Please wait a minute...
Journal of Arid Land  2023, Vol. 15 Issue (7): 871-885    DOI: 10.1007/s40333-023-0019-2
Research article     
Enhanced soil moisture improves vegetation growth in an arid grassland of Inner Mongolia Autonomous Region, China
ZHANG Hui1,2, Giri R KATTEL1,3, WANG Guojie1, CHUAI Xiaowei4, ZHANG Yuyang1, MIAO Lijuan1,2,*()
1School of Geographical Sciences, Nanjing University of Information Science & Technology, Nanjing 210044, China
2State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
3Department of Infrastructure Engineering, the University of Melbourne, Melbourne 3010, Australia
4School of Geography & Ocean Science, Nanjing University, Nanjing 210093, China
Download: HTML     PDF(4504KB)
Export: BibTeX | EndNote (RIS)      


Climate change impacts on grasslands that cover a quarter of the global land area, have become unprecedented during the 21st century. One of the important ecological realms, arid grasslands of northern China, which occupy more than 70% of the region's land area. However, the impact of climate change on vegetation growth in these arid grasslands is not consistent and lacks corresponding quantitative research. In this study, NDVI (normalized difference vegetation index) and climate factors including temperature, precipitation, solar radiation, soil moisture, and meteorological drought were analyzed to explore the determinants of changes in grassland greenness in Inner Mongolia Autonomous Region (northern China) during 1982-2016. The results showed that grasslands in Inner Mongolia witnessed an obvious trend of seasonal greening during the study period. Two prominent climatic factors, precipitation and soil moisture accounted for approximately 33% and 27% of grassland NDVI trends in the region based on multiple linear regression and boosted regression tree methods. This finding highlights the impact of water constraints to vegetation growth in Inner Mongolia's grasslands. The dominant role of precipitation in regulating grassland NDVI trends in Inner Mongolia significantly weakened from 1982 to 1996, and the role of soil moisture strengthened after 1996. Our findings emphasize the enhanced importance of soil moisture in driving vegetation growth in arid grasslands of Inner Mongolia, which should be thoroughly investigated in the future.

Key wordsgrassland growth      normalized difference vegetation index      climate change      soil moisture      Inner Mongolia     
Received: 09 January 2023      Published: 31 July 2023
Corresponding Authors: *MIAO Lijuan (E-mail:
Cite this article:

ZHANG Hui, Giri R KATTEL, WANG Guojie, CHUAI Xiaowei, ZHANG Yuyang, MIAO Lijuan. Enhanced soil moisture improves vegetation growth in an arid grassland of Inner Mongolia Autonomous Region, China. Journal of Arid Land, 2023, 15(7): 871-885.

URL:     OR

Fig. 1 Changes in grassland NDVIGS (grassland vegetation greenness measured by normalized difference vegetation index (NDVI)) (a), temperature (b), precipitation (c), soil moisture (d), radiation (e), and SPEI-3 (3-month standardized precipitation evapotranspiration index) (f) in Inner Mongolia during the growing season from 1982 to 2016. k and P denote the slope and P-value of each variable, respectively.
Fig. 2 Spatial pattern of grassland NDVIGS (grassland vegetation greenness measured by normalized difference vegetation index (NDVI) (a), temperature (b), SPEI-3 (3-month standardized precipitation evapotranspiration index (c), precipitation (d), radiation (e), and soil moisture (f) in Inner Mongolia during the growing season from 1982 to 2016. Regions with significant trends (P<0.05) were marked in black dots.
Fig. 3 Spatial distributions of primary factor influencing grassland NDVIGS (grassland vegetation greenness measured by normalized difference vegetation index (NDVI)) in Inner Mongolia during the period 1982-2016, and their relative contributions estimated by BRT (boosted regression tree) and MLR (multiple linear regression). (a), primary factor estimated by BRT; (b), primary factor estimated by MLR; (c), relative contributions estimated by BRT; (d), relative contributions estimated by MLR. Primary factor indicated in each grid cell was defined as the driving factor that contributes the most to changes in NDVIGS. Driving factors include Tmp (temperature), Pre (precipitation), Rad (radiation), SM (soil moisture), and SPEI-3 (3-month standardized precipitation evapotranspiration index).
