Please wait a minute...
Journal of Arid Land  2021, Vol. 13 Issue (1): 71-87    DOI: 10.1007/s40333-020-0077-7
Research article     
Transformation of vegetative cover on the Ustyurt Plateau of Central Asia as a consequence of the Aral Sea shrinkage
Adilov BEKZOD1,2, Shomurodov HABIBULLO1,2, FAN Lianlian2,3, LI Kaihui2,3, MA Xuexi2,3, LI Yaoming2,3,*()
1Institute of Botany, Academy of Sciences of Uzbekistan, Tashkent 100125, Uzbekistan
2CAS Research Center for Ecology and Environment of Central Asia, Urumqi 830011, China
3Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
Download: HTML     PDF(922KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

The gradual shrinkage of the Aral Sea has led to not only the degradation of the unique environments of the Aral Sea, but also numerous and fast developing succession processes in the neighborhood habitats surrounding the sea. In this study, we investigated the vegetative succession processes related to the Aral Sea shrinkage in the Eastern Cliff of the Ustyurt Plateau in Republic of Uzbekistan, Central Asia. We compared the results of our current investigation (2010-2017) on vegetative communities with the geobotany data collected during the 1970s (1970-1980). The results showed great changes in the mesophytic plant communities and habitat aridization as a result of the drop in the underground water level, which decreased atmospheric humidity and increased the salt content of the soil caused by the shrinkage of the Aral Sea. In the vegetative communities, we observed a decrease in the Margalef index (DMg), which had a positive correlation with the poly-dominance index (I-D). The main indications of the plant communities' transformation were the loss of the weak species, the appearance of new communities with low species diversity, the stabilization of the projective cover of former resistant communities, as well as the appearance of a new competitive species, which occupy new habitats.



Key wordsplant cover      mesophytic plant communities      vegetative succession      xerophytization      biodiversity index      climate change      Aral Sea     
Received: 12 March 2019      Published: 10 January 2021
Corresponding Authors:
About author: *LI Yaoming (E-mail: lym@ms.xjb.ac.cn)
Cite this article:

Adilov BEKZOD, Shomurodov HABIBULLO, FAN Lianlian, LI Kaihui, MA Xuexi, LI Yaoming. Transformation of vegetative cover on the Ustyurt Plateau of Central Asia as a consequence of the Aral Sea shrinkage. Journal of Arid Land, 2021, 13(1): 71-87.

URL:

http://jal.xjegi.com/10.1007/s40333-020-0077-7     OR     http://jal.xjegi.com/Y2021/V13/I1/71

Fig. 1 Location of the Eastern Cliff on the Ustyurt Plateau. (a), study area (Kabanbai investigation area, represented as a square) in the Eastern Cliff of the Ustyurt Plateau; (b), overview of the Ustyurt Plateau (A), Kabanbai (B), and the dried part of the Aral Sea (C). The territory of the Ustyurt Plateau is located to the west from the Kabanbai, and the dried part of the Aral Sea is north from the Kabanbai.
Fig. 2 Trends of annual average air temperature (a) and annual precipitation (b) during the period 1970-2017, as well as the aridity index on a decade scale during the period 1976-2015 (c). Severe dry years (1984, 1996, 2000, and 2008) with precipitation of only 40-60 mm are indicated by arrows.
