Please wait a minute...
Journal of Arid Land  2023, Vol. 15 Issue (5): 620-636    DOI: 10.1007/s40333-023-0009-4
Research article     
Responses of soil fauna community under changing environmental conditions
KUDURETI Ayijiamali1,2, ZHAO Shuai1,*(), Dina ZHAKYP3, TIAN Changyan1,*()
1State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
2University of Chinese Academy of Sciences, Beijing 100049, China
3Saken Seifullin Kazakh Agrotechnical University, Astana 010000, Kazakhstan
Download: HTML     PDF(685KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Soil faunas account for 23% of known animal species and play a crucial role in ecosystem processes such as mineralizing nutrients, regulating microbial community composition, forming soil aggregates, and enhancing primary productivity. However, due to global climate change, population density, community composition, and distribution patterns of soil fauna vary. Understanding the responses of soil fauna to major environmental change facilitate the conservation of biodiversity. Therefore, a review work of recent researches for analysing the effects of key environmental factors on soil fauna, such as warming, drought, food quality, and soil physical-chemical properties was studied. For most species, warming may exert a positive effect on their abundance and population development, however, it can inhibit the survival and reproduction of hibernating species. Drought leads to low soil porosity and water holding capacity, which reduces soil fauna population and changes their community composition. Drought also can reduce the coverage of flora and alter microclimate of the soil surface, which in turn indirectly reduces fauna abundance. Climate warming and elevated atmospheric carbon dioxide can reduce litter quality, which will force soil fauna to change their dietary choices (from higher-quality foods to poor quality foods) and reduce reproduction for survival. However, it is still predicted that enhanced species richness of plant (or litter) mixtures will positively affect soil fauna diversity. Habitat loss caused by the deterioration of soil physical-chemical property is primary factor affecting soil fauna. We mainly discuss the threats of increased salinity (a major factor in arid land) to soil fauna and their potential responses to anthropogenic disturbance in saline soils. The increase in soil salinity can override other factors that favour habitat specialists, leading to negative effects on soil fauna. Moreover, we find that more studies are needed to explore the responses of soil fauna in saline soils to human activities. And the relationship of important ecological processes with soil fauna density, community structure, and diversity needs to be redefined.



Key wordsbiodiversity      habitat      soil fauna      species distribution      stress factors     
Received: 18 November 2022      Published: 31 May 2023
Corresponding Authors: *TIAN Changyan (E-mail: tianchy@ms.xjb.ac.cn);ZHAO Shuai (E-mail: zhaoshuai@ms.xjb.ac.cn)
Cite this article:

KUDURETI Ayijiamali, ZHAO Shuai, Dina ZHAKYP, TIAN Changyan. Responses of soil fauna community under changing environmental conditions. Journal of Arid Land, 2023, 15(5): 620-636.

URL:

http://jal.xjegi.com/10.1007/s40333-023-0009-4     OR     http://jal.xjegi.com/Y2023/V15/I5/620

Fig. 1 Number of papers published in Web of Science on biodiversity conservation in 2021
Fig. 2 Classification of soil fauna by body width and body length. On the basis of body width: microfauna (2-100 μm), mesofauna (100 μm-2 mm), and macrofauna (2-20 mm). On the basis of body length: microfauna (0.02-0.20 mm), mesofauna (0.20-10.00 mm), and macrofauna (10.00-80.00 mm).
Fig. 3 Impact of key ecological factors on soil fauna and interactions of soil fauna with plants, organisms, and soil properties. Each arrow represents interaction. The solid arrows depict direct interactions, whereas the dashed arrows depict indirect effects. Plus (+) represents positive effects, and minus (-) was negative.
Soil fauna community Warming treatment Influence Reference
Timing Amount of warming
Nematode 7 a 1.5℃ during the day;
3.0℃ during the night
Changed the community structure of nematodes. Increased the abundance of bacteria feeders and fungivores.
Decreased the abundance of herbivores, predators, and omnivores.
Mueller et al. (2016)
Polydesmus angustus 300 d 3.3℃ Positive effects on abundance and higher population growth rates. David and Handa (2010)
Microarthropods 2 a 4.0℃ The richness and diversity of microarthropods increased. Meehan et al. (2020)
Millipedes Four seasons 3.3℃ The diversity and growth of millipedes decreased. David and Gillon (2009)
Microarthropods Extreme winter warming (0.6-3.2)℃ (soil); 3.5℃ (soil surface) Acari populations decreased by 39%; Collembola shifted from smaller soil-dwelling (euedaphic) species to larger litter-dwelling (hemiedaphic) species. Bokhorst et al. (2012)
Spirostreptid millipede
(Orthoporus
ornatus
)
Desert warming for a season Slight warming High temperatures depleted the fat reserves of hibernating species, negatively affecting their growth in the following season. Crawford et al. (1987)
Microarthropods 2 a 1.3°C Warming had insignificant effects on the abundance of mites and Collembola. Wu et al. (2011)
Soil fauna community Experimental stage (1.0-2.0)°C Warming did not affect the density and diversity of soil fauna community. Peng et al. (2022)
Table 1 Effect of warming on soil fauna community
Soil fauna Drought treatment Influence Reference
Enchytraeus crypticus and Enchytraeus albidus 4 d exposed to a decreasing relative humidity from 99.8% to 98.4%
99.8% relative humidity (-2.7 Pa)
98.4% relative humidity (-22.1 Pa)
Reproduction and survival of Enchytraeus crypticus and Enchytraeus albidus declined >23% under drought conditions. Maraldo et al. (2009)
Soil dwelling springtail 28 d exposed to a water potential from 0 to -85 kPa (with an accuracy of ±20 kPa) Reproduction stopped at soil water potentials (-15 kPa), which did not influence body water content or growth. Body growth and activities continued until −100 kPa. Wang et al. (2020)
Earthworm (Aporrectodea
Caliginosa)
Drought exposure 14 d between -2 and -300 kPa Cocoon production was arrested when water potential was lower than -12 kPa and below -40 kPa. Under severe drought levels (-330 kPa), cocoon production was significantly impaired 2 months after drought exposure. Holmstrup et al. (2001)
Soil fauna community Extracted drought data from the WorldClim database Soil fauna density was reduced by 27.4% under the drought condition. Peng et al. (2022)
Soil fauna community Preventing 70% of the throughfall on the plots from reaching the ground from April to September The Oribatida abundance decreased by 77.8% in the drought treatment. Collembola abundance was reduced by 80.6%. Enchytraeids, mesostigmatid mites, and macroarthropod predator density decreased. Lindberg et al. (2002)
Soil fauna community Dry control: 15% (±1%) water content from May to July Acari and Collembola community composition shifted, with a higher presence of drought-sensitive species in irrigated soils. Guidi et al. (2002)
Fungus-
gardening ant
Dry treatment for 3 a, April to June every year Fungus-gardening ants (drought-resistant species) increased in abundance during multiyear droughts. Seal and Tschinkel (2010)
Table 2 Effect of drought on soil fauna community
Soil fauna Salinity treatment Influence Response Reference
Protozoa NaHCO3, NaCl, KHCO3, and KCl at 160 mM Ionic stress led to cell death of protozoa. NaHCO3 was shown to be the most effective inhibitor. Although protozoa do not contain a rigid cell wall, they can develop osmoregulatory mechanisms to minimize the damage caused by hyper-osmotic conditions. Li et al. (2017)
Nematode Scottnema lindsayae and Plectus antarcticus NaCl, MgSO4, KNO3 and NaCl+MgSO4, concentrations ranging from 0.1-3.0 M Salinity reduced the survival of both nematode species. Species have different salt tolerance. S. lindsayae survived in <0.2 M NaCl and <0.5 M MgSO4. They did not survive in any concentration of NaCl+MgSO4. P. antarcticus survived in <0.5 M NaCl, <0.5 M MgSO4, and <0.2 M (NaCl+MgSO4). Nkem et al. (2006)
Earthworm NaCl concentrations: 0, 1000, 2000, 4000, 6000, and 8000 mg/kg The survival, growth, and cocoon production were limited above the concentrations of 5436, 4985, and 2020 mg/kg NaCl. Behavioural strategy: earthworms escaped a high salinity environment.
