1.17fg 33.76±1.32e 43.66±3.65efg 44.66±2.65efg 48.80±3.19ij 50.13±1.13hij 52.47±3.22ij 55.63±1.15h
W3N3 32.60±1.75fg 34.03±1.48e 42.68±4.00gh 43.21±2.11fg 47.69±3.67j 48.99±1.54ij 49.81±2.72j 50.84±1.41i
2022 W0N0 54.63±0.94ef 57.63±1.98de 65.13±0.81gh 68.17±2.69ef 71.11±1.14gh 75.18±1.86fg 74.16±1.77fg 78.83±2.19ef
W0N1 58.13±1.94de 59.80±1.88cd 69.13±1.65efg 71.53±2.06de 75.51±1.94efg 77.91±1.95ef 78.89±1.69ef 81.71±2.32de
W0N2 61.06±3.06cd 62.73±1.99def 74.09±2.97cd 75.71±1.60bcd 81.49±322cd 83.56±3.14cd 85.51±3.93c 87.76±2.85c
W0N3 63.75±1.18bc 63.75±2.10bc 76.86±1.23bc 77.33±2.53bc 85.36±1.50bc 87.19±2.77bc 90.49±1.56b 92.31±2.03b
W1N0 56.63±1.67e 60.15±1.55bcd 67.63±1.64fg 69.23±1.65ef 74.26±1.08fg 76.95±1.58ef 78.22±1.26ef 81.48±2.46de
W1N1 60.65±3.03cd 61.79±1.39bcd 72.69±2.95de 71.53±2.55de 79.99±3.90de 79.51±1.60def 83.99±3.71cd 83.18±2.09cde
W1N2 65.23±1.79ab 64.57±2.59ab 79.29±3.01b 79.95±1.93ab 88.22±2.60b 90.31±2.78b 93.98±3.28b 95.14±3.27b
W1N3 68.33±2.25a 68.42±2.21a 83.85±2.58a 84.29±1.87a 93.86±2.98a 95.50±3.07a 100.16±3.73a 101.89±3.18a
W2N0 50.63±1.43gh 53.36±2.28fg 60.07±1.72ij 62.81±3.20gh 65.95±3.65ij 67.51±2.42h 68.87±3.79hi 70.60±2.69g
W2N1 52.03±0.68fg 55.49±4.15ef 61.95±1.70hi 66.15±4.79fg 68.23±1.76hi 72.06±2.28g 71.33±1.48gh 75.63±1.50f
W2N2 57.89±2.93de 60.35±3.32bcd 69.52±3.01ef 73.20±3.64cde 76.69±2.96ef 80.93±1.89de 80.39±2.68de 84.87±2.56cd
W2N3 54.88±2.36ef 58.15±3.23de 65.44±2.00fgh 69.29±3.17ef 71.44±2.29gh 76.66±3.83ef 74.70±2.55fg 79.81±4.22ef
W3N0 46.98±1.95h 48.89±2.56h 55.44±1.77k 56.40±2.74i 57.42±2.26l 59.84±3.18j 59.57±2.53k 62.01±3.45i
W3N1 52.16±2.84fg 52.98±1.93fgh 61.57±3.59hi 62.98±1.74gh 65.26±3.58ij 66.59±1.94hi 68.84±2.45hi 69.46±1.91gh
W3N2 50.00±2.20gh 51.47±1.58fgh 59.18±2.13hi 60.27±3.22hi 62.78±2.41jk 65.66±3.12hi 66.48±1.71ij 68.42±3.09gh
W3N3 48.23±2.40gh 49.78±1.46gh 57.11±2.53jk 57.36±1.88i 59.25±2.85kl 62.41±1.86ij 62.60±2.51jk 64.82±1.52hi
Analysis of variance
2021 W ** ** ** ** ** ** ** **
N ** ** ** ** ** ** ** **
W×N ns ns ns ns * ** ** **
2022 W ** ** ** ** ** ** ** **
N ** ** ** ** ** ** ** **
W×N ** ns ** ** ** ** ** **
Table 1 Effects of water (W) and nitrogen (N) application levels on crown width at different wolfberry growth stages in 2021 and 2022
Treatment Dry weight per plant (g) Dry weight per hundred grains (g) Dry weight percentage (%) Yield (kg/hm2)
W0N0 680.00±34.64f 13.94±0.41gh 23.67±0.55cde 1777.78±90.56f
W0N1 783.33±47.26de 15.18±0.42de 23.97±0.96def 2047.93±177.96de
W0N2 943.33±60.00ab 17.10±0.12c 24.71±0.98cd 2466.23±123.55ab