Plant community Abbreviation Occurrence
FR CR
Rosaeta laxae Rosaeta laxae mixtoherbosum RM + +
Rosaetum laxae R + +
Rosaetum laxae korolkovi crateageosum RC + -
Rosaeta laxae australi phragmitesum RP + -
Rosaeta laxae critmifoli malocacarpesum RM - +
Crateageta korolkovii Crateagetum korolkovi rosaso-sativae medicagosum CRM + +
Crateagetum korolkovi C + +
Crateagetum korolkovi laxae rosasum CR + -
Crataegetum korolkovi australi phragmitesum CP + -
Crateagetum korolkovi mixtoherbosum CM - +
Medicageta sativae Medicagetum sativae viridiflori cynoglosetum MC + +
Medicagetum sativae mixtoherbosum MMH + +
Medicagetum sativae fragile agropyrosum MA + -
Medicagetum sativae arvensi convolvulosum MCA + -
Medicagetum sativae artemisiaso-mixtoherbosum MAM - +
Agropyreta fragile Agropyretum fragile sativae medicagosum AM + +
Agropyretum fragile racemose elymusum AEL + -
Agropyretum fragile dolicholepi puccinelosum AP + -
Agropyretum fragile meyeri echinopsum AE - +
Agropyretum fragile viridiflori cynoglossum AC - +
Agropyretum fragile repensi acroptilosum AR - +
Agropyretum fragile artemisiaso-sativae medicagosum AAM - +
Agropyretum fragile mixtoherbosum AMH - +
Table 1 Occurrence of mesophytic and xero-mesophytic communities in the former-running (FR) and current-running (CR) periods of investigations
Index Maximum±SE Minimum±SE Mean±SE v
FR CR FR CR FR CR FR CR
NS 49.70±1.57 17.40±0.37 5.50±0.26 4.60±0.32 20.60±2.57 9.70±1.95 65.30 39.20
VC (%) 95.10±0.55 95.70±0.27 45.80±0.77 7.10±0.30 63.10±2.30 36.90±1.15 25.60 68.50
nx-h 98.00±0.49 99.00±0.34 55.10±0.47 25.00±0.29 79.40±1.71 81.30±1.11 18.10 20.50
nm-xm 45.50±0.36 75.30±0.25 0.50±0.25 0.80±0.22 20.60±2.81 18.70±2.22 69.40 88.60
VCx-h (%) 98.30±0.40 99.10±0.24 20.40±0.37 11.40±0.15 75.60±1.77 84.20±1.15 35.50 28.50
VCm-xm (%) 80.40±0.83 89.40±0.23 0.80±0.24 0.90±0.20 23.80±2.77 15.90±2.09 109.40 150.40
Table 2 Indices of vegetative cover in the FR and CR periods of investigations
No. Community D I-D H DMg βw
FR CR FR CR FR CR FR CR
I Riparian forest
1.1 Rosaeta laxae
1.1.1 RM 0.04 0.08 0.95 0.91 3.16 2.84 4.84 4.23 0.02
1.1.2 R 0.62 0.56 0.38 0.44 0.86 1.30 1.56 4.20 0.42
1.2 Crataegeta korolkovii
2.1. CRM 0.09 0.16 0.91 0.84 2.87 2.29 4.74 4.65 0.04
2.2. C 0.20 0.56 0.80 0.44 2.27 1.16 3.38 3.16 0.08
II Motley grass
2.1 Medicageta sativae
2.1.1 MCA 0.05 0.22 0.94 0.77 3.25 1.98 6.07 3.85 0.38
2.1.2 MMH 0.03 0.29 0.96 0.70 3.47 1.80 6.38 3.36 0.37
III Steppe
3.1 Agropyreta fragile
3.1.1 AM 0.08 0.07 0.91 0.93 2.74 2.89 3.70 5.25 0.14
Table 3 Changes in the biodiversity indices of the mesophytic plant communities in the FR and CR periods of investigations
Ecological group Specie Abbreviation Life form IVI Average
difference
FR CR
Xerophytes Salsola arbusculiformis SA Semi-shrub 45.20 57.30 6.05
Salsola orientalis SO Semi-shrub 30.30 31.60 0.65
Ephedra distachya ED Semi-shrub 20.30 21.50 0.57
Artemisia terrae-albae ATA Semi-shrub 60.20 19.00 20.60
