Please wait a minute...
Journal of Arid Land  2021, Vol. 13 Issue (1): 71-87    DOI: 10.1007/s40333-020-0077-7
Research article     
Transformation of vegetative cover on the Ustyurt Plateau of Central Asia as a consequence of the Aral Sea shrinkage
Adilov BEKZOD1,2, Shomurodov HABIBULLO1,2, FAN Lianlian2,3, LI Kaihui2,3, MA Xuexi2,3, LI Yaoming2,3,*()
1Institute of Botany, Academy of Sciences of Uzbekistan, Tashkent 100125, Uzbekistan
2CAS Research Center for Ecology and Environment of Central Asia, Urumqi 830011, China
3Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
Download: HTML     PDF(922KB)
Export: BibTeX | EndNote (RIS)      


The gradual shrinkage of the Aral Sea has led to not only the degradation of the unique environments of the Aral Sea, but also numerous and fast developing succession processes in the neighborhood habitats surrounding the sea. In this study, we investigated the vegetative succession processes related to the Aral Sea shrinkage in the Eastern Cliff of the Ustyurt Plateau in Republic of Uzbekistan, Central Asia. We compared the results of our current investigation (2010-2017) on vegetative communities with the geobotany data collected during the 1970s (1970-1980). The results showed great changes in the mesophytic plant communities and habitat aridization as a result of the drop in the underground water level, which decreased atmospheric humidity and increased the salt content of the soil caused by the shrinkage of the Aral Sea. In the vegetative communities, we observed a decrease in the Margalef index (DMg), which had a positive correlation with the poly-dominance index (I-D). The main indications of the plant communities' transformation were the loss of the weak species, the appearance of new communities with low species diversity, the stabilization of the projective cover of former resistant communities, as well as the appearance of a new competitive species, which occupy new habitats.

Key wordsplant cover      mesophytic plant communities      vegetative succession      xerophytization      biodiversity index      climate change      Aral Sea     
Received: 12 March 2019      Published: 10 January 2021
Corresponding Authors: LI Yaoming     E-mail:
About author: *LI Yaoming (E-mail:
Cite this article:

Adilov BEKZOD, Shomurodov HABIBULLO, FAN Lianlian, LI Kaihui, MA Xuexi, LI Yaoming. Transformation of vegetative cover on the Ustyurt Plateau of Central Asia as a consequence of the Aral Sea shrinkage. Journal of Arid Land, 2021, 13(1): 71-87.

URL:     OR

Fig. 1 Location of the Eastern Cliff on the Ustyurt Plateau. (a), study area (Kabanbai investigation area, represented as a square) in the Eastern Cliff of the Ustyurt Plateau; (b), overview of the Ustyurt Plateau (A), Kabanbai (B), and the dried part of the Aral Sea (C). The territory of the Ustyurt Plateau is located to the west from the Kabanbai, and the dried part of the Aral Sea is north from the Kabanbai.
Fig. 2 Trends of annual average air temperature (a) and annual precipitation (b) during the period 1970-2017, as well as the aridity index on a decade scale during the period 1976-2015 (c). Severe dry years (1984, 1996, 2000, and 2008) with precipitation of only 40-60 mm are indicated by arrows.
