Please wait a minute...
Journal of Arid Land  2022, Vol. 14 Issue (4): 411-425    DOI: 10.1007/s40333-022-0093-x     CSTR: 32276.14.s40333-022-0093-x
Research article     
Study of the intensity and driving factors of land use/cover change in the Yarlung Zangbo River, Nyang Qu River, and Lhasa River region, Qinghai-Tibet Plateau of China
LUO Jing1,2, XIN Liangjie3,*(), LIU Fenggui1,2,*(), CHEN Qiong1, ZHOU Qiang1, ZHANG Yili3,4
1College of Geographic Sciences, Qinghai Normal University, Xining 810008, China
2Academy of Plateau Science and Sustainability, Xining 810008, China
3Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
4Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101, China
Download: HTML     PDF(1559KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Land use/land cover (LULC) is an important part of exploring the interaction between natural environment and human activities and achieving regional sustainable development. Based on the data of LULC types (cropland, forest land, grassland, built-up land, and unused land) from 1990 to 2015, we analysed the intensity and driving factors of land use/cover change (LUCC) in the Yarlung Zangbo River, Nyang Qu River, and Lhasa River (YNL) region, Qinghai-Tibet Plateau of China, using intensity analysis method, cross-linking table method, and spatial econometric model. The results showed that LUCC in the YNL region was nonstationary from 1990 to 2015, showing a change pattern with "fast-slow-fast" and "U-shaped". Built-up land showed a steady increase pattern, while cropland showed a steady decrease pattern. The gain of built-up land mainly came from the loss of cropland. The transition pattern of LUCC in the YNL region was relatively single and stable during 1990-2015. The transition pattern from cropland and forest land to built-up land was a systematic change process of tendency and the transition pattern from grassland and unused land to cropland was a systematic change process of avoidance. The transition process of LUCC was the result of the combined effect of natural environment and social economic development in the YNL region. This study reveals the impact of ecological environment problems caused by human activities on the land resource system and provides scientific support for the study of ecological environment change and sustainable development of the Qinghai-Tibet Plateau.



Key wordsland use/cover change      intensity analysis      driving factors      Yarlung Zangbo River      Nyang Qu River      Lhasa River      Qinghai-Tibet Plateau     
Received: 30 August 2021      Published: 30 April 2022
Corresponding Authors: *XIN Liangjie (E-mail: xinlj@igsnrr.ac.cn);LIU Fenggui (E-mail: lfg_918@163.com)
Cite this article:

LUO Jing, XIN Liangjie, LIU Fenggui, CHEN Qiong, ZHOU Qiang, ZHANG Yili. Study of the intensity and driving factors of land use/cover change in the Yarlung Zangbo River, Nyang Qu River, and Lhasa River region, Qinghai-Tibet Plateau of China. Journal of Arid Land, 2022, 14(4): 411-425.

URL:

http://jal.xjegi.com/10.1007/s40333-022-0093-x     OR     http://jal.xjegi.com/Y2022/V14/I4/411

Fig. 1 Land use/land cover (LULC) types in the Yarlung Zangbo River, Nyang Qu River, and Lhasa River (YNL) region in 2015. LULC types data were obtained from the Resource and Environmental Science Data Centre of the Chinese Academy of Sciences (http://www.resdc.cn).
Intensity analysis Characterisation index Calculation formula
Interval level Intensity of LUCC in each time interval ${{S}_{t}}=\frac{\left\{ \underset{j=1}{\overset{J}{\mathop{\mathop{\sum }^{}}}}\,\left[ \left( \underset{i=1}{\overset{J}{\mathop{\mathop{\sum }^{}}}}\,{{C}_{tij}} \right)-{{C}_{tjj}} \right] \right\}\div \left[ \underset{j=1}{\overset{J}{\mathop{\mathop{\sum }^{}}}}\,\left( \underset{i=1}{\overset{J}{\mathop{\mathop{\sum }^{}}}}\,{{C}_{tij}} \right) \right]}{{{Y}_{t+1}}-{{Y}_{t}}}\times 100\text{ }\!\!%\!\!\text{ }$.