Artemisia diffusa AD Semi-shrub 18.50 88.70 35.10
Artemisia turanica AT Semi-shrub 9.10 29.80 10.35
Atraphaxis spinosa AS Semi-shrub 25.80 46.80 10.50
Limonium suffruticosum LS Semi-shrub 11.80 17.60 2.90
Ceratocarpus utriculosus CU Annual 15.90 29.40 6.75
Girgensohnia oppositiflora GO Annual 13.80 27.20 6.70
Halophytes Haloxylon aphyllum HA Tree 32.20 36.30 2.05
Tamarix androssovii TA Shrub 20.00 7.70 6.15
Nitraria schoberi NSc Shrub 5.10 9.60 2.25
Anabasis salsa ASа Semi-shrub 32.90 42.10 4.60
Halocnemum strobilaceum HS Annual 22.30 14.10 4.10
Climacoptera lanata CL Annual 35.30 72.90 18.80
Mesophytes
and
xero-mesophytes
Crataegus korolkovii CK Tree 30.90 20.20 5.35
Rosa laxa RL Shrub 28.60 32.50 1.95
Hulthemia persica HP Shrub 16.60 45.10 14.25
Echinops meyeri EM Perennial grass 16.80 41.90 12.55
Agropyron fragile AF Perennial grass 17.70 22.70 2.50
Acroptilon repens AR Perennial grass 13.40 46.30 16.45
Phragmites australis PA Perennial grass 12.60 6.70 2.95
Medicago sativa MS Perennial grass 25.30 8.40 8.45
Poa bulbosa PB Ephemeroid 37.90 89.40 25.75
Eremopyrum orientale EO Ephemeral 26.70 53.00 13.15
Table 4 Index value of importance (IVI) of plant species in the FR and CR periods of investigations
Fig. 3 Non-metric multidimensional scaling (NMDS) diagram of vegetative cover in the study area based on the plant species and projective cover during the periods of 1970-1980 (NMDS1) and 2010-2017 (NMDS2)
Fig. 4 Prognosis trends of species number (NS) and projective cover (VC) in the former-running (FR; a) and current-running (CR; b) periods
[1]   Ahmad D S, Jatna S, Dedy D R, et al. 2017. Impact of climate change on potential distribution of xero-epiphytic selaginellas (Selaginella involvens and S. repanda) in Southeast Asia. Biodiversitas, 18: 1680-1695.
[2]   Aitmuratov R P. 2017. Dynamics of the Karakalpakstan Flora. Dynamics and Capabilities of Environments of the Karakalpakstan. Nukus: Ilim Press, 78-79. (in Russian)
[3]   Akzhigitova N I. 1982. Halophytic Vegetation of Middle Asia and Its Indicative Characteristics. Tashkent: Fan Press, 6-29. (in Russian)
[4]   Aleksanov V V. 2017. Methods of Biodiversity Investigations. Kaluga: OEBC Publication, 25-56. (in Russian)
[5]   Beek A T, Voß F, Flörke M. 2011. Modelling the impact of global change on the hydrological system of the Aral Sea basin. Physics and Chemistry of the Earth, Parts A/B/C, 36(13): 684-695.
[6]   Bhadra A K, Pattanayak S K. 2016. Abundance or dominance: which is more justified to calculate 2345 importance value index (IVI) of plant species? Asian Journal Pharmaceutics Science Technology, 7(9): 3577-3601.
[7]   Bortnik V N, Chistyaeva S P. 1990. Hydrometeorology and hydrochemistry of seas of the USSR. In: The Aral Sea Vol 7. Leningrad: Gidrometeoizdat Press, 42-46. (in Russian)
[8]   Breugel M V, Bongers F, Martínez-Ramos M. 2007. Species dynamics during early secondary forest succession: recruitment, mortality and species turnover. Biotropica, 39(5): 610-619.