Plant community Abbreviation Occurrence
Rosaeta laxae Rosaeta laxae mixtoherbosum RM + +
Rosaetum laxae R + +
Rosaetum laxae korolkovi crateageosum RC + -
Rosaeta laxae australi phragmitesum RP + -
Rosaeta laxae critmifoli malocacarpesum RM - +
Crateageta korolkovii Crateagetum korolkovi rosaso-sativae medicagosum CRM + +
Crateagetum korolkovi C + +
Crateagetum korolkovi laxae rosasum CR + -
Crataegetum korolkovi australi phragmitesum CP + -
Crateagetum korolkovi mixtoherbosum CM - +
Medicageta sativae Medicagetum sativae viridiflori cynoglosetum MC + +
Medicagetum sativae mixtoherbosum MMH + +
Medicagetum sativae fragile agropyrosum MA + -
Medicagetum sativae arvensi convolvulosum MCA + -
Medicagetum sativae artemisiaso-mixtoherbosum MAM - +
Agropyreta fragile Agropyretum fragile sativae medicagosum AM + +
Agropyretum fragile racemose elymusum AEL + -
Agropyretum fragile dolicholepi puccinelosum AP + -
Agropyretum fragile meyeri echinopsum AE - +
Agropyretum fragile viridiflori cynoglossum AC - +
Agropyretum fragile repensi acroptilosum AR - +
Agropyretum fragile artemisiaso-sativae medicagosum AAM - +
Agropyretum fragile mixtoherbosum AMH - +
Table 1 Occurrence of mesophytic and xero-mesophytic communities in the former-running (FR) and current-running (CR) periods of investigations
Index Maximum±SE Minimum±SE Mean±SE v
NS 49.70±1.57 17.40±0.37 5.50±0.26 4.60±0.32 20.60±2.57 9.70±1.95 65.30 39.20
VC (%) 95.10±0.55 95.70±0.27 45.80±0.77 7.10±0.30 63.10±2.30 36.90±1.15 25.60 68.50
nx-h 98.00±0.49 99.00±0.34 55.10±0.47 25.00±0.29 79.40±1.71 81.30±1.11 18.10 20.50
nm-xm 45.50±0.36 75.30±0.25 0.50±0.25 0.80±0.22 20.60±2.81 18.70±2.22 69.40 88.60
VCx-h (%) 98.30±0.40 99.10±0.24 20.40±0.37 11.40±0.15 75.60±1.77 84.20±1.15 35.50 28.50
VCm-xm (%) 80.40±0.83 89.40±0.23 0.80±0.24 0.90±0.20 23.80±2.77 15.90±2.09 109.40 150.40
Table 2 Indices of vegetative cover in the FR and CR periods of investigations
No. Community D I-D H DMg βw
I Riparian forest
1.1 Rosaeta laxae
1.1.1 RM 0.04 0.08 0.95 0.91 3.16 2.84 4.84 4.23 0.02
1.1.2 R 0.62 0.56 0.38 0.44 0.86 1.30 1.56 4.20 0.42
1.2 Crataegeta korolkovii
2.1. CRM 0.09 0.16 0.91 0.84 2.87 2.29 4.74 4.65 0.04
2.2. C 0.20 0.56 0.80 0.44 2.27 1.16 3.38 3.16 0.08
II Motley grass
2.1 Medicageta sativae
2.1.1 MCA 0.05 0.22 0.94 0.77 3.25 1.98 6.07 3.85 0.38
2.1.2 MMH 0.03 0.29 0.96 0.70 3.47 1.80 6.38 3.36 0.37
III Steppe
3.1 Agropyreta fragile
3.1.1 AM 0.08 0.07 0.91 0.93 2.74 2.89 3.70 5.25 0.14
Table 3 Changes in the biodiversity indices of the mesophytic plant communities in the FR and CR periods of investigations
Ecological group Specie Abbreviation Life form IVI Average
Xerophytes Salsola arbusculiformis SA Semi-shrub 45.20 57.30 6.05
Salsola orientalis SO Semi-shrub 30.30 31.60 0.65
Ephedra distachya ED Semi-shrub 20.30 21.50 0.57
Artemisia terrae-albae ATA Semi-shrub 60.20 19.00 20.60
Artemisia diffusa AD Semi-shrub 18.50 88.70 35.10
Artemisia turanica AT Semi-shrub 9.10 29.80 10.35
Atraphaxis spinosa AS Semi-shrub 25.80 46.80 10.50
Limonium suffruticosum LS Semi-shrub 11.80 17.60 2.90
Ceratocarpus utriculosus CU Annual 15.90 29.40 6.75
Girgensohnia oppositiflora GO Annual 13.80 27.20 6.70