W0N3 850.00±68.07cd 17.59±0.28c 24.95±0.31c 2222.22±156.86cd
W1N0 710.00±30.00ef 14.48±0.4efg 23.93±0.35def 1856.21±117.89ef
W1N1 820.00±26.46cd 15.82±0.55d 24.14±0.94cde 2143.79±69.17cd
W1N2 1003.33±50.33a 20.61±0.21a 27.53±1.04a 2623.09±131.59a
W1N3 900.00±50.00bc 19.42±0.54b 26.29±0.42b 2352.94±130.72bc
W2N0 650.00±51.96fg 12.55±0.33i 22.86±0.50fg 1699.35±135.85fg
W2N1 696.67±15.28f 13.32±0.34h 23.14±0.44efg 1821.35±39.94f
W2N2 843.33±32.15cd 15.09±0.93def 23.57±0.58def 2204.79±84.04cd
W2N3 800.00±65.57d 14.34±0.36fg 23.32±0.49efg 2091.50±171.44d
W3N0 523.33±40.41h 10.77±0.34j 22.77±1.00fg 1368.19±105.66h
W3N1 540.00±52.92h 11.23±0.23j 22.19±0.60g 1411.76±138.34h
W3N2 630.00±10.00fg 12.39±0.75i 22.24±0.29g 1647.06±26.14fg
W3N3 576.67±45.09gh 12.10±0.44i 22.15±0.99g 1507.63±117.89gh
Analysis of variance
W ** ** ** **
N ** ** ** **
W×N ns ** ** *
Table 2 Effects of water (W) and nitrogen (N) application levels on yield and yield components of wolfberry
Treatment I (mm) WC (mm) IWUE (kg/(hm2•mm)) WUE (kg/(hm2•mm)) PFPN (kg/kg) NUE (kg/kg)
W0N0 452.84±10.00a 517.17±8.97a 3.93±0.20i 3.44±0.18g - -
W0N1 414.34±22.55b 466.43±20.54bc 4.94±0.43gh 4.39±0.38ef 13.65±1.19a 1.80±0.31ab
W0N2 372.16±20.31c 481.00±10.16b 6.63±0.33de 5.13±0.26cd 8.22±0.41de 2.29±0.51a
W0N3 392.60±30.25bc 444.48±30.00c 5.66±0.40fg 5.00±0.35cd 4.94±0.35f 0.99±0.20bc
W1N0 384.91±4.83c 453.82±6.51c 4.82±0.20h 4.09±0.17f - -
W1N1 391.40±16.32bc 454.30±13.46c 5.48±0.18gh 4.72±0.15de 14.29±0.46a 1.92±0.27ab
W1N2 315.41±10.14de 383.90±8.43d 8.32±0.42a 6.83±0.34a 8.74±0.44cd 2.56±0.49a
W1N3 333.27±4.00d 394.08±4.32d 7.06±0.39cd 5.97±0.33b 5.23±0.29f 1.10±0.41bc
W2N0 316.98±2.65de 372.03±2.00d 5.36±0.43gh 4.57±0.37def - -
W2N1 290.04±10.48ef 379.58±11.37d 6.28±0.14ef 4.80±0.11de 12.14±0.27b 0.81±0.19bc
W2N2 260.52±10.36g 331.88±3.51e 8.46±0.32a 6.64±0.25a 7.35±0.28e 1.68±0.21ab
W2N3 274.46±5.00fg 385.15±4.64d 7.62±0.62bc 5.43±0.45bc 4.65±0.38f 0.87±0.23bc
W3N0 249.06±5.51gh 294.33f±6.00g 5.49±0.42gh 4.65±0.36def - -
W3N1 227.89±7.89hi 279.43±9.48g 6.20±0.61ef 5.05±0.50cd 9.41±0.92c 0.29±0.03c
W3N2 204.69±9.86i 278.57±6.76g 8.05±0.13ab 5.92±0.12b 5.49±0.09f 0.93±0.44bc
W3N3 215.64±5.43i 309.03±10.21f 6.99±0.55cd 4.88±0.07cde 3.35±0.26g 0.31±0.29c
Analysis of variance
W ** ** ** ** ** **
N ** ** ** ** ** **
W×N ns ** ns ** ** ns
Table 3 Effects of water (W) and nitrogen (N) application levels on irrigation water use efficiency (IWUE), water (WUE), partial factor productivity of nitrogen (PFPN), and nitrogen use efficiency (NUE) of wolfberry