Uniform intensity within the overall time interval $U=\frac{\underset{t=1}{\overset{T-1}{\mathop{\mathop{\sum }^{}}}}\,\left\{ \underset{j=1}{\overset{J}{\mathop{\mathop{\sum }^{}}}}\,\left[ \left( \underset{i=1}{\overset{J}{\mathop{\mathop{\sum }^{}}}}\,{{C}_{tij}} \right)-{{C}_{tjj}} \right] \right\}\div \left[ \underset{j=1}{\overset{J}{\mathop{\mathop{\sum }^{}}}}\,\left( \underset{i=1}{\overset{J}{\mathop{\mathop{\sum }^{}}}}\,{{C}_{tij}} \right) \right]}{{{Y}_{T}}-{{Y}_{1}}}\times 100\text{ }\!\!%\!\!\text{ }$
Category level Annual gain intensity ${{G}_{tj}}=\frac{\left[ \left( \underset{i=1}{\overset{J}{\mathop{\mathop{\sum }^{}}}}\,{{C}_{tij}} \right)-{{C}_{jj}} \right]\div ({{Y}_{t+1}}-{{Y}_{t}})}{\underset{i=1}{\overset{J}{\mathop{\mathop{\sum }^{}}}}\,{{C}_{tij}}}\times 100\text{ }\!\!%\!\!\text{ }$
Annual loss intensity ${{L}_{ti}}=\frac{\left[ \left( \underset{j=1}{\overset{J}{\mathop{\mathop{\sum }^{}}}}\,{{C}_{tij}} \right)-{{C}_{ii}} \right]\div ({{Y}_{t+1}}-{{Y}_{t}})}{\underset{j=1}{\overset{J}{\mathop{\mathop{\sum }^{}}}}\,{{C}_{tij}}}\times 100\text{ }\!\!%\!\!\text{ }$
Transition level Transition intensity of LULC type n gains from LULC type i in a particular time interval ${{R}_{tin}}=\frac{{{C}_{tin}}\div ({{Y}_{t+1}}-{{Y}_{t}})}{\underset{j=1}{\overset{J}{\mathop{\mathop{\sum }^{}}}}\,{{C}_{tij}}}\times 100\text{ }\!\!%\!\!\text{ }$
The uniform transition intensity of LULC type n from other LULC types in a particular time interval ${{W}_{tn}}=\frac{\left[ \left( \underset{i=1}{\overset{J}{\mathop{\mathop{\sum }^{}}}}\,{{C}_{tin}} \right)-{{C}_{tnn}} \right]\div ({{Y}_{t+1}}-{{Y}_{t}})}{\underset{j=1}{\overset{J}{\mathop{\mathop{\sum }^{}}}}\,\left[ \left( \underset{i=1}{\overset{j}{\mathop{\mathop{\sum }^{}}}}\,{{C}_{tij}} \right)-{{C}_{tnj}} \right]}\times 100\text{ }\!\!%\!\!\text{ }$
Transition intensity of LULC type m loses to LULC type j in a particular time interval $Q_{t m j}=\frac{C_{t m j} \div\left(Y_{t+1}-Y_{t}\right)}{\sum_{i=1}^{J} C_{t j}} \times 100 \%$
The uniform transition intensity of LULC type m to other LULC types in a particular time interval ${{V}_{tm}}=\frac{\left[ \left( \underset{j=1}{\overset{J}{\mathop{\mathop{\sum }^{}}}}\,{{C}_{tmj}} \right)-{{C}_{tmm}} \right]\div \left( {{Y}_{t+1}}-{{Y}_{t}} \right)}{\underset{i=1}{\overset{J}{\mathop{\mathop{\sum }^{}}}}\,\left[ \left( \underset{j=1}{\overset{j}{\mathop{\mathop{\sum }^{}}}}\,{{C}_{tij}} \right)-{{C}_{tim}} \right]}\times 100\text{ }\!\!%\!\!\text{ }$
Table 1 Calculation formula of intensity analysis of land use/cover change (LUCC) at interval level, category level, and transition level
Year Cropland Forest land Grassland Built-up land Unused land
Area
(km2)
Percentage (%) Area
(km2)
Percentage (%) Area (km2) Percentage (%) Area (km2) Percentage (%) Area
(km2)
Percentage (%)
1990 2729.81 3.66 1973.64 2.65 59,570.35 79.93 94.74 0.13 10,155.46 13.63
2000 2723.88 3.66 2103.01 2.82 59,495.49 79.83 110.59 0.15 10,091.03 13.54