Fig. 4 Spatial patterns of primary factor influencing grassland NDVIGS (grassland vegetation greenness measured by normalized difference vegetation index (NDVI)) estimated by BRT (boosted regression tree) and MLR (multiple linear regression) methods in Inner Mongolia for two sub-periods (i.e., 1982-1996 and 2002-2016). (a and b), primary factors estimated by BRT and MLR from1982 to 1996; (c and d), primary factors estimated by BRT and MLR from 2002 to 2016. The five factors include Tmp (temperature), Pre (precipitation), Rad (radiation), SM (soil moisture), and SPEI-3 (3-month standardized precipitation evapotranspiration index).
Fig. 5 Spatial patterns of influential factors of temperature (a), precipitation (b), soil moisture (c), SPEI-3 (3-month standardized precipitation evapotranspiration index; d), and radiation (e) on grassland NDVIGS (grassland vegetation greenness measured by normalized difference vegetation index (NDVI)) based on standardized coefficient calculated from multiple linear regression. Regions with statistically significant (P<0.05) influence are labelled with black dots.
Fig. 6 Spatial patterns of influence of temperature (a and b), radiation (c and d), precipitation (e and f), SPEI-3 (3-month standardized precipitation evapotranspiration index, g and h), and soil moisture (i and j) on grassland NDVIGS (grassland vegetation greenness measured by normalized difference vegetation index (NDVI)) by standardized coefficient calculated from multiple linear regression during two sub-periods (i.e., 1982-1996 and 2002-2016). Regions with statistically significant (P<0.05) influence are labelled with black dots.
[1]   An R, Zhang L, Wang Z, et al. 2016. Validation of the ESA CCI soil moisture product in China. International Journal of Applied Earth Observation and Geoinformation, 48: 28-36.
doi: 10.1016/j.jag.2015.09.009
[2]   Bai J, Shi H, Yu Q, et al. 2019. Satellite-observed vegetation stability in response to changes in climate and total water storage in Central Asia. Science of the Total Environment, 659: 862-871.
doi: 10.1016/j.scitotenv.2018.12.418
[3]   Bao G, Qin Z, Bao Y, et al. 2014. NDVI-based long-term vegetation dynamics and its response to climatic change in the Mongolian Plateau. Remote Sensing, 6(9): 8337-8358.
doi: 10.3390/rs6098337
[4]   Beguería S, Vicente-Serrano S M, Angulo-Martínez M. 2010. A multiscalar global drought dataset: The SPEIbase: A new gridded product for the analysis of drought variability and impacts. Bulletin of the American Meteorological Society, 91(10): 1351-1356.
doi: 10.1175/2010BAMS2988.1
[5]   Crase B, Liedloff A C, Wintle B A. 2012. A new method for dealing with residual spatial autocorrelation in species distribution models. Ecography, 35(10): 879-888.
doi: 10.1111/ecog.2012.35.issue-10
[6]   Deng H, Yin Y, Han X. 2020. Vulnerability of vegetation activities to drought in Central Asia. Environmental Research Letters, 15(8): 084005, doi: 10.1088/1748-9326/ab93fa.
doi: 10.1088/1748-9326/ab93fa
[7]   Dormann C F, Elith J, Bacher S, et al. 2013. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography, 36(1): 27-46.
doi: 10.1111/j.1600-0587.2012.07348.x
[8]   Du Z, Zhang X, Xu X, et al. 2017. Quantifying influences of physiographic factors on temperate dryland vegetation, Northwest China. Scientific Reports, 7: 40092, doi: 10.1038/srep40092.
doi: 10.1038/srep40092 pmid: 28067259
[9]   Elith J, Leathwick J R, Hastie T. 2008. A working guide to boosted regression trees. Journal of Animal Ecology, 77(4): 802-813.
doi: 10.1111/j.1365-2656.2008.01390.x pmid: 18397250
[10]   Fan Y, Li X, Wu X, et al. 2016. Divergent responses of vegetation aboveground net primary productivity to rainfall pulses in the Inner Mongolian Plateau, China. Journal of Arid Environments, 129: 1-8.
doi: 10.1016/j.jaridenv.2016.02.002
[11]   Fensholt R, Proud S R. 2012. Evaluation of Earth observation based global long term vegetation trends-Comparing GIMMS and MODIS global NDVI time series. Remote Sensing of Environment, 119: 131-147.
doi: 10.1016/j.rse.2011.12.015
[12]   Grace J, Jose J S, Meir P, et al. 2006. Productivity and carbon fluxes of tropical savannas. Journal of Biogeography, 33(3): 387-400.
doi: 10.1111/jbi.2006.33.issue-3
[13]   Grömping U. 2007. Relative importance for linear regression in R: The package relaimpo. Journal of Statistical Software, 17(1): 1-27.