The avoidance of A. caliginosa of 667 mg/kg NaCl.
The avoidance of E. feida of 1164 mg/kg NaCl.
Owojori et al. (2009); Owojori et al. (2008)
Spider
(Arctosa fulvolineata)
Three concentrations of substrate salinity (0‰, 35‰, and 70‰) Survival and egg-laying were significantly impaired when exposed to hypersaline conditions
for 12 d.
Morphological adaptations: having a continuous exoskeleton reduced body contact with salt. Physiological adaptation: accumulation of osmo-induced amino acids increased the osmolality of body fluids, enhancing the survival ability of spiders. O'Connor (2003); Foucreau et al. (2012)
Nematode Salinized Caatinga EC: 65.6, 106.2 dS/m;
Natural Caatinga EC: 0.98, 1.30 dS/m
Salinity caused a sharp decline in nematode abundance. Nematodes employed anhydrobiosis (reduced metabolic activity) to survive in dry and salty conditions. Zhi et al. (2008)
Soil fauna community Salinization habitat: 0.19%, 0.26%, 0.47%, 0.68%, and 1.12%. High salinity decreased the number of taxa. Community composition changed significantly. Different soil fauna taxa exhibited various tolerance to salinity. Yin et al. (2018)
Decomposer fauna Water salinity treatment: 10.0%, 5.0%, 3.0%, 1.0%,
and 0.4%
High salinity (>5%) decreased the litter decomposition rate. Modest salinity increased the litter decomposition rate Plots with 3% salinity showed higher decomposition rates than plots with 1.0% salinity and 0.4% salinity. Zhai et al. (2020)
Table 3 Effects of salinity on the soil fauna community
[1]   Adachi T, Kunitomo H, Tomioka M, et al. 2010. Reversal of salt preference is directed by the Insulin/PI3K and Gq/PKC signaling in Caenorhabditis elegans. Genetics, 186(4): 1309-1319.
doi: 10.1534/genetics.110.119768
[2]   Amini S, Ghadiri H, Chen C, et al. 2016. Salt-affected soils, reclamation, carbon dynamics, and biochar: A review. Journal of Soils Sediments, 16(3): 939-953.
doi: 10.1007/s11368-015-1293-1
[3]   Andronov E E, Petrova S N, Pinaev A G, et al. 2012. Analysis of the structure of microbial community in soils with different degrees of salinization using T-RFLP and real-time PCR techniques. Eurasian Soil Science, 45(2): 147-156.
doi: 10.1134/S1064229312020044
[4]   Aubert M, Margerie P, Trap J, et al. 2010. Aboveground-belowground relationships in temperate forests: Plant litter composes and microbiota orchestrates. Forest Ecology and Management, 259(3): 563-572.
doi: 10.1016/j.foreco.2009.11.014
[5]   Bakonyi G, Nagy P, Kovacs-Lang E, et al. 2007. Soil nematode community structure as affected by temperature and moisture in a temperate semiarid shrubland. Applied Soil Ecology, 37(1-2): 31-40.
doi: 10.1016/j.apsoil.2007.03.008
[6]   Banerjee S, Sanyal A K, Moitra M N. 2009. Abundance and group diversity of soil mite population in relation to four edaphic factors at Chintamani Abhayaranya, Narendrapur, South 24-Parganas, West Bengal. Proceedings of the Zoological Society, 62(1): 57-65.
[7]   Bardgett R D, Mawdsley J L, Edwards S, et al. 1999. Plant species and nitrogen effects on soil biological properties of temperate upland grasslands. Functional Ecology, 13(5): 650-660.
doi: 10.1046/j.1365-2435.1999.00362.x
[8]   Bardgett R D, van der Putten W H. 2014. Belowground biodiversity and ecosystem functioning. Nature, 515(7528): 505-511.
doi: 10.1038/nature13855
[9]   Bayartogtokh B, Chatterjee T. 2010. Oribatid mites from marine littoral and freshwater habitats in India with remarks on world species of Thalassozetes (Acari: Oribatida). Zoological Studies, 49(6): 839-854.
[10]   Beaumelle L, Thouvenot L, Hines J, et al. 2021. Soil fauna diversity and chemical stressors: A review of knowledge gaps and roadmap for future research. Ecography, 44(6): 845-859.
doi: 10.1111/ecog.2021.v44.i6
[11]   Bindoff N L, Cheung W W L, Kairo J G, et al. 2019. IPCC special report: The ocean and cryosphere in a changing climate. [2022-07-15]. https://www.ipcc.ch/srocc/home/.
[12]   Blankinship J C, Niklaus P A, Hungate B A. 2011. A meta-analysis of responses of soil biota to global change. Oecologia, 165(3): 553-565.
doi: 10.1007/s00442-011-1909-0 pmid: 21274573
[13]   Blume-Werry G, Krab E J, Olofsson J, et al. 2020. Invasive earthworms unlock arctic plant nitrogen limitation. Nature Communications, 11(1): 1766, doi: 10.1038/s41467-020-15568-3.
doi: 10.1038/s41467-020-15568-3 pmid: 32286301
[14]   Bohlen P J, Scheu S, Hale C M, et al. 2004. Non-native invasive earthworms as agents of change in northern temperate forests. Frontiers in Ecology and the Environment, 2(8): 427-435.
doi: 10.1890/1540-9295(2004)002[0427:NIEAAO]2.0.CO;2
[15]   Bokhorst S, Phoenix G K, Bjerke J W, et al. 2012. Extreme winter warming events more negatively impact small rather than large soil fauna: Shift in community composition explained by traits not taxa. Global Change Biology, 18(3): 1152-1162.
doi: 10.1111/gcb.2012.18.issue-3
[16]   Bonkowski M, Villenave C, Griffiths B. 2009. Rhizosphere fauna: The functional and structural diversity of intimate interactions of soil fauna with plant roots. Plant and Soil, 321(1): 213-233.
doi: 10.1007/s11104-009-0013-2
[17]   Briones M J I. 2018. The serendipitous value of soil fauna in ecosystem functioning: The unexplained explained. Frontiers in Environmental Science, 20(6): 149.