2010 2711.28 3.64 2102.77 2.82 59,485.41 79.82 133.97 0.18 10,090.57 13.54
2015 2689.30 3.61 2097.70 2.82 59,445.90 79.77 165.96 0.22 10,125.13 13.59
Table 2 Change in area and percentage of land use/land cover (LULC) types in the Yarlung Zangbo River, Nyang Qu River, and Lhasa River (YNL) region in 1990, 2000, 2010, and 2015
Fig. 2 Change in area and intensity of LUCC at interval level in the YNL region during 1990-2000, 2000-2010, and 2010-2015
Fig. 3 Change in area and intensity of LUCC at category level in the YNL region during 1990-2000 (a), 2000-2010 (b), and 2010-2015 (c)
Fig. 4 Change in area and transition intensity of built-up land gaining from other LULC types in the YNL region during 1990-2000 (a), 2000-2010 (b), and 2010-2015 (c)
Fig. 5 Change in area and transition intensity of grassland losing to other LULC types in the YNL region during 1990-2000 (a), 2000-2010 (b), and 2010-2015 (c)
Fig. 6 Process and transition pattern of LUCC in the YNL region from 1990 to 2015. Note: stability, LULC type i and LULC type j remain constant; avoidance, the gain of LULC type j avoids transition from LULC type i in the time interval; tendency, the loss of LULC type i tends to be transformed to LULC type j in the time interval.
Fig. 7 Spatial distribution and change in area of LUCC in the YNL region (a), Xigaze City (b), Lhasa City (c), and Shannan Prefecture (d) from 1990 to 2015. "-", the transition process from LUCC type to another LUCC type.
Parameter Transition process of LULC types
C-B F-B G-B G-F U-F G-U
Moran's I 0.46*** 0.59*** 0.47*** 0.57*** 0.47*** 0.65***
Z value 12.58 5.50 11.84 20.24 20.24 15.20
Lagrange multiplier (lag) 165.99*** 35.22*** 152.46*** 463.60*** 247.03*** 172.71***
Robust LM (lag) 25.21*** 8.69*** 27.96*** 103.76*** 54.65*** 24.54***
Lagrange multiplier (error) 143.31*** 27.49*** 127.03*** 365.28*** 201.51*** 148.30***
Robust LM (error) 2.53 0.96 2.52 5.45 9.13*** 0.12
Model selection Spatial lag model Spatial lag model Spatial lag model Spatial lag model Spatial lag model Spatial lag model
Table 3 Results of spatial econometric model in the YNL region
Driving factor Transition process of LULC types
C-B F-B G-B G-F U-F G-U
Elevation -2.41** 0.52 -0.42 4.49*** -3.11*** 4.49***
Slope 0.88 -2.78*** -4.02*** -9.68*** -2.70*** -10.35***
Distance to rivers -0.22 -0.52 -1.96* -4.92*** 8.42*** 1.32
Distance to traffic routes -1.28 -2.11** -1.41 0.39 -0.70 12.02***
Table 4 Correlation coefficients between LUCC transition process and driving factors using the spatial regression analysis in the YNL region
Fig. 8 Percentage of the primary, secondary, and tertiary industries in the YNL region from 1990 to 2015
Fig. 9 Average annual growth rate of rural population and urban population in the YNL region from 1990 to 2015. The population data were from the Tibet Statistical Yearbook (Tibet Autonomous Region Statistical Bureau, National Bureau of Statistics Tibet Investigation Corps, 1990-2015).