[9]   Bykova E A. 2017. Biodiversity Preservation in the Usturt Plateau, Conservation Legislation and Struggle Against Illegal Usage of Living Nature Objects. Tashkent: The Alliance for Saiga Protection Publication, 74-88. (in Russian)
[10]   Chibrik T S, Glazyrina M A, Lukina N V, et al. 2014. The Study of the Vegetative Cenosis of the Technogenic Landscapes. Ekateringburg: Ural University Publication, 15-66. (in Russian)
[11]   Chub V E. 2000. Climate Change and Its Impact on the Natural Resources Potential of the Republic of Uzbekistan. Tashkent: Gidromet Publication, 1-115.
[12]   Chun-chiu P, Kwan-ki M X, Pei-lai L J, et al. 2018. Vegetation succession on landslides in Hong Kong: Plant regeneration, survivorship and constraints to restoration. Global Ecology and Conservation, 15: e00428, doi: 10.1016/j.gecco.2018.e00428.
[13]   Cleimenova I E. 2010. Ecological and geographical zonation of the Karakalpak Ustyurt. Bulletin of the Orenburg State University, 10(116): 106-111. (in Russian)
[14]   Czerepanov S K. 1995. Vascular Plants of Russia and Adjacent States (the Former USSR). Cambridge: Cambridge University Press, 516.
[15]   Dimeyeva L A. 1995. Ecological and historical stages of forming of seaside vegetation of areas around Aral Sea. Bulletin of the Moscow Society of Naturalists, Biological Department, 100(2): 72-84. (in Russian)
[16]   Dimeyeva L A. 2007. Regularities of primary successions of the Aral Sea shore. Arid Ecosystems, 13: 89-100. (in Russian)
[17]   Dimeyeva L A. 2015. Natural and anthropogenic dynamics of vegetation in the Aral Sea Coast. American Journal of Environmental Protection, 4(3-1): 136-142.
[18]   Erin L B, Seth M M, Miguel L V. 2017. Climate legacy and lag effects on dryland plant communities in the southwestern US. Ecological Indicators, 74: 216-229.
[19]   Franklin J, Serra-Diaz J M, Syphard A D, et al. 2016. Global change and terrestrial plant community dynamics. Proceedings of the National Academy of Sciences, 113(14): 3725-3724.
[20]   Groll M, Opp C, Aslanov I. 2013. Spatial and temporal distribution of the dust deposition in Central Asia-results from a long term monitoring program. Aeolian Research, 9: 49-62.
[21]   Hammer Ø, Harpe D А Т, Ryan R D. 2001. PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electrónica, 4(1): 1-9.
[22]   Hierro J L, Villareal D, Eren O, et al. 2006. Disturbance facilitates invasion: the effects are stronger abroad than at home. The American Naturalist, 168(2): 144-156.
pmid: 16874625
[23]   Indoitu R, Orlovsky L, Orlovsky N. 2012. Dust storms in Central Asia-spatial and temporal variations. Journal of Arid Environments, 85: 62-70.
doi: 10.1016/j.jaridenv.2012.03.018
[24]   Kabulov S. 1989. The changes of the desert phytocenosis of the Aral Sea region with relation with the Aral Sea declining. Ph.D. Dissertation. Tashkent: Institute of Botany, Academy of Sciences of Uzbekistan, 5-40. (in Russian)
[25]   Kostianov A G, Kosarev А Н. 2010. The Aral Sea Environment. The Handbook of Environmental Chemistry. Berlin: Springer-Verlag Publication, 335.
[26]   Kuzmiona Z V, Treshkin S E, Mamutov N K. 2006. Results of experienced forming of natural vegetation on salty soils in the dried parts of the Aral Sea. Arid Ecosystems, 29(12): 27-39. (in Russian)
[27]   Lavrenko E M, Korchagina A A. 1959. Field Geobotany. Moscow-Leningrad: AS USSR Press, 5-196. (in Russian)
[28]   Lavrenko Y M. 1991. Steppes of the Eurasia. Leningrad: Nauka Press, 34-94.