[18]   Castaneda A C, Aballay E. 2016. Rhizobacteria with nematicide aptitude: Enzymes and compounds associated. World Journal of Microbiology and Biotechnology, 32(12): 203.
pmid: 27804103
[19]   Cesarz S, Ruess L, Jacob M, et al. 2013. Tree species diversity versus tree species identity: Driving forces in structuring forest food webs as indicated by soil nematodes. Soil Biology and Biochemistry, 62(2): 36-45.
doi: 10.1016/j.soilbio.2013.02.020
[20]   Chen C, Chen H Y H, Chen X, et al. 2019. Meta-analysis shows positive effects of plant diversity on microbial biomass and respiration. Nature Communications, 10(1): 1332.
doi: 10.1038/s41467-019-09258-y pmid: 30902971
[21]   Coleman D C, Crossley J D A. 1996. Fundamentals of Soil Ecology. New York: Academic Press, 10-25.
[22]   Coleman D C, Crossley D A, Hendrix P F. 2004. Fundamentals of Soil Ecology. Burlington: Elsevier Academic Press, 17.
[23]   Coulibaly S F M, Aubert M, Brunet N, et al. 2022. Short-term dynamic responses of soil properties and soil fauna under contrasting tillage systems. Soil & Tillage Research, 215: 105191, doi: 10.1016/j.still.2021.105191.
doi: 10.1016/j.still.2021.105191
[24]   Crawford C S, Bercovitz K, Warburg M R. 1987. Regional environments, life-history patterns, and habitat use of spirostreptid millipedes in arid regions. Zoological Journal of the Linnean Society, 89(1): 63-88.
doi: 10.1111/j.1096-3642.1987.tb01344.x
[25]   David J F, Gillon D. 2009. Combined effects of elevated temperatures and reduced leaf litter quality on the life-history parameters of a saprophagous macroarthropod. Global Change Biology, 15(1): 156-165.
doi: 10.1111/gcb.2009.15.issue-1
[26]   David J F, Handa I T. 2010. The ecology of saprophagous macroarthropods (millipedes, woodlice) in the context of global change. Biological Reviews, 85(4): 881-895.
[27]   David J F. 2014. The role of litter-feeding macroarthropods in decomposition processes: A reappraisal of common views. Soil Biology & Biochemistry, 76(1): 109-118.
doi: 10.1016/j.soilbio.2014.05.009
[28]   De Oliveira T, Hattenschwiler S, Handa I T. 2010. Snail and millipede complementarity in decomposing Mediterranean forest leaf litter mixtures. Functional Ecology, 24(4): 937-946.
doi: 10.1111/fec.2010.24.issue-4
[29]   Decaëns T, Jiménez J J, Gioia C, et al. 2006. The values of soil animals for conservation biology. European Journal of Soil Biology, 42(1): 23-38.
doi: 10.1016/j.ejsobi.2005.09.001
[30]   Delgado-Baquerizo M, Reich P B, Trivedi C, et al. 2020. Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nature Ecology & Evolution, 4(2): 210-220.
[31]   Denis M N, Chen S C, Juan Z, et al. 2021. Soil fauna accelerate litter mixture decomposition globally, especially in dry environments. Journal of Ecology, 110(3): 659-672.
doi: 10.1111/jec.v110.3
[32]   Deng Q, Cheng X, Hui D, et al. 2016. Soil microbial community and its interaction with soil carbon and nitrogen dynamics following afforestation in central China. Science of the Total Environment, 541: 230-237.
doi: 10.1016/j.scitotenv.2015.09.080
[33]   Dunn R R, Agosti D, Andersen A N, et al. 2009. Climatic drivers of hemispheric asymmetry in global patterns of ant species richness. Ecological Letter, 12(4): 324-333.
[34]   Edwards C A. 2002. Assessing the effects of environmental pollutants on soil organisms, communities, processes and ecosystems. European Journal of Soil Biology, 38(3-4): 225-231.
doi: 10.1016/S1164-5563(02)01150-0
[35]   Eisenbeis G, Wichard W. 1987. Atlas on the Biology of Soil Arthropods. New York: Springer, 25.
[36]   Elnitsky M A, Benoit J B, Denlinger D L, et al. 2008. Desiccation tolerance and drought acclimation in the Antarctic collembolan Cryptopygus antarcticus. Journal of Insect Physiology, 54(10-11): 1432-1439.
doi: 10.1016/j.jinsphys.2008.08.004 pmid: 18761345
[37]   Fan K, Delgado-Baquerizo M, Guo X, et al. 2021. Biodiversity of key-stone phylotypes determines crop production in a 4-decade fertilization experiment. The ISME Journal, 15(2): 550-561.
doi: 10.1038/s41396-020-00796-8
[38]   Fanin N, Kardol P, Farrell M, et al. 2019. The ratio of Gram-positive to Gram-negative bacterial PLFA markers as an indicator of carbon availability in organic soils. Soil Biology and Biochemistry, 128(1): 111-114.
doi: 10.1016/j.soilbio.2018.10.010
[39]   FAO. 2008. Management of irrigation-induced salt-affected soils. In: Practices of Irrigation & On-farm Water Management. New York: Springer, 21-34.
[40]   FAO. 2021. Soils: Where food begins. Food and Agriculture Organization of the United Nations. [2022-08-12]. https://www.un.org/en/observances/world-soil-day.
[41]   Faulkner B C, Lochmiller R L. 2000. Increased abundance of terrestrial isopod populations in terrestrial ecosystems contaminated with petrochemical wastes. Archives of Environmental Contamination and Toxicology, 39(1): 86-90.
pmid: 10790506
[42]   Fierer N, Strickland M S, Liptzin D, et al. 2009. Global patterns in belowground communities. Ecology Letters, 12(11): 1238-1249.
doi: 10.1111/j.1461-0248.2009.01360.x pmid: 19674041
[43]   Foucreau N, Renault D, Hidalgo K, et al. 2012. Effects of diet and salinity on the survival, egg laying and metabolic fingerprints of the ground-dwelling spider Arctosa fulvolineata (Araneae, Lycosidae). Comparative Biochemistry and Physiology, 162(3-4): 388-395.
[44]   Franklin J, Serra-Diaz J M, Syphard A D, et al. 2016. Global change and terrestrial plant community dynamics. Proceedings of the National Academy of Sciences of the United States of America, 113(14): 3725-3734.
[45]   Frouz J. 2018. Effects of soil macro- and mesofauna on litter decomposition and soil organic matter stabilization. Geoderma, 332: 161-172.
doi: 10.1016/j.geoderma.2017.08.039
[46]   Garcia-Palacios P, Maestre F T, Kattge J, et al. 2013. Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes. Ecology letters, 16(8): 1045-1053.
doi: 10.1111/ele.2013.16.issue-8
[47]   Garcia-Palacios P, Mckie B G, Handa I T, et al. 2016. The importance of litter traits and decomposers for litter decomposition: A comparison of aquatic and terrestrial ecosystems within and across biomes. Functional Ecology, 30(5): 819-829.
doi: 10.1111/fec.2016.30.issue-5
[48]   Geisen S, Koller R, Hünninghaus M, et al. 2016. The soil food web revisited: Diverse and widespread mycophagous soil protists. Soil Biology and Biochemistry, 94: 10-18.
doi: 10.1016/j.soilbio.2015.11.010
[49]   Generlich O, Giere O. 1996. Osmoregulation in two aquatic oligochaetes from habitats with different salinity and comparison to other annelids. Hydrobiologia, 334(1): 251-261.
doi: 10.1007/BF00017375
[50]   Gessner M O, Swan C M, Dang C K, et al. 2010. Diversity meets decomposition. Trends in Ecology & Evolution, 25(6): 363-380.