[14]   Guo D, Song X, Hu R, et al. 2021. Grassland type-dependent spatiotemporal characteristics of productivity in Inner Mongolia and its response to climate factors. Science of the Total Environment, 775: 145644, doi: 10.1016/j.scitotenv.2021.145644.
doi: 10.1016/j.scitotenv.2021.145644
[15]   Guo L, Wu S, Zhao D, et al. 2014. NDVI-based vegetation change in Inner Mongolia from 1982 to 2006 and its relationship to climate at the biome scale. Advances in Meteorology, 2014: 692068, doi: 10.1155/2014/692068.
doi: 10.1155/2014/692068
[16]   He B, Wang S, Guo L, et al. 2019. Aridity change and its correlation with greening over drylands. Agricultural and Forest Meteorology, 278: 107663, doi: 10.1016/j.agrformet.2019.107663.
doi: 10.1016/j.agrformet.2019.107663
[17]   He J, Yang K, Tang W, et al. 2020. The first high-resolution meteorological forcing dataset for land process studies over China. Scientific Data, 7(1): 25, doi:
doi: 10.1038/s41597-020-0369-y pmid: 31964891
[18]   Hu Q, Pan F, Pan X, et al. 2015. Spatial analysis of climate change in Inner Mongolia during 1961-2012, China. Applied Geography, 60: 254-260.
[19]   Huang J, Li Y, Fu C, et al. 2017. Dryland climate change: Recent progress and challenges. Reviews of Geophysics, 55(3): 719-778.
doi: 10.1002/rog.v55.3
[20]   Huang K, Xia J, Wang Y, et al. 2018. Enhanced peak growth of global vegetation and its key mechanisms. Nature Ecology & Evolution, 2(12): 1897-1905.
[21]   Huang M, Piao S, Janssens I A, et al. 2017. Velocity of change in vegetation productivity over northern high latitudes. Nature Ecology & Evolution, 1(11): 1649-1654.
[22]   Jiang M, He Y, Song C, et al. 2021. Disaggregating climatic and anthropogenic influences on vegetation changes in Beijing-Tianjin-Hebei region of China. Science of the Total Environment, 786: 147574, doi: 10.1016/j.scitotenv.2021.147574.
doi: 10.1016/j.scitotenv.2021.147574
[23]   John R, Chen J, Ou-Yang Z T, et al. 2013. Vegetation response to extreme climate events on the Mongolian Plateau from 2000 to 2010. Environmental Research Letters, 8(3): 035033, doi: 10.1088/1748-9326/8/3/035033.
doi: 10.1088/1748-9326/8/3/035033
[24]   Kang Y, Guo E, Wang Y, et al. 2021. Monitoring vegetation change and its potential drivers in Inner Mongolia from 2000 to 2019. Remote Sensing, 13(17): 3357, doi: 10.3390/rs13173357.
doi: 10.3390/rs13173357
[25]   Lee E, Kumar P, Barron‐Gafford G A, et al. 2018. Impact of hydraulic redistribution on multispecies vegetation water use in a semiarid savanna ecosystem: An experimental and modeling synthesis. Water Resources Research, 54(6): 4009-4027.
doi: 10.1029/2017WR021006
[26]   Li C, Wang J, Hu R, et al. 2018. Relationship between vegetation change and extreme climate indices on the Inner Mongolia Plateau, China, from 1982 to 2013. Ecological Indicators, 89: 101-109.
doi: 10.1016/j.ecolind.2018.01.066
[27]   Li W, Migliavacca M, Forkel M, et al. 2021. Revisiting global vegetation controls using multi‐layer soil moisture. Geophysical Research Letters, 48(11): e2021GL092856, doi: 10.1029/2021GL092856.
doi: 10.1029/2021GL092856
[28]   Li W, Suocheng D, Lin H, et al. 2023. Vulnerability of farmers and herdsmen households in Inner Mongolian plateau to arid climate disasters and their development model. Journal of Cleaner Production, 402: 136853, doi: 10.1016/j.jclepro.2023.136853.
doi: 10.1016/j.jclepro.2023.136853
[29]   Liu H, Tian F, Hu H C, et al. 2013. Soil moisture controls on patterns of grass green-up in Inner Mongolia: An index based approach. Hydrology and Earth System Sciences, 17(2): 805-815.