Halophytes Haloxylon aphyllum HA Tree 32.20 36.30 2.05
Tamarix androssovii TA Shrub 20.00 7.70 6.15
Nitraria schoberi NSc Shrub 5.10 9.60 2.25
Anabasis salsa ASа Semi-shrub 32.90 42.10 4.60
Halocnemum strobilaceum HS Annual 22.30 14.10 4.10
Climacoptera lanata CL Annual 35.30 72.90 18.80
Crataegus korolkovii CK Tree 30.90 20.20 5.35
Rosa laxa RL Shrub 28.60 32.50 1.95
Hulthemia persica HP Shrub 16.60 45.10 14.25
Echinops meyeri EM Perennial grass 16.80 41.90 12.55
Agropyron fragile AF Perennial grass 17.70 22.70 2.50
Acroptilon repens AR Perennial grass 13.40 46.30 16.45
Phragmites australis PA Perennial grass 12.60 6.70 2.95
Medicago sativa MS Perennial grass 25.30 8.40 8.45
Poa bulbosa PB Ephemeroid 37.90 89.40 25.75
Eremopyrum orientale EO Ephemeral 26.70 53.00 13.15
Table 4 Index value of importance (IVI) of plant species in the FR and CR periods of investigations
Fig. 3 Non-metric multidimensional scaling (NMDS) diagram of vegetative cover in the study area based on the plant species and projective cover during the periods of 1970-1980 (NMDS1) and 2010-2017 (NMDS2)
Fig. 4 Prognosis trends of species number (NS) and projective cover (VC) in the former-running (FR; a) and current-running (CR; b) periods
[1]   Ahmad D S, Jatna S, Dedy D R, et al. 2017. Impact of climate change on potential distribution of xero-epiphytic selaginellas (Selaginella involvens and S. repanda) in Southeast Asia. Biodiversitas, 18: 1680-1695.
[2]   Aitmuratov R P. 2017. Dynamics of the Karakalpakstan Flora. Dynamics and Capabilities of Environments of the Karakalpakstan. Nukus: Ilim Press, 78-79. (in Russian)
[3]   Akzhigitova N I. 1982. Halophytic Vegetation of Middle Asia and Its Indicative Characteristics. Tashkent: Fan Press, 6-29. (in Russian)
[4]   Aleksanov V V. 2017. Methods of Biodiversity Investigations. Kaluga: OEBC Publication, 25-56. (in Russian)
[5]   Beek A T, Voß F, Flörke M. 2011. Modelling the impact of global change on the hydrological system of the Aral Sea basin. Physics and Chemistry of the Earth, Parts A/B/C, 36(13): 684-695.
[6]   Bhadra A K, Pattanayak S K. 2016. Abundance or dominance: which is more justified to calculate 2345 importance value index (IVI) of plant species? Asian Journal Pharmaceutics Science Technology, 7(9): 3577-3601.
[7]   Bortnik V N, Chistyaeva S P. 1990. Hydrometeorology and hydrochemistry of seas of the USSR. In: The Aral Sea Vol 7. Leningrad: Gidrometeoizdat Press, 42-46. (in Russian)
[8]   Breugel M V, Bongers F, Martínez-Ramos M. 2007. Species dynamics during early secondary forest succession: recruitment, mortality and species turnover. Biotropica, 39(5): 610-619.
[9]   Bykova E A. 2017. Biodiversity Preservation in the Usturt Plateau, Conservation Legislation and Struggle Against Illegal Usage of Living Nature Objects. Tashkent: The Alliance for Saiga Protection Publication, 74-88. (in Russian)
[10]   Chibrik T S, Glazyrina M A, Lukina N V, et al. 2014. The Study of the Vegetative Cenosis of the Technogenic Landscapes. Ekateringburg: Ural University Publication, 15-66. (in Russian)
[11]   Chub V E. 2000. Climate Change and Its Impact on the Natural Resources Potential of the Republic of Uzbekistan. Tashkent: Gidromet Publication, 1-115.