[51]   Gong X, Wang S, Wang Z, et al. 2019. Earthworms modify soil bacterial and fungal communities through enhancing aggregation and buffering pH. Geoderma, 347: 59-69.
doi: 10.1016/j.geoderma.2019.03.043
[52]   Greenslade P. 1981. Survival of Collembola in arid environments: Observations in South Australia and the Sudan. Journal of Arid Environments, 4(3): 219-228.
doi: 10.1016/S0140-1963(18)31563-5
[53]   Guidi N, Frey B, Brunner I. 2002. Effects of experimental irrigation and drought on the composition and diversity of soil fauna in a coniferous stand. Global Change Biology, 40(1): 191-192.
[54]   Gunstone T, Cornelisse T, Klein K, et al. 2021. Pesticides and soil invertebrates: A hazard assessment. Frontiers in Environmental Science, 9(64): 643847, doi: 10.3389/fenvs.2021.643847.
doi: 10.3389/fenvs.2021.643847
[55]   Guo X, Endler A, Poll C, et al. 2021. Independent effects of warming and altered precipitation pattern on nematode community structure in an arable field. Agriculture, Ecosystems & Environment, 316(15): 107467, doi: 10.1016/j.agee.2021.107467.
doi: 10.1016/j.agee.2021.107467
[56]   Hallam J, Hodson M E. 2020. Impact of different earthworm ecotypes on water stable aggregates and soil water holding capacity. Biology and Fertility of Soils, 56(5): 607-617.
doi: 10.1007/s00374-020-01432-5
[57]   Heděnec P, Radochová P, Nováková A, et al. 2013. Grazing preference and utilization of soil fungi by Folsomia candida (Isotomidae: Collembola). European Journal of Soil Biology, 55: 66-70.
doi: 10.1016/j.ejsobi.2012.12.005
[58]   Ho H C, Tylianakis J M, Zheng J X, et al. 2019. Predation risk influences food-web structure by constraining species diet choice. Ecology Letters, 22(11): 1734-1745.
doi: 10.1111/ele.v22.11
[59]   Holmstrup M, Sjursen H, Ravn H, et al. 2001. Dehydration tolerance and water vapour absorption in two species of soil-dwelling Collembola by accumulation of sugars and polyols. Functional Ecology, 15(5): 647-653.
doi: 10.1046/j.0269-8463.2001.00565.x
[60]   Holmstrup M, Maraldo K, Krogh P H. 2007. Combined effect of copper and prolonged summer drought on soil microarthropods in the field. Environmental Pollution, 146(2): 525-533.
pmid: 16979804
[61]   Holmstrup M, Damgaard C, Schmidt I K, et al. 2017. Long-term and realistic global change manipulations had low impact on diversity of soil biota in temperate heathland. Scientific Reports, 25: 41388, doi: 10.1038/srep41388.
doi: 10.1038/srep41388
[62]   Hoogen J, Geisen S, Routh D, et al. 2019. Soil nematode abundance and functional group composition at a global scale. Nature, 572(7768): 194-198.
doi: 10.1038/s41586-019-1418-6
[63]   Ingham E R, Klein D A, Trlica M J. 1985. Responses of microbial components of the rhizosphere to plant management strategies in a semiarid rangeland. Plant and Soil, 85(1): 65-76.
doi: 10.1007/BF02197801
[64]   IPCC. 2014. Climate Change 2014:Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Switzerland: IPCC, 85-88.
[65]   Jentschke G, Bonkowske M, Douglas L, et al. 1995. Soil protozoa and forest tree growth: Non-nutritional effects and interaction with mycorrhizae. Biology and Fertility of Soils, 20(4): 263-269.
doi: 10.1007/BF00336088
[66]   Jing X, Sanders N J, Shi Y, et al. 2015. The links between ecosystem multifunctionality and above- and belowground biodiversity are mediated by climate. Ecological Indicators, 115(6): 1-11.
[67]   Joly F X, Coq S, Coulis M, et al. 2018. Litter conversion into detritivore faeces reshuffles the quality control over C and N dynamics during decomposition. Functional Ecology, 32(11): 2605-2614.
doi: 10.1111/fec.2018.32.issue-11
[68]   Joly F X, Coq S, Coulis M, et al. 2020. Detritivore conversion of litter into faeces accelerates organic matter turnover. Communications Biology, 3: 660, doi: 10.1038/s42003-020-01392-4.
doi: 10.1038/s42003-020-01392-4
[69]   Josef H G, Jose A A. 2021. The soil fauna. Principles and Applications of Soil Microbiology (3rd ed.). New Jersey: Prientice Hall, 191-212.
[70]   Kardol P, Cregger M A, Campany C E, et al. 2010. Soil ecosystem functioning under climate change: Plant species and community effects. Ecology, 91(3): 767-781.
pmid: 20426335
[71]   Kardol P, Reynolds W N, Norby R J, et al. 2011. Climate change effects on soil microarthropod abundance and community structure. Applied Soil Ecology, 47(1): 37-44.
doi: 10.1016/j.apsoil.2010.11.001
[72]   Kevin R, Butt Maria J I B. 2017. Earthworms and mesofauna from an isolated, alkaline chemical waste site in Northwest England. European Journal of Soil Biology, 78: 43-49.
doi: 10.1016/j.ejsobi.2016.11.005
[73]   Kiss T B W. 2019. Earthworms, flooding, and sewage sludge. PhD Dissertation. York: University of York.
[74]   Kitz F, Steinwandter M, Traugott M, et al. 2015. Increased decomposer diversity accelerates and potentially stabilizes litter decomposition. Soil Biology and Biochemistry, 83: 138-141.
doi: 10.1016/j.soilbio.2015.01.026
[75]   Kristin M R, Johannes R. 2015. Salt effects on the soil microbial decomposer community and their role in organic carbon cycling: A review. Soil Biology & Biochemistry, 81: 108-123.
doi: 10.1016/j.soilbio.2014.11.001
[76]   Kuikman P J, Lekkerkerk L, Veen J. 2003. Carbon dynamics of a soil planted with wheat under an elevated atmospheric CO2concentration. Journal of Nuclear Agricultural Science, 28(3): 141-153.