Fig. 5 Correlation analysis between parameters under different water and nitrogen application levels. PH, plant height; SD, stem diameter; N-SCW, north-south crown width; E-WCW, east-west crown width; PDW, dry weight per plant; HDW, dry weight per hundred grains; DWP, dry weight percentage; I, irrigation; N, nitrogen; WC, water consumption; IWUE, irrigation water use efficiency; WUE, water use efficiency; PFPN, partial factor productivity of nitrogen; NUE, nitrogen use efficiency; Y, yield. **, P<0.01 level; *, P<0.05 level. The abbreviations are the same as in the following figures.
Fig. 6 Principal component analysis (PCA) among different indices of wolfberry. PC, principal component.
Fig. 7 Comprehensive scores of wolfberry using multiple indices under different water (W) and nitrogen (N) application levels
[1]   Abdalhi M A M, Cheng J, Feng S, et al. 2016. Performance of drip irrigation and nitrogen fertilizer in irrigation water saving and nitrogen use efficiency for waxy maize (Zea mays L.) and cucumber (Cucumis sativus L.) under solar greenhouse. Grassland Science, 62(3): 174-187.
doi: 10.1111/grs.2016.62.issue-3
[2]   Ahmad I, Wajid S A, Ahmad A, et al. 2019. Optimizing irrigation and nitrogen requirements for maize through empirical modeling in semi-arid environment. Environmental Science and Pollution Research, 26(2): 1227-1237.
doi: 10.1007/s11356-018-2772-x
[3]   Akkamis M, Caliskan S. 2023. Responses of yield, quality and water use efficiency of potato grown under different drip irrigation and nitrogen levels. Scientific Reports, 13: 9911, doi: 10.1038/s41598-023-36934-3.
pmid: 37337006
[4]   Ali S, Hafeez A, Ma X L, et al. 2019. Equal potassium-nitrogen ratio regulated the nitrogen metabolism and yield of high-density late-planted cotton (Gossypium Hirsutum L.) in Yangtze River valley of China. Industrial Crops and Products, 129: 231-241.
doi: 10.1016/j.indcrop.2018.12.009
[5]   Amagase H, Farnsworth N R. 2011. A review of botanical characteristics, phytochemistry, clinical relevance in efficacy and safety of Lycium barbarum fruit (Goji). Food Research International, 44(7): 1702-1717.
doi: 10.1016/j.foodres.2011.03.027
[6]   Badr M A, El-Tohamy W A, Zaghloul A M. 2012. Yield and water use efficiency of potato grown under different irrigation and nitrogen levels in an arid region. Agricultural Water Management, 110: 9-15.
doi: 10.1016/j.agwat.2012.03.008
[7]   De Diego N, Perez-Alfocea F, Cantero E, et al. 2012. Physiological response to drought in radiata pine: Phytohormone implication at leaf level. Tree Physiology, 32(4): 435-449.