[1]   Albert C H, Hervé M, Fader M, et al. 2020. What ecologists should know before using land use/cover change projections for biodiversity and ecosystem service assessments. Regional Environmental Change, 20(3): 106, doi: 10.1007/s10113-020-01675-w.
doi: 10.1007/s10113-020-01675-w
[2]   Aldwaik S Z, Pontius R G J. 2012. Intensity analysis to unify measurements of size and stationarity of land changes by interval, category, and transition. Landscape and Urban Planning, 106(1): 103-114.
doi: 10.1016/j.landurbplan.2012.02.010
[3]   Andoh J, Lee Y. 2018. Forest transition through reforestation policy integration: A comparative study between Ghana and the Republic of Korea. Forest Policy and Economics, 90: 12-21.
doi: 10.1016/j.forpol.2018.01.009
[4]   Anselin L. 1988. Lagrange multiplier test diagnostics for spatial dependence and spatial heterogeneity. Geographical Analysis, 20: 1-17.
doi: 10.1111/j.1538-4632.1988.tb00159.x
[5]   Anselin L. 2005. Exploring Spatial Data with GeoDa:A Workbook. New York: Center for Spatially Integrated Social Science.
[6]   Aytursun S, Alxir Y, Liu X M, et al. 2020. Carbon intensity of land use in Urumqi city based on spatial-temporal evolution. Chinese Journal of Agricultural Resources and Regional Planning, 41(2): 139-146. (in Chinese)
[7]   Burridge P. 1980. On the Cliff-Ord Test for spatial correlation. Journal of the Royal Statistical Society: Series B, 42(1): 107-108.
[8]   Chen F, Chen G, Bao H S, et al. 2001. Analysis on land use change and human driving force in urban fringe. Journal of Natural Resources, 16(3): 204-210. (in Chinese)
[9]   Chen L G, Yang X Y, Chen L Q, et al. 2015. Impact assessment of land use planning driving forces on environment. Environment Impact Assessment Review, 55(8): 126-135.
doi: 10.1016/j.eiar.2015.08.001
[10]   Dong G, He L, Wang Y J, et al. 2020. Study on spatial-temporal pattern of land use change in Yi County, Hebei Province from1990 to 2017. Chinese Journal of Agricultural Resources and Regional Planning, 41(1): 242-249. (in Chinese)
[11]   Dong J H, Zhang Z B, Da X J, et al. 2021. Eco-environmental effects of land use transformation and its driving forces from the perspective of "production-living-ecological" spaces: a case study of Gansu Province. Acta Ecologica Sinica, 41(15): 5919-5928. (in Chinese)
[12]   Fan J, Xu Y D, Shao Y. 2003. The human geography view of land use study and new proposition. Progress in Geography, 22(1): 1-10. (in Chinese)
[13]   Fan J, Xu Y, Wang C S, et al. 2015. The effects of human activities on the ecological environment of Tibet over the past half century. Scientific Bulletin, 60(32): 3057-3066. (in Chinese)
[14]   Gallo J L, Chasco C. 2015. Spatial econometrics principles and challenges in Jean Paelinck's research. Spatial Economic Analysis, 10(3): 263-269.
doi: 10.1080/17421772.2015.1062602
[15]   Gao Q, Miao Y, Song J P. 2021. Research progress on the sustainable development of Qinghai-Tibet Plateau. Geographical Research, 40(1): 1-17. (in Chinese)
doi: 10.11821/dlyj020200614
[16]   Geng X L, Zhang J J, Wei C L, et al. 2018. Study on the change of land use intensity in mining cities based on multilevel decision take Wuan city of Hebei province as an example. China Mining Magazine, 27(5): 106-112. (in Chinese)
[17]   Ghurah M A, Kamarudin M, Wahab N A, et al. 2018. Temporal change detection of land use/land cover using GIS and remote sensing techniques in South Ghor Regions, Al-Karak, Jordan. Journal of Fundamental and Applied Sciences, 10(2): 95-111.