[77]   Kuzyakov Y, Blagodatskaya E. 2015. Microbial hotspots and hot moments in soil: Concept and review. Soil Biology and Biochemistry, 83: 184-199.
doi: 10.1016/j.soilbio.2015.01.025
[78]   Lagerlof J, Goffre B, Vincent C. 2002. The importance of field boundaries for earthworms (Lumbricidae) in the Swedish agricultural landscape. Agriculture Ecosystem and Environment, 89(1-2): 91-103.
doi: 10.1016/S0167-8809(01)00321-8
[79]   Landesman W J, Treonis A M, Dighton J. 2011. Effects of a one-year rainfall manipulation on soil nematode abundances and community composition. Pedobiologia, 54(2): 87-91.
doi: 10.1016/j.pedobi.2010.10.002
[80]   Laskowski K L, Moiron M, Niemela P T. 2020. Integrating behavior in life-history theory: Allocation versus acquisition? Trends in Ecology & Evolution, 36(2): 132-138.
doi: 10.1016/j.tree.2020.10.017
[81]   Lavelle P, Bignell D, Lepage M, et al. 1997. Soil function in a changing world: The role of invertebrate ecosystem engineers. European Journal of Soil Biology, 33(4): 159-193.
[82]   Lavelle P, Spain A V. 2001. Soil Ecology. Dordrecht: Kluwer Academic Publishers, 101-110.
[83]   Lavelle P, Mathieu J, Spain A, et al. 2022. Soil macroinvertebrate communities: A world-wide assessment. Global Ecology and Biogeography, 31(7): 1261-1276.
doi: 10.1111/geb.v31.7
[84]   Li C H, Li J Y, Lan C Q, et al. 2017. Protozoa inhibition by different salts: Osmotic stress or ionic stress? Biotechnology Progress, 33(5): 1418-1424.
doi: 10.1002/btpr.2510 pmid: 28593695
[85]   Li Z H, Li Y, Shao W, et al. 2021. Evaluating the interaction of soil microorganisms and gut of soil fauna on the fate and spread of antibiotic resistance genes in digested sludge-amended soil ecosystem. Journal of Hazardous Materials, 420(1): 126672, doi: 10.1016/j.jhazmat.2021.126672.
doi: 10.1016/j.jhazmat.2021.126672
[86]   Lindberg N, Engtsson J B, Persson T. 2002. Effects of experimental irrigation and drought on the composition and diversity of soil fauna in a coniferous stand. Journal of Applied Ecology, 39(6): 924-936.
doi: 10.1046/j.1365-2664.2002.00769.x
[87]   Liu C H, Shao Y, Cao S. 2021. Soil fauna community diversity and response to wetland degradation in Nanniwan wetland, Shaanxi, China. Sains Malaysiana, 50(6): 1511-1520.
doi: 10.17576/jsm
[88]   Liu T, Yu L, Xu J, et al. 2017. Bacterial traits and quality contribute to the diet choice and survival of bacterial-feeding nematodes. Soil Biology and Biochemistry, 115: 467-474.
doi: 10.1016/j.soilbio.2017.09.014
[89]   Liu W P A, Phillips L M, Terblanche J S, et al. 2021. An unusually diverse genus of Collembola in the cape floristic region characterised by substantial desiccation tolerance. Oecologia, 195(4): 873-885.
doi: 10.1007/s00442-021-04896-w pmid: 33792777
[90]   López-hernández D, Araujo Y, López A, et al. 2004. Changes in soil properties and earthworm populations induced by long-term organic fertilization of a sandy soil in the Venezuelan Amazonia. Soil Science, 169(3): 188-194.
doi: 10.1097/01.ss.0000122524.03492.b7
[91]   Lubbers I M, Berg M P, De Deyn G B, et al. 2020. Soil fauna diversity increases CO2 but suppresses N2O emissions from soil. Global Change Biology, 26(3): 1886-1898.
doi: 10.1111/gcb.14860 pmid: 31587448
[92]   Ma Z L, Chen H Y. 2016. Effects of species diversity on fine root productivity in diverse ecosystems: A global meta-analysis. Global Ecology Biogeography, 25(11): 1387-1396.
doi: 10.1111/geb.12488
[93]   Maraldo K, Ravn H W, Slotsbo S, et al. 2009. Responses to acute and chronic desiccation stress in Enchytraeus (Oligochaeta: Enchytraeidae). Journal of Comparative Physiology, 179(2): 113-123.
[94]   Matute M M, Manning Y A, Kaleem M I. 2013. Community structure of soil nematodes associated with Solanum tuberosum. Journal of Agricultural Science (Toronto), 5(1): 44-53.
[95]   Meehan M L, Barreto C, Turnbull M S, et al. 2020. Response of soil fauna to simulated global change factors depends on ambient climate conditions. Pedobiologia, 83: 150672, doi: 10.1016/j.pedobi.2020.150672.
doi: 10.1016/j.pedobi.2020.150672
[96]   Misra N, Misra R. 2012. Salicylic acid changes plant growth parameters and proline metabolism in Rauwolfia serpentina leaves grown under salinity stress. Environmental Science, 12(12): 1601-1609.
[97]   Moir M L, Brennan K E C, Harvey M S. 2009. Diversity, endemism and species turnover of millipedes within the south-western Australian global biodiversity hotspot. Journal of Biogeography, 36(10): 1958-1971.
doi: 10.1111/jbi.2009.36.issue-10
[98]   Mueller K E, Blumenthal D M, Carrillo Y, et al. 2016. Elevated CO2 and warming shift the functional composition of soil nematode communities in a semiarid grassland. Soil Biology and Biochemistry, 103: 46-51.
doi: 10.1016/j.soilbio.2016.08.005
[99]   Mukhopadhyay A, Tissenbaum H A. 2007. Reproduction and longevity: Secrets revealed by C. elegans. Trends in Cell Biology, 17(2): 65-71.
pmid: 17187981
[100]   Nguyen S V, Chau M K, Vo Q M, et al. 2021. Impacts of saltwater intrusion on soil nematodes community in alluvial and acid sulfate soils in paddy rice fields in Vietnamese Mekong Delta. Ecological Indicators, 122(1): 107284, doi: 10.1016/j.ecolind.2020.107284.
doi: 10.1016/j.ecolind.2020.107284
[101]   Nielsen U N, Ball B A. 2015. Impacts of altered precipitation regimes on soil communities and biogeochemistry in arid and semi-arid ecosystems. Global Change Biology, 21(4): 1407-1421.
doi: 10.1111/gcb.12789 pmid: 25363193
[102]   Nieminen J K. 2008. Soil animals and ecosystem processes: How much does nutrient cycling explain? Pedobiologia, 51(5-6): 367-373.
doi: 10.1016/j.pedobi.2007.09.001
[103]   Niklaus P A, Alphei J, Ebersberger D, et al. 2003. Six years of in situ CO2 enrichment evoke changes in soil structure and soil biota of nutrient poor grassland. Global Change Biology, 9(4): 585-600.
doi: 10.1046/j.1365-2486.2003.00614.x
[104]   Nkem J N, Virgina R A, Barrett J E, et al. 2006. Salt tolerance and survival thresholds for two species of Antarctic soil nematodes. Polar Biology, 29(8): 643-651.
doi: 10.1007/s00300-005-0101-6
[105]   O'Connor B M. 2003. Acari in encyclopedia of insects. In: Resh V H, Ring T C. Encyclopedia of Insects New York: Academic Press, 1295.