doi: 10.1093/treephys/tps029 pmid: 22499594
[8]   Djidonou D, Zhao X, Simonne E H, et al. 2013. Yield, water-, and nitrogen-use efficiency in field-grown, grafted tomatoes. HortScience, 48(4): 485-492.
doi: 10.21273/HORTSCI.48.4.485
[9]   Fu S N, Wei X G, Zheng S Y, et al. 2021. Effects of integrated management of water and fertilizer on the physiological characteristics and water-fertilizer use efficiency of grapes in greenhouse. Transactions of the Chinese Society of Agricultural Engineering, 37(23): 61-72. (in Chinese)
[10]   Ghannem A, Ben Aissa I, Majdoub R. 2021. Effects of regulated deficit irrigation applied at different growth stages of greenhouse grown tomato on substrate moisture, yield, fruit quality, and physiological traits. Environmental Science and Pollution Research International, 28(34): 46553-46564.
doi: 10.1007/s11356-020-10407-w
[11]   Gheith E M S, El-Badry O Z, Lamlom S F, et al. 2022. Maize (Zea mays L.) productivity and nitrogen use efficiency in response to nitrogen application levels and time. Frontiers in Plant Science, 13: 941343, doi: 10.3389/fpls.2022.941343.
[12]   Gu L M, Liu T N, Zhao J, et al. 2015. Nitrate leaching of winter wheat grown in lysimeters as affected by fertilizers and irrigation on the North China Plain. Journal of Integrative Agriculture, 14(2): 374-388.
doi: 10.1016/S2095-3119(14)60747-4
[13]   Hao K, Fei L J, Liu L H, et al. 2022. Comprehensive evaluation on the yield, quality, and water-nitrogen use efficiency of mountain apple under surge-root irrigation in the Loess Plateau based on the improved TOPSIS method. Frontiers in Plant Science, 13: 853546, doi: 10.3389/fpls.2022.853546.
[14]   He Z Q, Li Y Q. 2022. Effects of nitrogen fertilizer application on growth and yield of Lycium ruthenicum Murr. Forest By-Product and Speciality in China, 2: 20-22. (in Chinese)
[15]   Huang L Q, Zhang X B. 2021. Statistical Report on the Production of Chinese Medicinal Materials Nationwide. Shanghai: Shanghai Science and Technology Press. (in Chinese)
[16]   Jia Z L, Bai Y G, Cao B, et al. 2022. Effects of different water treatments on plant growth and yield of Lycium barbarum in northern Xinjiang. Bulletin of Soil and Water, 42(1): 99-105.
[17]   Khoo H E, Azlan A, Tang S T, et al. 2017. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutrition Research, 61(1): 1361779, doi: 10.1080/16546628.2017.1361779.
[18]   Kong Q, Li G, Wang Y, et al. 2012. Bell pepper response to surface and subsurface drip irrigation under different fertigation levels. Irrigation Science, 30(3): 233-245.
doi: 10.1007/s00271-011-0278-0
[19]   Kulczyński B, Gramza-Michałowska A. 2016. Goji berry (Lycium barbarum): Composition and health effects-a review. Polish Journal of Food Nutrition Sciences, 66(2): 67-75.
doi: 10.1515/pjfns-2015-0040
[20]   Kumar R, Pareek N K, Kumar U, et al. 2022. Coupling effects of nitrogen and irrigation levels on growth attributes, nitrogen use efficiency, and economics of cotton. Frontiers in Plant Science, 13: 890181, doi: 10.3389/fpls.2022.890181.
[21]   Lai S D, Qi G P, Cai L H, et al. 2021. Effects of different nitrogen levels on photosynthetic characteristics, yield and quality of Lycium barbarum L. intercropped soybean in Yellow River Irrigation Area of Gansu Province. Crop Research, 35(3): 218-224. (in Chinese)
[22]   Li F Q, Deng H L, Wang Y C, et al. 2021a. Potato growth, photosynthesis, yield, and quality response to regulated deficit drip irrigation under film mulching in a cold and arid environment. Scientific Reports, 11(1): 15888, doi: 10.1038/s41598-021-95340-9.