[18]   Gitau M, Bailey N. 2012. Multi-layer assessment of land use and related changes for decision support in a coastal zone watershed. Land, 1(1): 5-27.
doi: 10.3390/land1010005
[19]   Han J J, Zou Y L. 2019. Spatial differences and scale determination of regional grain reserves. Journal of Natural Resources, 34(3): 464-472. (in Chinese)
doi: 10.31497/zrzyxb.20190302
[20]   Li Q Y, Sun Y W, Yuan W L, et al. 2017. Streamflow responses to climate change and LUCC in a semi-arid watershed of Chinese Loess Plateau. Journal of Arid Land, 9(4): 609-621.
doi: 10.1007/s40333-017-0095-2
[21]   Li T T, Long H L, Liu Y Q, et al. 2015. Multi-scale analysis of rural housing land transition under China's rapid urbanization: The case of Bohai Rim. Habitat International, 48(4): 227-238.
doi: 10.1016/j.habitatint.2015.04.002
[22]   Li Y, Xiao L M, Hu W M, et al. 2021. Spatio-temporal pattern of land use change in Changsha-Zhuzhou-Xiangtan core areas and its driving forces. Economic Geography, 41(7): 173-182. (in Chinese)
[23]   Lu X H, Tang Y F, Yi J L, et al. 2019. Study on the Impact of cultivated land use transition on agricultural economic growth based on spatial econometric model. China Land Science, 33(6): 53-61. (in Chinese)
[24]   Niu L L, Zhang B C, Jia T Z. 2021. Analysis on intensity and stability of land use change in Haixi Mongolian and Tibetan Autonomous Prefecture of Qinghai Province. Journal of Soil and Water Conservation, 35(2): 152-159. (in Chinese)
[25]   Pontius R G J, Yan G, Nicholas M G, et al. 2013. Design and interpretation of intensity analysis illustrated by land change in central Kalimantan, Indonesia. Land, 2(3): 351-369.
doi: 10.3390/land2030351
[26]   Rimal B, Sharma R, Kunwar R M, et al. 2019. Effects of land use and land cover change on ecosystem services in the Koshi River Basin, Eastern Nepal. Ecosystem Services, 38: 100963, doi: 10.1016/j.ecoser.2019.100963.
doi: 10.1016/j.ecoser.2019.100963
[27]   Romero-Rui M H, Flantua S G A, Tansey K, et al. 2011. Landscape transformations in savannas of northern South America: Land use/cover changes since 1987 in the Llanos Orientales of Colombia. Applied Geography, 32(2): 766-776.
doi: 10.1016/j.apgeog.2011.08.010
[28]   Shoyama K, Braimoh A K, et al. 2010. Analyzing about sixty years of land-cover change and associated landscape fragmentation in Shiretoko Peninsula, Northern Japan. Landscape and Urban Planning, 101(1): 22-29.
doi: 10.1016/j.landurbplan.2010.12.016
[29]   Sun Y H, Guo T, Cui X M. 2016. Intensity analysis and stationarity of land use change in Kunming City. Progress in Geography, 35(2): 245-254. (in Chinese)
[30]   Tang W, Zhong X H, Zhou W. 2011. Study on the evolution of spatial distribution structure of population in "Three Rivers" area in Tibet. China Population, Resources and Environment, 21(3): 159-164. (in Chinese)
[31]   Tao J P, Wang Y K, Liu F G, et al. 2016. Identification and determination of its critical values for influencing factors of cultivated land reclamation strength in region of Brahmaputra River and its two tributaries in Tibet. Transactions of the Chinese Society of Agricultural Engineering, 32(15): 239-246. (in Chinese)
[32]   Tian J F, Wang B Y, Cheng L S, et al. 2020. The process and mechanism of regional land use transition guided by policy: A case study of Northeast China. Geographical Research, 39(4): 805-821. (in Chinese)
[33]   Tibet Autonomous Region Statistical Bureau, National Bureau of Statistics Tibet Investigation Corps. 1990- 2015. Tibet Statistical Yearbook. Beijing: China Statistics Press. (in Chinese)
[34]   Tsai Y, Zia A, Koliba C, et al. 2015. An interactive land use transition agent-based model (ILUTABM): Endogenizing human-environment interactions in the Western Missisquoi Watershed. Land Use Policy, 49(7): 161-176.
doi: 10.1016/j.landusepol.2015.07.008
[35]   Wang C, Zhang X Y, Ghadimi P, et al. 2019. The impact of regional financial development on economic growth in Beijing-Tianjin-Hebei region: A spatial econometric analysis. Physica A: Statistical Mechanics and its Applications, 521: 635-648.