[106]   Owojori O J, Reinecke A J, Rozanov A B. 2008. Effects of salinity on partitioning, uptake and toxicity of zinc in the earthworm Eisenia fetida. Soil Biology and Biochemistry, 40(9): 2385-2393.
doi: 10.1016/j.soilbio.2008.05.019
[107]   Owojori O J, Reinecke A J, Voua-Otomo P, et al. 2009. Comparative study of the effects of salinity on life-cycle parameters of four soil-dwelling species (Folsomia candida, Enchytraeus doerjesi, Eisenia fetida and Aporrectodea caliginosa). Pedobiologia, 52(6): 351-360.
[108]   Owojori O J, Waszak K, Roembke J. 2014. Avoidance and reproduction tests with the predatory mite Hypoaspis aculeifer: Effects of different chemical substances. Environmental Toxicology and Chemistry, 33(1): 230-237.
doi: 10.1002/etc.2421
[109]   Pavao-Zuckerman M A, Coleman D C. 2007. Urbanization alters the functional composition, but not taxonomic diversity, of the soil nematode community. Applied Soil Ecology, 35(2): 329-339.
doi: 10.1016/j.apsoil.2006.07.008
[110]   Peguero G, Folch E, Liu L, et al. 2021. Divergent effects of drought and nitrogen deposition on microbial and arthropod soil communities in a Mediterranean forest. European Journal of Soil Biology, 103: 103275, doi: 10.1016/j.ejsobi.2020.103275.
doi: 10.1016/j.ejsobi.2020.103275
[111]   Peng Y, Schmidt I K, Zheng H, et al. 2020. Tree species effects on topsoil carbon stock and concentration are mediated by tree species type, mycorrhizal association, and N-fixing ability at the global scale. Forest Ecology Management, 478: 118510, doi: 10.1016/j.foreco.2020.118510.
doi: 10.1016/j.foreco.2020.118510
[112]   Peng Y, Peñuelas J, Vesterdal L, et al. 2022. Responses of soil fauna communities to the individual and combined effects of multiple global change factors. Ecology Letters, 25(9): 1961-1973.
doi: 10.1111/ele.14068 pmid: 35875902
[113]   Pereira C S, Lopes I, Sousa J P, et al. 2015. Effects of NaCl and seawater induced salinity on survival and reproduction of three soil invertebrate species. Chemosphere, 135: 116-122.
doi: 10.1016/j.chemosphere.2015.03.094 pmid: 25930052
[114]   Petersen H, Luxton M. 1982. A comparative analysis of soil fauna populations and their role in decomposition processes. Oikos, 39(3): 287-388.
[115]   Pétillon J, Lambeets K, Ract-Madoux B, et al. 2011. Saline stress tolerance partly matches with habitat preference in ground-living wolf spiders. Physiological Entomology, 36(2): 165-172.
doi: 10.1111/pen.2011.36.issue-2
[116]   Phillips P. 2019. Global distribution of earthworm diversity. Science, 370(6519): 922-923.
doi: 10.1126/science.abf2682
[117]   Piola R F, Johnston E L. 2008. Pollution reduces native diversity and increases invader dominance in marine hard-substrate communities. Diversity Distributions, 14(2): 329-342.
doi: 10.1111/j.1472-4642.2007.00430.x
[118]   Placella S A, Brodie E L, Firestone M K. 2012. Rainfall-induced carbon dioxide pulses result from sequential resuscitation of phylogenetically clustered microbial groups. Proceedings of the National Academy of Sciences of the United States of America, 109(27): 10931-10936.
[119]   Price P B, Sowers T. 2004. Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. Proceedings of the National Academy of Sciences of the United States of America, 101(13): 4631-4636.
[120]   Qi S, Zhao X R, Zheng H X, et al. 2011. Changes of soil biodiversity in Inner Mongolia steppe after 5 years of N and P fertilizer applications. Acta Ecologia Sinica, 30(20): 3745-3757. (in Chinese)
[121]   Raiesi F, Motaghian H R, Nazarizadeh M. 2020. The sublethal lead (Pb) toxicity to the earthworm Eisenia fetida (Annelida, Oligochaeta) as affected by NaCl salinity and manure addition in a calcareous clay loam soil during an indoor mesocosm experiment. Ecotoxicology and Environmental Safety, 190(1): 110083, doi: 10.1016/j.ecoenv.2019.110083.
doi: 10.1016/j.ecoenv.2019.110083
[122]   Ranjard L, Dequiedt S, Jolivet C, et al. 2010. Biogeography of soil microbial communities: A review and a description of the ongoing French national initiative. Agronomy for Sustainable Development, 30(2): 857-865.
[123]   Rillig M C, Mummey D L. 2006. Mycorrhizas and soil structure. New Phytology, 171(1): 41-53.
doi: 10.1111/nph.2006.171.issue-1
[124]   Roache M C, Bailey P C, Boon P I. 2006. Effects of salinity on the decay of the freshwater macrophyte, Triglochin procerum. Aquatic Botany, 84(1): 45-52.
doi: 10.1016/j.aquabot.2005.07.014
[125]   Ronan C, Elisa D C, Olaf S. 2020. Soil properties and earthworm populations associated with bauxite residue rehabilitation strategies. Environmental Science and Pollution Research, 27(27): 33401-33409.
doi: 10.1007/s11356-018-3973-z
[126]   Rutgers M, Orgiazzi A, Gardi C, et al. 2016. Mapping earthworm communities in Europe. Applied Soil Ecology, 97(1): 98-111.
doi: 10.1016/j.apsoil.2015.08.015
[127]   Sadler A B. 2008. Habitat heterogeneity overrides the species-area relationship. Journal of Biogeography, 35(4): 675-681.
doi: 10.1111/j.1365-2699.2007.01825.x
[128]   Saetre P, Baath E. 2000. Spatial variation and patterns of soil microbial community structure in a mixed spruce-birch stand. Soil Biology and Biochemistry, 32(7): 909-917.
doi: 10.1016/S0038-0717(99)00215-1
[129]   Salmon S, Mantel J, Frizzera L, et al. 2006. Changes in humus forms and soil animal communities in two developmental phases of Norway spruce on an acidic substrate. Forest Ecology and Management, 237(1-3): 47-56.
doi: 10.1016/j.foreco.2006.09.089
[130]   Samways M J. 2007. Insect conservation: A synthetic management approach. Annual Review of Entomology, 52: 465-487.
pmid: 16968205
[131]   Santos P F, DePree E, Whitford W G. 1978. Spatial distribution of litter and microarthropods in a Chihuahuan Desert ecosystem. Journal of Arid Environments, 1(1): 41-48.
doi: 10.1016/S0140-1963(18)31753-1
[132]   Sayer E J, Sutcliffe L M E, Ross R I C, et al. 2010. Arthropod abundance and diversity in a lowland tropical forest floor in Panama: The role of habitat space vs. nutrient concentrations. Biotropica, 42(2): 194-200.
doi: 10.1111/j.1744-7429.2009.00576.x
[133]   Schelfhout S, Mertens J, Verheyen K, et al. 2017. Tree species identity shapes earthworm communities. Forests, 8(10): 85.
doi: 10.3390/f8030085
[134]   Seal J N, Tschinkel W R. 2010. Distribution of the fungus-gardening ant (Trachymyrmex septentrionalis) during and after a record drought. Insect Conservation Diversity, 3(2): 134-142.
doi: 10.1111/icd.2010.3.issue-2
[135]   Sinclair B J, Stevens M I. 2006. Terrestrial microarthropods of Victoria Land and Queen Maud Mountains, Antarctica: Implications of climate change. Soil Biology Biochemistry, 38(10): 3158-3170.
doi: 10.1016/j.soilbio.2005.11.035
[136]   Steinwandter M, Seeber J. 2020. The buffet is open: Alpine soil macro-decomposers feed on a wide range of litter types in a microcosm cafeteria experiment. Soil Biology and Biochemistry, 144: 107786, doi: 10.1016/j.soilbio.2020.107786.
doi: 10.1016/j.soilbio.2020.107786
[137]   Swift M J, Heal O W, Anderson J M. 1979. Decomposition Interrestrial Ecosystems. California: University of California Press, 161-175.