[12]   Chun-chiu P, Kwan-ki M X, Pei-lai L J, et al. 2018. Vegetation succession on landslides in Hong Kong: Plant regeneration, survivorship and constraints to restoration. Global Ecology and Conservation, 15: e00428, doi: 10.1016/j.gecco.2018.e00428.
[13]   Cleimenova I E. 2010. Ecological and geographical zonation of the Karakalpak Ustyurt. Bulletin of the Orenburg State University, 10(116): 106-111. (in Russian)
[14]   Czerepanov S K. 1995. Vascular Plants of Russia and Adjacent States (the Former USSR). Cambridge: Cambridge University Press, 516.
[15]   Dimeyeva L A. 1995. Ecological and historical stages of forming of seaside vegetation of areas around Aral Sea. Bulletin of the Moscow Society of Naturalists, Biological Department, 100(2): 72-84. (in Russian)
[16]   Dimeyeva L A. 2007. Regularities of primary successions of the Aral Sea shore. Arid Ecosystems, 13: 89-100. (in Russian)
[17]   Dimeyeva L A. 2015. Natural and anthropogenic dynamics of vegetation in the Aral Sea Coast. American Journal of Environmental Protection, 4(3-1): 136-142.
[18]   Erin L B, Seth M M, Miguel L V. 2017. Climate legacy and lag effects on dryland plant communities in the southwestern US. Ecological Indicators, 74: 216-229.
[19]   Franklin J, Serra-Diaz J M, Syphard A D, et al. 2016. Global change and terrestrial plant community dynamics. Proceedings of the National Academy of Sciences, 113(14): 3725-3724.
[20]   Groll M, Opp C, Aslanov I. 2013. Spatial and temporal distribution of the dust deposition in Central Asia-results from a long term monitoring program. Aeolian Research, 9: 49-62.
[21]   Hammer Ø, Harpe D А Т, Ryan R D. 2001. PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electrónica, 4(1): 1-9.
[22]   Hierro J L, Villareal D, Eren O, et al. 2006. Disturbance facilitates invasion: the effects are stronger abroad than at home. The American Naturalist, 168(2): 144-156.
pmid: 16874625
[23]   Indoitu R, Orlovsky L, Orlovsky N. 2012. Dust storms in Central Asia-spatial and temporal variations. Journal of Arid Environments, 85: 62-70.
doi: 10.1016/j.jaridenv.2012.03.018
[24]   Kabulov S. 1989. The changes of the desert phytocenosis of the Aral Sea region with relation with the Aral Sea declining. Ph.D. Dissertation. Tashkent: Institute of Botany, Academy of Sciences of Uzbekistan, 5-40. (in Russian)
[25]   Kostianov A G, Kosarev А Н. 2010. The Aral Sea Environment. The Handbook of Environmental Chemistry. Berlin: Springer-Verlag Publication, 335.
[26]   Kuzmiona Z V, Treshkin S E, Mamutov N K. 2006. Results of experienced forming of natural vegetation on salty soils in the dried parts of the Aral Sea. Arid Ecosystems, 29(12): 27-39. (in Russian)
[27]   Lavrenko E M, Korchagina A A. 1959. Field Geobotany. Moscow-Leningrad: AS USSR Press, 5-196. (in Russian)
[28]   Lavrenko Y M. 1991. Steppes of the Eurasia. Leningrad: Nauka Press, 34-94.
[29]   Lazareva V G, Bananova V A, Petrov K M, et al. 2015. Transformation of the pasture ecosystems in the Russian parts of the Caspian Sea under new social and economic conditions. South of Russia: Ecology, Development, 10(3), doi: 10.18470/1992-1098-2015-3-127-135.