doi: 10.1016/j.physa.2019.01.103
[36]   Wang J, He T, Lin Y F. 2017. Changes in ecological, agricultural, and urban land space in 1984-2012 in China: Land policies and regional social-economical drivers. Habitat International, 71(10): 1-13.
doi: 10.1016/j.habitatint.2017.10.010
[37]   Wang N, Yang G, Han X Y, et al. 2020. Land use change and ecosystem service value in Inner Mongolia from 1990 to 2018. Journal of Soil and Water Conservation, 34(5): 244-250. (in Chinese)
[38]   Wei H, Xiong L Y, Tang G A, et al. 2021. Spatial-temporal variation of land use and land cover change in the glacial affected area of the Tianshan Mountains. CATENA, 202(6): 105256, doi: 10.1016/j.catena.2021.105256.
doi: 10.1016/j.catena.2021.105256
[39]   Wu D, Chen F H, Li K, et al. 2016. Effects of climate change and human activity on lake shrinkage in Gonghe Basin of northeastern Tibetan Plateau during the past 60 years. Journal of Arid Land, 8(4): 479-491.
doi: 10.1007/s40333-016-0125-5
[40]   Xiong J H, Yue W Z, Chen Y, et al. 2021. Multi-scenario urban expansion simulation for SDGs: Taking the Central Asian region along the Belt and Road as an example. Journal of Natural Resources, 36(4): 841-853. (in Chinese)
doi: 10.31497/zrzyxb.20210403
[41]   Yang J X, Gong J, Gao J, et al. 2019. Stationary and systematic characteristics of land use and land cover change in the national central cities of China using intensity analysis: A case study of Wuhan City. Resources Science, 41(4): 701-716.
[42]   Yu Y, Chen X, Malik I, et al. 2021. Spatiotemporal changes in water, land use, and ecosystem services in Central Asia considering climate changes and human activities. Journal of Arid Land, 13(9): 881-890.
doi: 10.1007/s40333-021-0084-3
[43]   Zhang B F, Miao C H. 2020. Spatiotemporal changes and driving forces of land use in the Yellow River Basin. Resources Science, 42(3): 460-473. (in Chinese)
[44]   Zhang H G. 2016. Study on ecological environment of Tibet "YLN" agricultural watershed problems in the new period. Tibet Journal of Agricultural Sciences, 38(1): 41-45. (in Chinese)
[45]   Zhang J, Wu S H, Liu Y H, et al. 2007. Simulation of distribution of agriculture output value influenced by land use and topographical indices in Tibet. Transactions of the Chinese Society of Agricultural Engineering, 23(4): 59-65. (in Chinese)
[46]   Zhang Y L, Li L H, Ding M J, et al. 2017. Greening of the Tibetan Plateau and its drivers since 2000. Chinese Journal of Nature, 39(3): 173-178. (in Chinese)
[47]   Zhu X Y, Wang Z M, Xu D W, et al. 2020. Analysis of land use change and driving forces in ecological functional area of Hulunber Grassland. Chinese Journal of Agricultural Resources and Regional Planning, 41(4): 74-82. (in Chinese)
[1] CHANG Sen, WEI Yaqi, DAI Zhenzhong, XU Wen, WANG Xing, DUAN Jiajia, ZOU Liang, ZHAO Guorong, REN Xiaoying, FENG Yongzhong. Landscape ecological risk assessment and its driving factors in the Weihe River basin, China[J]. Journal of Arid Land, 2024, 16(5): 603-614.
[2] ZHANG Yan, ZHANG Zhengcai, MA Pengfei, PAN Kaijia, ZHA Duo, CHEN Dingmei, SHEN Caisheng, LIANG Aimin. Wind regime features and their impacts on the middle reaches of the Yarlung Zangbo River on the Tibetan Plateau, China[J]. Journal of Arid Land, 2023, 15(10): 1174-1195.
[3] JIA Wei, SHI Peijun, WANG Jing'ai, MA Weidong, XIA Xingsheng, ZHOU Yuantao. Monitoring rock desert formation caused by two different origins (ice-snow melting and drying) in the Qinghai-Tibet Plateau of China by considering topographic and meteorological elements[J]. Journal of Arid Land, 2022, 14(8): 849-866.