[23]   Li H H, Liu H, Gong X W, et al. 2020a. Optimizing irrigation and nitrogen management strategy to trade off yield, crop water productivity, nitrogen use efficiency and fruit quality of greenhouse grown tomato. Agricultural Water Management, 245: 106570, doi: 10.1016/j.agwat.2020.106570.
[24]   Li J P, Zhang Z, Yao C S, et al. 2021b. Improving winter wheat grain yield and water-/nitrogen-use efficiency by optimizing the micro-sprinkling irrigation amount and nitrogen application rate. Journal of Integrative Agriculture, 20(2): 606-621.
doi: 10.1016/S2095-3119(20)63407-4
[25]   Li J P, Wang Z M, Song Y H, et al. 2022a. Effects of reducing nitrogen application rate under different irrigation methods on grain yield, water and nitrogen utilization in winter wheat. Agronomy-Basel, 12(8): 1835, doi: 10.3390/agronomy12081835.
[26]   Li J S, Yang Z Q, Wang M T, et al. 2019a. Effect of water and nitrogen coupling on nitrogen metabolism enzyme activities in grapevine seedling leaves. Chinese Journal of Agrometeorology, 40(6): 368-379. (in Chinese)
[27]   Li X D, Kang T L, Liu X Z, et al. 2017. Development suggestions and status of wolfberry industry in Gansu Province. Gansu Agricultural Science Techology, 28(1): 65-69. (in Chinese)
[28]   Li X F, Ma J J, Zheng L J, et al. 2022b. Effects of water deficit at growth stages and nitrogen application on leaf enzyme activities and water and nitrogen use efficiency of greenhouse tomato. Agricultural Research in the Arid Areas, 40(3): 121-128. (in Chinese)
[29]   Li X M, Qi G P, Kang Y X, et al. 2020b. Effects of Lycium barbarum intercropping with Onobrychis viciaefolia on soil water, soil salt transport, and yield of Lycium barbarum in different salinized soils. Bulletin of Soil and Water Conservation, 40(1): 51-57. (in Chinese)
[30]   Li X X, Liu H G, He X L, et al. 2019b. Water-nitrogen coupling and multi-objective optimization of cotton under mulched drip irrigation in arid northwest China. Agronomy-Basel, 9(12): 894, doi: 10.3390/agronomy9120894.
[31]   Liao Q, Ding R S, Du T S, et al. 2022. Stomatal conductance drives variations of yield and water use of maize under water and nitrogen stress. Agricultural Water Management, 268: 107651, doi: 10.1016/j.agwat.2022.107651.
[32]   Lin E, Liu H G, He X L, et al. 2019. Water-nitrogen coupling effect on drip-irrigated dense planting of dwarf jujube in an extremely arid area. Agronomy-Basel, 9(6): 561, doi: 10.3390/agronomy9090561.
[33]   Liu C Y, Wang K, Meng S X, et al. 2011. Effects of irrigation, fertilization and crop straw management on nitrous oxide and nitric oxide emissions from a wheat-maize rotation field in northern China. Agriculture Ecosystems & Environment, 140(1-2): 226-233.
doi: 10.1016/j.agee.2010.12.009
[34]   Liu P Z, Li M H, Song Y C, et al. 2021. Effects of fertigation on yield, water and nitrogen utilization and economic productivity benefit of wolfberry (Lycium barbarum L.). Journal of Plant Nutrition and Fertilizers, 27(10): 1820-1828. (in Chinese)
[35]   Ma X, Sanguinet K, Jacoby P. 2019. Performance of direct root-zone deficit irrigation on Vitis vinifera L. cv. cabernet sauvignon production and water use efficiency in semi-arid southcentral Washington. Agricultural Water Management, 221: 47-57.