[138]   Syrek D, Weiner W M, Wojtylak M, et al. 2006. Species abundance distribution of collembolan communities in forest soils polluted with heavy metals. Applied Soil Ecology, 31(3): 239-250.
doi: 10.1016/j.apsoil.2005.05.002
[139]   Tews J, Brose U, Grimm V, et al. 2004. Animal species diversity driven by habitat heterogeneity/diversity: The importance of keystone structures. Journal of Biogeography, 31(1): 79-92.
doi: 10.1046/j.0305-0270.2003.00994.x
[140]   Thakur M P, Reich P B, Fisichelli N A, et al. 2014. Nematode community shifts in response to experimental warming and canopy conditions are associated with plant community changes in the temperate-boreal forest ecotone. Oecologia, 175(2): 713-723.
doi: 10.1007/s00442-014-2927-5 pmid: 24668014
[141]   Tordoff G M, Boddy L, Jones T H. 2008. Species-specific impacts of Collembola grazing on fungal foraging ecology. Soil Biology and Biochemistry, 40(2): 434-442.
doi: 10.1016/j.soilbio.2007.09.006
[142]   Venâncio C, Rui R, Lopes I. 2021. Seawater intrusion: An appraisal of taxa at most risk and safe salinity levels. Biological Review, 97(1): 361-382.
doi: 10.1111/brv.v97.1
[143]   Veresoglou S D, Halley J M, Rillig M C. 2015. Extinction risk of soil biota. Nature Communication, 6: 8862, doi: 10.1038/ncomms9862.
doi: 10.1038/ncomms9862
[144]   Wagg C, Bender S F, Widmer F, et al. 2014. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proceedings of the National Academy of Sciences of the United States of America, 111(14): 5266-5270.
[145]   Wall D H, Bradford M A, John M G, et al. 2008. Global decomposition experiment shows soil animal impacts on decomposition are climate-dependent. Global Change Biology, 14(11): 2661-2677.
doi: 10.1111/j.1365-2486.2008.01672.x
[146]   Wang W X, Vinocur B, Shoseyov O, et al. 2001. Biotechnology of plant osmotic stress tolerance: Physiological and molecular considerations. Acta Horticulturae, 560(1): 285-292.
[147]   Wang X, Sun R, Tian Y, et al. 2020. Longterm phytoremediation of coastal saline soil reveals plant species-specific patterns of microbial community recruitment. mSystems, 5(2): e007411-19, doi: 10.1128/msystems.00741-19.
doi: 10.1128/msystems.00741-19
[148]   Wardle D A. 2002. Communities and Ecosystems:Linking the Aboveground and Belowground Components. Princeton: Princeton University Press, 26-45.
[149]   Wardle D A, Bardgett R D, Klironomos J N, et al. 2004. Ecological linkages between aboveground and belowground biota. Science, 304(5677): 1629-1633.
doi: 10.1126/science.1094875 pmid: 15192218
[150]   Wardle D A. 2006. The influence of biotic interactions on soil biodiversity. Ecology Letter, 9(7): 870-886.
doi: 10.1111/ele.2006.9.issue-7
[151]   Whitford W G, Sobhy H M. 1999. Effects of repeated drought on soil microarthropod communities in the northern Chihuahuan Desert. Biology and Fertility of Soils, 28(2): 117-120.
doi: 10.1007/s003740050471
[152]   Williams J W, Jackson S T. 2007. Novel climates, no-analog communities, and ecological surprises. Frontiers in Ecological Environment, 5(9): 475-482.
[153]   Wong V N L, Greene R S B, Dalal R C, et al. 2010. Soil carbon dynamics in saline and sodic soils: A review. Soil Use and Management, 26(1): 2-11.
doi: 10.1111/j.1475-2743.2009.00251.x
[154]   Wood J, Tordoff G M, Jones T H, et al. 2006. Reorganization of mycelial networks of Phanerochaete velutina in response to new woody resources and collembola (Folsomia candida) grazing. Mycological Research, 110(8): 985-993.
doi: 10.1016/j.mycres.2006.05.013
[155]   Wu T, Ayres E, Bardgett R D, et al. 2011. Molecular study of worldwide distribution and diversity of soil animals. Proceedings of the National Academy of Sciences of the United States of America, 108(43): 17720-17725.
[156]   Yang B, Chen Q, Liu X, et al. 2020. Effects of pest management practices on soil nematode abundance, diversity, metabolic footprint and community composition under paddy rice fields. Frontiers in Plant Science, 11: 88, doi: 10.3389/fpls.2020.00088.
doi: 10.3389/fpls.2020.00088 pmid: 32140164
[157]   Yang B, Banerjee S, Herzog C, et al. 2021. Impact of land use type and organic farming on the abundance, diversity, community composition and functional properties of soil nematode communities in vegetable farming. Agriculture, Ecosystem and Environment, 318: 107488, doi: 10.1016/j.agee.2021.107488.
doi: 10.1016/j.agee.2021.107488
[158]   Yang B, Li P, Entemake W, et al. 2022. Concentration-dependent impacts of microplastics on soil nematode community in bulk soils of maize: Evidence from a pot experiment. Frontiers in Environmental Science, 10: 872898, doi: 10.3389/fenvs.2022.872898.
doi: 10.3389/fenvs.2022.872898
[159]   Yang X, Shao M, Li T C, et al. 2021. Community characteristics and distribution patterns of soil faunas after vegetation restoration in the northern Loss Plateau. Ecological Indicators, 122(1): 107236, doi: 10.1016/j.ecolind.2020.107236.
doi: 10.1016/j.ecolind.2020.107236
[160]   Yeo A. 1998. Predicting the interaction between the effects of salinity and climate change on crop plants. Scientia Horticulturae, 78(1-4): 159-174.
doi: 10.1016/S0304-4238(98)00193-9
[161]   Yin X Q, Ma C, He H, et al. 2018. Distribution and diversity patterns of soil fauna in different salinization habitats of Songnen Grasslands, China. Applied Soil Ecology, 123: 375-383.
doi: 10.1016/j.apsoil.2017.09.034
[162]   Yu L, Yan X, Ye C, et al. 2015. Bacterial respiration and growth rates affect the feeding preferences, brood size and lifespan of Caenorhabditis elegans. PloS ONE, 10(7): e0134401, doi: 10.1371/journal.pone.0134401.