[4] LIU Yabin, SHI Chuan, YU Dongmei, WANG Shu, PANG Jinghao, ZHU Haili, LI Guorong, HU Xiasong. Characteristics of root pullout resistance of Caragana korshinskii Kom. in the loess area of northeastern Qinghai-Tibet Plateau, China[J]. Journal of Arid Land, 2022, 14(7): 811-823.
[5] DONG Jianhong, ZHANG Zhibin, LIU Benteng, ZHANG Xinhong, ZHANG Wenbin, CHEN Long. Spatiotemporal variations and driving factors of habitat quality in the loess hilly area of the Yellow River Basin: A case study of Lanzhou City, China[J]. Journal of Arid Land, 2022, 14(6): 637-652.
[6] SUN Dingzhao, LIANG Youjia, PENG Shouzhang. Scenario simulation of water retention services under land use/cover and climate changes: a case study of the Loess Plateau, China[J]. Journal of Arid Land, 2022, 14(4): 390-410.
[7] WANG Hongwei, QI Yuan, LIAN Xihong, ZHANG Jinlong, YANG Rui, ZHANG Meiting. Effects of climate change and land use/cover change on the volume of the Qinghai Lake in China[J]. Journal of Arid Land, 2022, 14(3): 245-261.
[8] LI Leiming, WU Jun, LU Jian, ZHANG Xiying, XU Juan. Geochemical signatures and human health risk evaluation of rare earth elements in soils and plants of the northeastern Qinghai-Tibet Plateau, China[J]. Journal of Arid Land, 2022, 14(11): 1258-1273.
[9] WANG Shiqing, TAO Zefu, SUN Piling, CHEN Sijia, SUN Huiying, LI Nan. Spatiotemporal variation of forest land and its driving factors in the agropastoral ecotone of northern China[J]. Journal of Arid Land, 2022, 14(1): 1-13.
[10] YANG Junhuai, XIA Dunsheng, WANG Shuyuan, TIAN Weidong, MA Xingyue, CHEN Zixuan, GAO Fuyuan, LING Zhiyong, DONG Zhibao. Near-surface wind environment in the Yarlung Zangbo River basin, southern Tibetan Plateau[J]. Journal of Arid Land, 2020, 12(6): 917-936.
[11] GUO Bing, ZANG Wenqian, YANG Fei, HAN Baomin, CHEN Shuting, LIU Yue, YANG Xiao, HE Tianli, CHEN Xi, LIU Chunting, GONG Rui. Spatial and temporal change patterns of net primary productivity and its response to climate change in the Qinghai-Tibet Plateau of China from 2000 to 2015[J]. Journal of Arid Land, 2020, 12(1): 1-17.
[12] Qinli XIONG, Yang XIAO, Waseem A HALMY Marwa, A DAKHIL Mohammed, Pinghan LIANG, Chenggang LIU, Lin ZHANG, PANDEY Bikram, Kaiwen PAN, B EL KAFRAWAY Sameh, Jun CHEN. Monitoring the impact of climate change andhuman activities on grassland vegetation dynamics in the northeastern Qinghai-Tibet Plateauof China during 2000-2015[J]. Journal of Arid Land, 2019, 11(5): 637-651.
[13] Zhengyi YAO, Xiaoying LI, Jianhua XIAO. Characteristics of daily extreme wind gusts on the Qinghai-Tibet Plateau, China[J]. Journal of Arid Land, 2018, 10(5): 673-685.
[14] SI Jianhua, FENG Qi, YU Tengfei, ZHAO Chunyan. Nighttime sap flow and its driving forces for Populus euphratica in a desert riparian forest, Northwest China[J]. Journal of Arid Land, 2015, 7(5): 665-674.
[15] JianHua XIAO, JianJun QU, ZhengYi YAO, YingJun PANG KeCun ZHANG. Morphology and formation mechanism of sand shadow dunes on the Qinghai-Tibet Plateau[J]. Journal of Arid Land, 2015, 7(1): 10-26.