doi: 10.1016/j.agwat.2019.04.023
[36]   Ma X D, Guo Y H, Du T, et al. 2021. Effects of nitrogen application on diurnal variation of photosynthesis and yield of two Lycium species. China Agricultural Science and Technology Herald, 23(4): 173-182. (in Chinese)
[37]   Muatasim R, Ma H L, Yang X. 2018. Effect of multimode ultrasound assisted extraction on the yield of crude polysaccharides from Lycium barbarum (Goji). Food Science and Technology, 38: 160-166.
doi: 10.1590/1678-457x.14417
[38]   Ogle S M, Mccarl B A, Baker J, et al. 2016. Managing the nitrogen cycle to reduce greenhouse gas emissions from crop production and biofuel expansion. Mitigation and Adaptation Strategies for Global Change, 21(8): 1197-1212.
doi: 10.1007/s11027-015-9645-0
[39]   Qi D L, Hu T T. 2020. Effects of nitrogen application rates and irrigation regimes on root growth and nitrogen-use efficiency of maize under alternate partial root-zone irrigation. Journal of Soil and Plant Nutrition, 22: 2793-2804.
[40]   Qi G P, Yin M H, Su P H, et al. 2019. Effects of water regulation on photosynthetic characteristics and water use of Lycium barbarum under the mode of intercropping alfalfa and Lycium barbarum. Journal of Soil and Water Conservation, 33(6): 242-248. (in Chinese)
[41]   Rueda-Ayala V P, Pena J M, Hoglind M, et al. 2019. Comparing UAV-based technologies and RGB-D reconstruction methods for plant height and biomass monitoring on grass ley. Sensors, 19(3): 535, doi: 10.3390/s19030535.
[42]   Si Z Y, Zain M, Mehmood F, et al. 2020. Effects of nitrogen application rate and irrigation regime on growth, yield, and water-nitrogen use efficiency of drip-irrigated winter wheat in the North China Plain. Agricultural Water Management, 231: 106002, doi: 10.1016/j.agwat.2020.106002.
[43]   Song Y C, Chen X L, Ren X L, et al. 2019. Combined effects of regulated deficit irrigation and reduced nitrogen fertilization on yield and growth of Chinese wolfberry. Northwest Agricultural Journal, 28(10): 1666-1673. (in Chinese)
[44]   Stamatiadis S, Tsadilas C, Samaras V, et al. 2016. Nitrogen uptake and N-use efficiency of Mediterranean cotton under varied deficit irrigation and N fertilization. European Journal of Agronomy, 73: 144-151.
doi: 10.1016/j.eja.2015.11.013
[45]   Tang L S, Li Y, Zhang J H. 2010. Partial root zone irrigation increases water use efficiency, maintains yield and enhances economic profit of cotton in arid area. Agricultural Water Management, 97(10): 1527-1533.
doi: 10.1016/j.agwat.2010.05.006
[46]   Wang L, Pan Q L, Li R J, et al. 2015. The application of fertigation in Qaidam wolfberry production. Journal of Qinghai University: Natural Science Edition, 33(2): 24-28. (in Chinese)
[47]   Wang W J, Wang L J. 2018. The present situation and suggestion of product development of Lycium barbarum in Jingyuan County, Gansu Province. Market Modernization, (16): 11-12. (in Chinese)
[48]   Wang X F, Xia J B. 2012. Function of reducing soil salinity and soil improvement of different vegetation types in Yellow River Irrigation Area of the Yellow River Delta. Journal of Soil and Water Conservation, 26(3): 141-144. (in Chinese)
[49]   Wang X K, Yun J, Shi P, et al. 2019a. Root growth, fruit yield and water use efficiency of greenhouse grown tomato under different irrigation regimes and nitrogen levels. Journal of Plant Growth Regulation, 38(2): 400-415.
doi: 10.1007/s00344-018-9850-7
[50]   Wang Y, Jin H Y, Dong X, et al. 2019b. Quality evaluation of Lycium barbarum (wolfberry) from different regions in China based on polysaccharide structure, yield and bioactivities. Chinese Medicine, 14(1): 49, doi: 10.1186/s13020-019-0273-6.