[29]   Lazareva V G, Bananova V A, Petrov K M, et al. 2015. Transformation of the pasture ecosystems in the Russian parts of the Caspian Sea under new social and economic conditions. South of Russia: Ecology, Development, 10(3), doi: 10.18470/1992-1098-2015-3-127-135.
[30]   Mamutov N K, Reimov P R, Khudaybergenov Y G, et al. 2009. The typical features of the main vegetative association distribution in the Ustyurt Plateau (Republic of Uzbekistan). Oldfield Business, 8: 79-80. (in Russian)
[31]   Mangold J M, Carpinelli P M F. 2007. Revegetating Russian knapweed (Acroptilon repens) infestations using morphologically diverse species and seedbed preparation. Rangeland Ecology & Management, 60(4): 378-385.
[32]   Micklin P. 2007. The Aral Sea disaster. Annual Reviews Earth Planet Science, 35(1): 47-72.
[33]   Moskalenko G P. 2001. The Quarantine Weed Plants of the Russia. Moscow: IPK Penza Pravda Publication, 112-135. (in Russian)
[34]   Munson S M, Belnap J, Okin G S. 2011. Responses of wind erosion to climate-induced vegetation changes on the Colorado Plateau. Proceedings of the National Academy of Sciences, 108(10): 3854-3859.
[35]   Norden N, Mesquita R C G, Bentos T V, et al. 2011. Contrasting community compensatory trends in alternative successional pathways in central Amazonia. Oikos, 120(1): 143-151.
doi: 10.1111/more.2010.120.issue-1
[36]   Norden N, Letcher S G, Boukili V, et al. 2012. Demographic drivers of successional changes in phylogenetic structure across life-history stages in plant communities. Ecology, 93(8): 70-82.
[37]   Opp C. 2005. Desertification in Uzbekistan. Geographische Rundschau International Edition, 1(2): 12-20.
[38]   Ped D A, 1975. About indicators of a drought and excessive humidification. Proceedings of the Hydrometeorological Center of the USSR, 156: 19-39. (in Russian)
[39]   Rabotnov T A. 1983. The Vegetative Cenosis. Moscow: University Press, 58-120. (in Russian)
[40]   Rachkovskaya E I. 2003. The natural features of plain vegetation. In: The Botanical Geography of Kazakhstan and Middle Asia (within desert areas). Saint-Petersburg: GTZ Publication, 13-18. (in Russian)
[41]   Rakhimova N K, Rakhimova T, Adilov B A, et al. 2018. Ecological and phytocenotic characteristic of some tugai species of the Ustyurt plateau Eastern chink (Republic of Uzbekistan). Materials of 17th International scientific-practical conference "Botany problems of the Southern Siberia and Mongolia". Barnaul, Russia, 120-123. (in Russian)
[42]   Rakhimova T. 1997. The Plant Ecology of the Adyr Zones of Uzbekistan. Tashkent: Tashkent University Publication, 1-2, 1994-1995. (in Russian)
[43]   Roy S B, Smith M, Morris L, et al. 2014. Impact of the desiccation of the Aral Sea on summer time surface air temperatures. Journal of Arid Environments, 110: 79-85.
[44]   Safronova I N. 2016. The dominants of the current plant cover of deserts of the European Russia. Labours of the Geology Institute of the Dagestan Scientific Center of the Russian Academy of Sciences, 67: 250-253.
[45]   Sarmiento L, Llambí L D, Escalona A, et al. 2003. Vegetation patterns, regeneration rates and divergence in an old-field succession of the high tropical Andes. Plant Ecology, 166, 145-156.
[46]   Sarybaev B P. 1981. Flora and Vegetation of the Eastern Chink. Tashkent: Fan Press, 11-83. (in Russian)
[47]   Sarybaev B P. 1994. Flora and vegetation of the Ustyurt Plateau and perspectives of its development. PhD Dissertation. Tashkent: Institute of Botany, Academy of Sciences of Uzbekistan, 5-48.