[30]   Mamutov N K, Reimov P R, Khudaybergenov Y G, et al. 2009. The typical features of the main vegetative association distribution in the Ustyurt Plateau (Republic of Uzbekistan). Oldfield Business, 8: 79-80. (in Russian)
[31]   Mangold J M, Carpinelli P M F. 2007. Revegetating Russian knapweed (Acroptilon repens) infestations using morphologically diverse species and seedbed preparation. Rangeland Ecology & Management, 60(4): 378-385.
[32]   Micklin P. 2007. The Aral Sea disaster. Annual Reviews Earth Planet Science, 35(1): 47-72.
[33]   Moskalenko G P. 2001. The Quarantine Weed Plants of the Russia. Moscow: IPK Penza Pravda Publication, 112-135. (in Russian)
[34]   Munson S M, Belnap J, Okin G S. 2011. Responses of wind erosion to climate-induced vegetation changes on the Colorado Plateau. Proceedings of the National Academy of Sciences, 108(10): 3854-3859.
[35]   Norden N, Mesquita R C G, Bentos T V, et al. 2011. Contrasting community compensatory trends in alternative successional pathways in central Amazonia. Oikos, 120(1): 143-151.
doi: 10.1111/more.2010.120.issue-1
[36]   Norden N, Letcher S G, Boukili V, et al. 2012. Demographic drivers of successional changes in phylogenetic structure across life-history stages in plant communities. Ecology, 93(8): 70-82.
[37]   Opp C. 2005. Desertification in Uzbekistan. Geographische Rundschau International Edition, 1(2): 12-20.
[38]   Ped D A, 1975. About indicators of a drought and excessive humidification. Proceedings of the Hydrometeorological Center of the USSR, 156: 19-39. (in Russian)
[39]   Rabotnov T A. 1983. The Vegetative Cenosis. Moscow: University Press, 58-120. (in Russian)
[40]   Rachkovskaya E I. 2003. The natural features of plain vegetation. In: The Botanical Geography of Kazakhstan and Middle Asia (within desert areas). Saint-Petersburg: GTZ Publication, 13-18. (in Russian)
[41]   Rakhimova N K, Rakhimova T, Adilov B A, et al. 2018. Ecological and phytocenotic characteristic of some tugai species of the Ustyurt plateau Eastern chink (Republic of Uzbekistan). Materials of 17th International scientific-practical conference "Botany problems of the Southern Siberia and Mongolia". Barnaul, Russia, 120-123. (in Russian)
[42]   Rakhimova T. 1997. The Plant Ecology of the Adyr Zones of Uzbekistan. Tashkent: Tashkent University Publication, 1-2, 1994-1995. (in Russian)
[43]   Roy S B, Smith M, Morris L, et al. 2014. Impact of the desiccation of the Aral Sea on summer time surface air temperatures. Journal of Arid Environments, 110: 79-85.
[44]   Safronova I N. 2016. The dominants of the current plant cover of deserts of the European Russia. Labours of the Geology Institute of the Dagestan Scientific Center of the Russian Academy of Sciences, 67: 250-253.
[45]   Sarmiento L, Llambí L D, Escalona A, et al. 2003. Vegetation patterns, regeneration rates and divergence in an old-field succession of the high tropical Andes. Plant Ecology, 166, 145-156.
[46]   Sarybaev B P. 1981. Flora and Vegetation of the Eastern Chink. Tashkent: Fan Press, 11-83. (in Russian)
[47]   Sarybaev B P. 1994. Flora and vegetation of the Ustyurt Plateau and perspectives of its development. PhD Dissertation. Tashkent: Institute of Botany, Academy of Sciences of Uzbekistan, 5-48.
[48]   Shennikov A P. 1964. Introduction in the Geographical Botany. Leningrad: Leningrad University Publication, 11-66. (in Russian)
[49]   Shibuo Y, Jarsjo J, Destouni G. 2007. Hydrological responses to climate change and irrigation in the Aral Sea drainage basin . Geophysical Research Letters, 34(21), doi: 10.1029/2007GL031465.