[51]   Wozniak J R, Swannack T M, Butzler R, et al. 2012. River inflow, estuarine salinity, and Carolina wolfberry fruit abundance: Linking abiotic drivers to Whooping Crane food. Journal of Coastal Conservation, 16(3): 345-354.
doi: 10.1007/s11852-012-0205-4
[52]   Wu K, Wang S S, Song W Z, et al. 2020. Enhanced sustainable green revolution yield via nitrogen-responsive chromatin modulation in rice. Science, 367(6478): 641, doi: 10.1126/science.aaz2046.
[53]   Xu Q, Zheng G Q. 2009. Effects of different irrigation methods on main quality of Lycium barbarum fruit in Ningxia. Jiangsu Agricultural Sciences, 37(6): 256-258. (in Chinese)
[54]   Yan W K, Fregeau-Reid J, Ma B L, et al. 2017. Nitrogen fertilizer complements breeding in improving yield and quality of milling oat. Crop Science, 57(6): 3291-3302.
doi: 10.2135/cropsci2017.05.0290
[55]   Yang Y P, Yin J, Ma Z H, et al. 2023. Water and nitrogen regulation effects and system optimization for potato (Solanum tuberosum L.) under film drip irrigation in the dry zone of Ningxia China. Agronomy-Basel, 13(2): 308, doi: 10.3390/agronomy13020308.
[56]   Yao R, Heinrich M, Weckerle C S. 2018. The genus Lycium as food and medicine: A botanical, ethnobotanical and historical review. Ethnopharmacol, 212: 50-66.
doi: 10.1016/j.jep.2017.10.010
[57]   Yin Z R, Lei J Y, Gui L G, et al. 2018. Impact of drip irrigation amount on growth, yield and quality of different varieties of wolfberry. Journal of Irrigation and Drainage, 37(10): 28-34. (in Chinese)
[58]   Zhang J X, Sha Z M, Zhang Y, et al. 2015a. The effects of different water and nitrogen levels on yield, water and nitrogen utilization efficiencies of spinach (Spinacia oleracea L.). Canadian Journal of Plant Science, 95: 671-679.
doi: 10.4141/cjps-2014-184
[59]   Zhang Y, Wang P J, Wang L, et al. 2015b. The influence of facility agriculture production on phthalate esters distribution in black soils of Northeast China. Science of the Total Environment, 506-507: 118-125.
doi: 10.1016/j.scitotenv.2014.10.075
[60]   Zhang Y C, Zhang F C, Fan J L, et al. 2020. Effects of drip irrigation technical parameters on cotton growth, soil moisture and salinity in Southern Xinjiang. Transactions of the Chinese Society of Agricultural Engineering, 36(24): 107-117. (in Chinese)
[61]   Zhang Y H, Wei Y H, Zheng G B, et al. 2018. Effects of different fertilization amounts on growth, yield and appearance quality of Lycium barbarum in southern Xinjiang. Xinjiang Agricultural Science and Technology Herald, 55(12): 2203-2211. (in Chinese)
[62]   Zhao M, Qi G P, Cai L H, et al. 2021. Effects of water regulation and planting patterns on growth and water use efficiency of Lycium barbarum. Agricultural Engineering, 11(8): 75-81. (in Chinese)
[63]   Zhao Y B, Yin J, Cheng L, et al. 2018. Influence of irrigation quota on growth index and yield of Lycium under different planting modes. Water Saving Irrigation, 25(6): 35-40. (in Chinese)
[64]   Zhou Y, Gao X D, Wang J X, et al. 2021. Water-use patterns of Chinese wolfberry (Lycium barbarum L.) on the Tibetan Plateau. Agricultural Water Management, 255(12): 107010, doi: 10.1016/j.agwat.2021.107010.
[1] ZHAO Xiaohan, HAN Dianchen, LU Qi, LI Yunpeng, ZHANG Fangmin. Spatiotemporal variations in ecological quality of Otindag Sandy Land based on a new modified remote sensing ecological index[J]. Journal of Arid Land, 2023, 15(8): 920-939.