[48]   Shennikov A P. 1964. Introduction in the Geographical Botany. Leningrad: Leningrad University Publication, 11-66. (in Russian)
[49]   Shibuo Y, Jarsjo J, Destouni G. 2007. Hydrological responses to climate change and irrigation in the Aral Sea drainage basin . Geophysical Research Letters, 34(21), doi: 10.1029/2007GL031465.
[50]   Shishkin B K, Bobrov E G. 1934-1964. Flora of the USSR. Moscow-Leningrad: The USSR Academy of the Science Press, 1-36. (in Russian)
[51]   Shomurodov H F, Sarbayeva S U, Akhmedov A. 2015. Distribution pattern and modern status of rare plant species on the Ustyurt Plateau in Uzbekistan. Arid Ecosystems, 5(4): 261-267.
[52]   Small E E, Giorgi F, Sloan L C, et al. 1999. The effects of desiccation and climatic change on the hydrology of the Aral Sea. The Journal of Climate, 14(3): 300-322.
[53]   Stampfli A, Zeiter M. 2004. Plant regeneration directs changes in grassland composition after extreme drought: a 13-year study in southern Switzerland. Journal Ecology, 92(4): 568-576.
[54]   Taguchi Y H, Oono Y. 2005. Relational patterns of gene expression via non-metric multidimensional scaling analysis. Bioinformatics, 21(6): 730-740.
doi: 10.1093/bioinformatics/bti067 pmid: 15509613
[55]   Tilman D, Lehman C L, Thomson K T. 1997. Plant diversity and ecosystem productivity: Theoretical considerations. Proceedings of the National Academy of Sciences, 94(5): 1857-1861.
[56]   Tognetti P M, Chaneton E J, Omacini M, et al. 2010. Exotic vs. native plant dominance over 20 years of old-field succession on set-aside farmland in Argentina, Biological. Conserve, 143: 2494-2503.
[57]   Tozhibaev K S, Beshko N U, Popov V A. 2016. Botanical-geographical zonation of Uzbekistan. Journal of Botany, 10(11): 1105-1131. (in Russian)
[58]   Vasilevich V I. 2009. Plant species diversity. Siberiam Ecological Journal, 4: 509-517. (in Russian)
[59]   Viktorov S V. 1971. Ustyurt Desert and Problems of Its Development. Moscow: Nauka Press, 48-97. (in Russian)
[60]   Vvedenskyi A I. 1968-2015. Identifier of Central Asian Plants. Tashkent: Fan Press, 1-11. (in Russian)
[61]   Whittaker R H. 1960. Vegetation of the Siskiyou Mountains, Oregon and California. Ecological Monographs, 30(4): 279-338.
[62]   Wucherer W, Breckle S W. 2001. Vegetation dynamics on the dry sea floor of the Aral Sea. In: Breckle S W, Veste M, Wucherer W. Sustainable Land Use in Deserts. Berlin: Springer-Verlag Publication, 52-68.
[63]   Zakirov K Z, Granitov I I. 1973. Vegetation Cover of Uzbekistan. Tashkent: Fan Press, 1-375. (in Russian)
[64]   Zonn I S, Glantz M, Kosarev A N, et al. 2009. The Aral Sea Encyclopedia. Berlin: Springer-Verlag Publication, 285.
[1] ZHAO Xuqin, LUO Min, MENG Fanhao, SA Chula, BAO Shanhu, BAO Yuhai. Spatiotemporal changes of gross primary productivity and its response to drought in the Mongolian Plateau under climate change[J]. Journal of Arid Land, 2024, 16(1): 46-70.
[2] Mitiku A WORKU, Gudina L FEYISA, Kassahun T BEKETIE, Emmanuel GARBOLINO. Projecting future precipitation change across the semi-arid Borana lowland, southern Ethiopia[J]. Journal of Arid Land, 2023, 15(9): 1023-1036.