doi: 10.1371/journal.pone.0134401
[163]   Yue K, Peng Y, Fornara D A, et al. 2019. Responses of nitrogen concentrations and pools to multiple environmental change drivers: a meta-analysis across terrestrial ecosystems. Global Ecology and Biogeography, 28(5): 690-724.
doi: 10.1111/geb.v28.5
[164]   Zahorec A, Reid M L, Tiemann L K, et al. 2021. Perennial grass bioenergy cropping systems: Impacts on soil fauna and implications for soil carbon accrual. Global Change Biology Bioenergy, 14(1): 4-23.
doi: 10.1111/gcbb.v14.1
[165]   Zhai J X, Yan G, Cong L, et al. 2020. Assessing the effects of salinity and inundation on halophytes litter breakdown in Yellow River Delta wetland. Ecological Indicators, 115(2): 106405, doi: 10.1016/j.ecolind.2020.106405.
doi: 10.1016/j.ecolind.2020.106405
[166]   Zhang N, Wang D, Liu Y, et al. 2014. Effects of different plant root exudates and their organic acid components on chemotaxis, biofilm formation and colonization by beneficial rhizosphere-associated bacterial strains. Plant and Soil, 374(1): 689-700.
doi: 10.1007/s11104-013-1915-6
[167]   Zhang Y, Lu H, Bargmann C I. 2005. Pathogenic bacteria induce aversive olfactory learning in Caenorhabditis elegans. Nature, 438(7065): 179-184.
doi: 10.1038/nature04216
[168]   Zhang Y, Bi Y, Li G, et al. 2017. Relationship between earthworm diversity and soil environment in Hebei area. Journal of China Agricultural University, 22(1): 60-68. (in Chinese)
[169]   Zheng L T, Chen H Y H, Yan E R. 2019. Tree species diversity promotes litter fall productivity through crown complementarity in subtropical forests. Journal of Ecology, 107(4): 1852-1861.
doi: 10.1111/jec.2019.107.issue-4
[170]   Zhi D, Li H, Nan W. 2008. Nematode communities in the artificially vegetated belt with or without irrigation in the Tengger Desert, China. European Journal of Soil Biology, 44(2): 238-246.
doi: 10.1016/j.ejsobi.2007.09.006
[171]   Zhou Z, Wang C, Luo Y. 2020. Meta-analysis of the impacts of global change factors on soil microbial diversity and functionality. Nature Communications, 11(1): 3072, doi: 10.1038/s41467-020-16881-7.
doi: 10.1038/s41467-020-16881-7 pmid: 32555185
[1] WANG Jing, WEI Yulu, PENG Biao, LIU Siqi, LI Jianfeng. Spatiotemporal variations in ecosystem services and their trade-offs and synergies against the background of the gully control and land consolidation project on the Loess Plateau, China[J]. Journal of Arid Land, 2024, 16(1): 131-145.
[2] ZHOU Chongpeng, GONG Lu, WU Xue, LUO Yan. Nutrient resorption and its influencing factors of typical desert plants in different habitats on the northern margin of the Tarim Basin, China[J]. Journal of Arid Land, 2023, 15(7): 858-870.
[3] ZHANG Shubao, LEI Jun, TONG Yanjun, ZHANG Xiaolei, LU Danni, FAN Liqin, DUAN Zuliang. Temporal and spatial responses of ecological resilience to climate change and human activities in the economic belt on the northern slope of the Tianshan Mountains, China[J]. Journal of Arid Land, 2023, 15(10): 1245-1268.
[4] LUAN Yongfei, HUANG Guohe, ZHENG Guanghui. Spatiotemporal evolution and prediction of habitat quality in Hohhot City of China based on the InVEST and CA-Markov models[J]. Journal of Arid Land, 2023, 15(1): 20-33.
[5] DONG Jianhong, ZHANG Zhibin, LIU Benteng, ZHANG Xinhong, ZHANG Wenbin, CHEN Long. Spatiotemporal variations and driving factors of habitat quality in the loess hilly area of the Yellow River Basin: A case study of Lanzhou City, China[J]. Journal of Arid Land, 2022, 14(6): 637-652.
[6] HE Bing, CHANG Jianxia, GUO Aijun, WANG Yimin, WANG Yan, LI Zhehao. Assessment of river basin habitat quality and its relationship with disturbance factors: A case study of the Tarim River Basin in Northwest China[J]. Journal of Arid Land, 2022, 14(2): 167-185.
[7] LI Li, GAO Lei, LIU Yonghong, FANG Baozhu, HUANG Yin, Osama A A MOHAMAD, Dilfuza EGAMBERDIEVA, LI Wenjun, MA Jinbiao. Diversity of cultivable endophytic bacteria associated with halophytes in Xinjiang of China and their plant beneficial traits[J]. Journal of Arid Land, 2021, 13(8): 790-800.
[8] Adilov BEKZOD, Shomurodov HABIBULLO, FAN Lianlian, LI Kaihui, MA Xuexi, LI Yaoming. Transformation of vegetative cover on the Ustyurt Plateau of Central Asia as a consequence of the Aral Sea shrinkage[J]. Journal of Arid Land, 2021, 13(1): 71-87.
[9] Farzaneh KHAJOEI NASAB, Ahmadreza MEHRABIAN, Hossein MOSTAFAVI. Mapping the current and future distributions of Onosma species endemic to Iran[J]. Journal of Arid Land, 2020, 12(6): 1031-1045.
[10] Yonggang LI, Xiaobing ZHOU, Yuanming ZHANG. Shrub modulates the stoichiometry of moss and soil in desert ecosystems, China[J]. Journal of Arid Land, 2019, 11(4): 579-594.
[11] SPAMPINATO Giovanni, M MUSARELLA Carmelo, CANO-ORTIZ Ana, SIGNORINO Giuseppe. Habitat, occurrence and conservation status of the Saharo-Macaronesian and Southern-Mediterranean element Fagonia cretica L. (Zygophyllaceae) in Italy[J]. Journal of Arid Land, 2018, 10(1): 140-151.
[12] WANG Shengli, NAN Zhongren, Daniel PRETE . Protecting wild yak (Bos mutus) species and preventing its hybrid in China[J]. Journal of Arid Land, 2016, 8(5): 811-814.
[13] Raafat H ABD EL-WAHAB. Plant assemblage and diversity variation with human disturbances in coastal habitats of the western Arabian Gulf[J]. Journal of Arid Land, 2016, 8(5): 787-798.
[14] LIU Rentao, ZHU Fan, Yosef STEINBERGER. Ground-active arthropod responses to rainfall-induced dune microhabitats in a desertified steppe ecosystem, China[J]. Journal of Arid Land, 2016, 8(4): 632-646.
[15] WU Jing, QIAN Jianqiang, HOU Xianzhang, Carlos A BUSSO, LIU Zhimin, Xing Baozhen. Spatial variation of plant species richness in a sand dune field of northeastern Inner Mongolia, China[J]. Journal of Arid Land, 2016, 8(3): 434-442.