[50]   Shishkin B K, Bobrov E G. 1934-1964. Flora of the USSR. Moscow-Leningrad: The USSR Academy of the Science Press, 1-36. (in Russian)
[51]   Shomurodov H F, Sarbayeva S U, Akhmedov A. 2015. Distribution pattern and modern status of rare plant species on the Ustyurt Plateau in Uzbekistan. Arid Ecosystems, 5(4): 261-267.
[52]   Small E E, Giorgi F, Sloan L C, et al. 1999. The effects of desiccation and climatic change on the hydrology of the Aral Sea. The Journal of Climate, 14(3): 300-322.
[53]   Stampfli A, Zeiter M. 2004. Plant regeneration directs changes in grassland composition after extreme drought: a 13-year study in southern Switzerland. Journal Ecology, 92(4): 568-576.
[54]   Taguchi Y H, Oono Y. 2005. Relational patterns of gene expression via non-metric multidimensional scaling analysis. Bioinformatics, 21(6): 730-740.
doi: 10.1093/bioinformatics/bti067 pmid: 15509613
[55]   Tilman D, Lehman C L, Thomson K T. 1997. Plant diversity and ecosystem productivity: Theoretical considerations. Proceedings of the National Academy of Sciences, 94(5): 1857-1861.
[56]   Tognetti P M, Chaneton E J, Omacini M, et al. 2010. Exotic vs. native plant dominance over 20 years of old-field succession on set-aside farmland in Argentina, Biological. Conserve, 143: 2494-2503.
[57]   Tozhibaev K S, Beshko N U, Popov V A. 2016. Botanical-geographical zonation of Uzbekistan. Journal of Botany, 10(11): 1105-1131. (in Russian)
[58]   Vasilevich V I. 2009. Plant species diversity. Siberiam Ecological Journal, 4: 509-517. (in Russian)
[59]   Viktorov S V. 1971. Ustyurt Desert and Problems of Its Development. Moscow: Nauka Press, 48-97. (in Russian)
[60]   Vvedenskyi A I. 1968-2015. Identifier of Central Asian Plants. Tashkent: Fan Press, 1-11. (in Russian)
[61]   Whittaker R H. 1960. Vegetation of the Siskiyou Mountains, Oregon and California. Ecological Monographs, 30(4): 279-338.
[62]   Wucherer W, Breckle S W. 2001. Vegetation dynamics on the dry sea floor of the Aral Sea. In: Breckle S W, Veste M, Wucherer W. Sustainable Land Use in Deserts. Berlin: Springer-Verlag Publication, 52-68.
[63]   Zakirov K Z, Granitov I I. 1973. Vegetation Cover of Uzbekistan. Tashkent: Fan Press, 1-375. (in Russian)
[64]   Zonn I S, Glantz M, Kosarev A N, et al. 2009. The Aral Sea Encyclopedia. Berlin: Springer-Verlag Publication, 285.
[1] BAI Jie, LI Junli, BAO Anmin, CHANG Cun. Spatial-temporal variations of ecological vulnerability in the Tarim River Basin, Northwest China[J]. Journal of Arid Land, 2021, 13(8): 814-834.
[2] WU Jun, DENG Guoning, ZHOU Dongmei, ZHU Xiaoyan, MA Jing, CEN Guozhang, JIN Yinli, ZHANG Jun. Effects of climate change and land-use changes on spatiotemporal distributions of blue water and green water in Ningxia, Northwest China[J]. Journal of Arid Land, 2021, 13(7): 674-687.
[3] WANG Yuejian, GU Xinchen, YANG Guang, YAO Junqiang, LIAO Na. Impacts of climate change and human activities on water resources in the Ebinur Lake Basin, Northwest China[J]. Journal of Arid Land, 2021, 13(6): 581-598.