[3] QIN Guoqiang, WU Bin, DONG Xinguang, DU Mingliang, WANG Bo. Evolution of groundwater recharge-discharge balance in the Turpan Basin of China during 1959-2021[J]. Journal of Arid Land, 2023, 15(9): 1037-1051.
[4] MA Jinpeng, PANG Danbo, HE Wenqiang, ZHANG Yaqi, WU Mengyao, LI Xuebin, CHEN Lin. Response of soil respiration to short-term changes in precipitation and nitrogen addition in a desert steppe[J]. Journal of Arid Land, 2023, 15(9): 1084-1106.
[5] WANG Min, CHEN Xi, CAO Liangzhong, KURBAN Alishir, SHI Haiyang, WU Nannan, EZIZ Anwar, YUAN Xiuliang, Philippe DE MAEYER. Correlation analysis between the Aral Sea shrinkage and the Amu Darya River[J]. Journal of Arid Land, 2023, 15(7): 757-778.
[6] ZHANG Hui, Giri R KATTEL, WANG Guojie, CHUAI Xiaowei, ZHANG Yuyang, MIAO Lijuan. Enhanced soil moisture improves vegetation growth in an arid grassland of Inner Mongolia Autonomous Region, China[J]. Journal of Arid Land, 2023, 15(7): 871-885.
[7] ZHANG Zhen, XU Yangyang, LIU Shiyin, DING Jing, ZHAO Jinbiao. Seasonal variations in glacier velocity in the High Mountain Asia region during 2015-2020[J]. Journal of Arid Land, 2023, 15(6): 637-648.
[8] GAO Xiang, WEN Ruiyang, Kevin LO, LI Jie, YAN An. Heterogeneity and non-linearity of ecosystem responses to climate change in the Qilian Mountains National Park, China[J]. Journal of Arid Land, 2023, 15(5): 508-522.
[9] Reza DEIHIMFARD, Sajjad RAHIMI-MOGHADDAM, Farshid JAVANSHIR, Alireza PAZOKI. Quantifying major sources of uncertainty in projecting the impact of climate change on wheat grain yield in dryland environments[J]. Journal of Arid Land, 2023, 15(5): 545-561.
[10] Sakine KOOHI, Hadi RAMEZANI ETEDALI. Future meteorological drought conditions in southwestern Iran based on the NEX-GDDP climate dataset[J]. Journal of Arid Land, 2023, 15(4): 377-392.
[11] Mehri SHAMS GHAHFAROKHI, Sogol MORADIAN. Investigating the causes of Lake Urmia shrinkage: climate change or anthropogenic factors?[J]. Journal of Arid Land, 2023, 15(4): 424-438.
[12] ZHANG Yixin, LI Peng, XU Guoce, MIN Zhiqiang, LI Qingshun, LI Zhanbin, WANG Bin, CHEN Yiting. Temporal and spatial variation characteristics of extreme precipitation on the Loess Plateau of China facing the precipitation process[J]. Journal of Arid Land, 2023, 15(4): 439-459.
[13] Adnan ABBAS, Asher S BHATTI, Safi ULLAH, Waheed ULLAH, Muhammad WASEEM, ZHAO Chengyi, DOU Xin, Gohar ALI. Projection of precipitation extremes over South Asia from CMIP6 GCMs[J]. Journal of Arid Land, 2023, 15(3): 274-296.
[14] ZHAO Lili, LI Lusheng, LI Yanbin, ZHONG Huayu, ZHANG Fang, ZHU Junzhen, DING Yibo. Monitoring vegetation drought in the nine major river basins of China based on a new developed Vegetation Drought Condition Index[J]. Journal of Arid Land, 2023, 15(12): 1421-1438.
[15] CAO Yijie, MA Yonggang, BAO Anming, CHANG Cun, LIU Tie. Evaluation of the water conservation function in the Ili River Delta of Central Asia based on the InVEST model[J]. Journal of Arid Land, 2023, 15(12): 1455-1473.