[2] Reza DEIHIMFARD, Sajjad RAHIMI-MOGHADDAM, Farshid JAVANSHIR, Alireza PAZOKI. Quantifying major sources of uncertainty in projecting the impact of climate change on wheat grain yield in dryland environments[J]. Journal of Arid Land, 2023, 15(5): 545-561.
[3] Mohamed K EL-GHANNAM, Fatma WASSAR, Sabah MORSY, Mohamed HAFEZ, Chiter M PARIHAR, Kent O BURKEY, Ahmed M ABDALLAH. Controlled drainage in the Nile River delta of Egypt: a promising approach for decreasing drainage off-site effects and enhancing yield and water use efficiency of wheat[J]. Journal of Arid Land, 2023, 15(4): 460-476.
[4] LI Hongfang, WANG Jian, LIU Hu, MIAO Henglu, LIU Jianfeng. Responses of vegetation yield to precipitation and reference evapotranspiration in a desert steppe in Inner Mongolia, China[J]. Journal of Arid Land, 2023, 15(4): 477-490.
[5] CAO Yijie, MA Yonggang, BAO Anming, CHANG Cun, LIU Tie. Evaluation of the water conservation function in the Ili River Delta of Central Asia based on the InVEST model[J]. Journal of Arid Land, 2023, 15(12): 1455-1473.
[6] YAN Xue, LI Lanhai. Spatiotemporal characteristics and influencing factors of ecosystem services in Central Asia[J]. Journal of Arid Land, 2023, 15(1): 1-19.
[7] Lobna MNIF FAKHFAKH, Mohamed CHAIEB. Effects of water stress on growth phenology photosynthesis and leaf water potential in Stipagrostis ciliata (Desf.) De Winter in North Africa[J]. Journal of Arid Land, 2023, 15(1): 77-90.
[8] WANG Fengjiao, FU Bojie, LIANG Wei, JIN Zhao, ZHANG Liwei, YAN Jianwu, FU Shuyi, GOU Fen. Assessment of drought and its impact on winter wheat yield in the Chinese Loess Plateau[J]. Journal of Arid Land, 2022, 14(7): 771-786.
[9] SUN Dingzhao, LIANG Youjia, PENG Shouzhang. Scenario simulation of water retention services under land use/cover and climate changes: a case study of the Loess Plateau, China[J]. Journal of Arid Land, 2022, 14(4): 390-410.
[10] WU Changxue, QIU Dexun, GAO Peng, MU Xingmin, ZHAO Guangju. Application of the InVEST model for assessing water yield and its response to precipitation and land use in the Weihe River Basin, China[J]. Journal of Arid Land, 2022, 14(4): 426-440.
[11] WANG Hongwei, QI Yuan, LIAN Xihong, ZHANG Jinlong, YANG Rui, ZHANG Meiting. Effects of climate change and land use/cover change on the volume of the Qinghai Lake in China[J]. Journal of Arid Land, 2022, 14(3): 245-261.
[12] Mohammad KHEIRI, Jafar KAMBOUZIA, Reza DEIHIMFARD, Saghi M MOGHADDAM, Seyran ANVARI. Assessing the response of dryland barley yield to climate variability in semi-arid regions, Iran[J]. Journal of Arid Land, 2021, 13(9): 905-917.
[13] HUANG Laiming, ZHAO Wen, SHAO Ming'an. Response of plant physiological parameters to soil water availability during prolonged drought is affected by soil texture[J]. Journal of Arid Land, 2021, 13(7): 688-698.
[14] Batande Sinovuyo NDZELU, DOU Sen, ZHANG Xiaowei. Corn straw return can increase labile soil organic carbon fractions and improve water-stable aggregates in Haplic Cambisol[J]. Journal of Arid Land, 2020, 12(6): 1018-1030.
[15] HE Mingzhu, JI Xibin, BU Dongsheng, ZHI Jinhu. Cultivation effects on soil texture and fertility in an arid desert region of northwestern China[J]. Journal of Arid Land, 2020, 12(4): 701-715.