[4] SA Chula, MENG Fanhao, LUO Min, LI Chenhao, WANG Mulan, ADIYA Saruulzaya, BAO Yuhai. Spatiotemporal variation in snow cover and its effects on grassland phenology on the Mongolian Plateau[J]. Journal of Arid Land, 2021, 13(4): 332-349.
[5] Ayad M F AL-QURAISHI, Heman A GAZNAYEE, Mattia CRESPI. Drought trend analysis in a semi-arid area of Iraq based on Normalized Difference Vegetation Index, Normalized Difference Water Index and Standardized Precipitation Index[J]. Journal of Arid Land, 2021, 13(4): 413-430.
[6] Durdiev KHAYDAR, CHEN Xi, HUANG Yue, Makhmudov ILKHOM, LIU Tie, Ochege FRIDAY, Abdullaev FARKHOD, Gafforov KHUSEN, Omarakunova GULKAIYR. Investigation of crop evapotranspiration and irrigation water requirement in the lower Amu Darya River Basin, Central Asia[J]. Journal of Arid Land, 2021, 13(1): 23-39.
[7] Sanim BISSENBAYEVA, Jilili ABUDUWAILI, Assel SAPAROVA, Toqeer AHMED. Long-term variations in runoff of the Syr Darya River Basin under climate change and human activities[J]. Journal of Arid Land, 2021, 13(1): 56-70.
[8] HUANG Xiaotao, LUO Geping, CHEN Chunbo, PENG Jian, ZHANG Chujie, ZHOU Huakun, YAO Buqing, MA Zhen, XI Xiaoyan. How precipitation and grazing influence the ecological functions of drought-prone grasslands on the northern slopes of the Tianshan Mountains, China?[J]. Journal of Arid Land, 2021, 13(1): 88-97.
[9] Farzaneh KHAJOEI NASAB, Ahmadreza MEHRABIAN, Hossein MOSTAFAVI. Mapping the current and future distributions of Onosma species endemic to Iran[J]. Journal of Arid Land, 2020, 12(6): 1031-1045.
[10] Mahsa MIRDASHTVAN, Mohsen MOHSENI SARAVI. Influence of non-stationarity and auto-correlation of climatic records on spatio-temporal trend and seasonality analysis in a region with prevailing arid and semi-arid climate, Iran[J]. Journal of Arid Land, 2020, 12(6): 964-983.
[11] XU Bo, HUGJILTU Minggagud, BAOYIN Taogetao, ZHONG Yankai, BAO Qinghai, ZHOU Yanlin, LIU Zhiying. Rapid loss of leguminous species in the semi-arid grasslands of northern China under climate change and mowing from 1982 to 2011[J]. Journal of Arid Land, 2020, 12(5): 752-765.
[12] FENG Jian, ZHAO Lingdi, ZHANG Yibo, SUN Lingxiao, YU Xiang, YU Yang. Can climate change influence agricultural GTFP in arid and semi-arid regions of Northwest China?[J]. Journal of Arid Land, 2020, 12(5): 837-853.
[13] ZHOU Zuhao, HAN Ning, LIU Jiajia, YAN Ziqi, XU Chongyu, CAI Jingya, SHANG Yizi, ZHU Jiasong. Glacier variations and their response to climate change in an arid inland river basin of Northwest China[J]. Journal of Arid Land, 2020, 12(3): 357-373.
[14] LI Xuemei, Slobodan P SIMONOVIC, LI Lanhai, ZHANG Xueting, QIN Qirui. Performance and uncertainty analysis of a short-term climate reconstruction based on multi-source data in the Tianshan Mountains region, China[J]. Journal of Arid Land, 2020, 12(3): 374-396.
[15] BAI Haihua, YIN Yanting, Jane ADDISON, HOU Yulu, WANG Linhe, HOU Xiangyang. Market opportunities do not explain the ability of herders to meet livelihood objectives over winter on the Mongolian Plateau[J]. Journal of Arid Land, 2020, 12(3): 522-537.