doi: 10.5194/hess-17-805-2013
[30]   Liu X, Feng X, Fu B. 2020. Changes in global terrestrial ecosystem water use efficiency are closely related to soil moisture. Science of the Total Environment, 698: 134165, doi: 10.1016/j.scitotenv.2019.134165.
doi: 10.1016/j.scitotenv.2019.134165
[31]   Liu Y Y, Dorigo W A, Parinussa R M, et al. 2012. Trend-preserving blending of passive and active microwave soil moisture retrievals. Remote Sensing of Environment, 123: 280-297.
doi: 10.1016/j.rse.2012.03.014
[32]   Liu Z, Fu Y H, Shi X, et al. 2022. Soil moisture determines the effects of climate warming on spring phenology in grasslands. Agricultural and Forest Meteorology, 323: 109039, doi: 10.1016/j.agrformet.2022.109039.
doi: 10.1016/j.agrformet.2022.109039
[33]   Lü Y, Zhang L, Feng X, et al. 2015. Recent ecological transitions in China: Greening, browning and influential factors. Scientific Reports, 5: 08732, doi: 10.1038/srep08732.
doi: 10.1038/srep08732
[34]   Luo M, Meng F, Sa C, et al. 2021. Response of vegetation phenology to soil moisture dynamics in the Mongolian Plateau. CATENA, 206: 105505, doi: 10.1016/j.catena.2021.105505.
doi: 10.1016/j.catena.2021.105505
[35]   Meng F, Luo M, Sa C, et al. 2022. Quantitative assessment of the effects of climate, vegetation, soil and groundwater on soil moisture spatiotemporal variability in the Mongolian Plateau. Science of the Total Environment, 809: 152198, doi: 10.1016/j.scitotenv.2021.152198.
doi: 10.1016/j.scitotenv.2021.152198
[36]   Miao L, Sun Z, Ren Y, et al. 2020. Grassland greening on the Mongolian Plateau despite higher grazing intensity. Land Degradation & Development, 32(2): 792-802.
doi: 10.1002/ldr.v32.2
[37]   Nakano T, Nemoto M, Shinoda M, et al. 2008. Environmental controls on photosynthetic production and ecosystem respiration in semi-arid grasslands of Mongolia. Agricultural and Forest Meteorology, 148(10): 1456-1466.
doi: 10.1016/j.agrformet.2008.04.011
[38]   Nandintsetseg B, Boldgiv B, Chang J, et al. 2021. Risk and vulnerability of Mongolian grasslands under climate change. Environmental Research Letters, 16(3): 034035, doi: 10.1088/1748-9326/abdb5b.
doi: 10.1088/1748-9326/abdb5b
[39]   Park H S, Sohn B J. 2010. Recent trends in changes of vegetation over East Asia coupled with temperature and rainfall variations. Journal of Geophysical Research: Atmospheres, 115(D14), doi: 10.1029/2009JD012752.
doi: 10.1029/2009JD012752
[40]   Peng S, Piao S, Shen Z, et al. 2013. Precipitation amount, seasonality and frequency regulate carbon cycling of a semi-arid grassland ecosystem in Inner Mongolia, China: A modeling analysis. Agricultural and Forest Meteorology, 178-179: 46-55.
doi: 10.1016/j.agrformet.2013.02.002
[41]   Piao S, Wang X, Ciais P, et al. 2011. Changes in satellite-derived vegetation growth trend in temperate and boreal Eurasia from 1982 to 2006. Global Change Biology, 17(10): 3228-3239.
doi: 10.1111/gcb.2011.17.issue-10
[42]   Piao S, Nan H, Huntingford C, et al. 2014. Evidence for a weakening relationship between interannual temperature variability and northern vegetation activity. Nature Communications, 5: 6018, doi: 10.1038/ncomms6018.
doi: 10.1038/ncomms6018
[43]   Pinzon J E, Tucker C J. 2014. A non-stationary 1981-2012 AVHRR NDVI3g time series. Remote Sensing, 6(8): 6929-6960.
[44]   Poulter B, Frank D, Ciais P, et al. 2014. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature, 509(7502): 600-603.
doi: 10.1038/nature13376
[45]   Salve R, Sudderth E A, Clair S B S, et al. 2011. Effect of grassland vegetation type on the responses of hydrological processes to seasonal precipitation patterns. Journal of Hydrology, 410(1-2): 51-61.
doi: 10.1016/j.jhydrol.2011.09.003
[46]   Schlesinger W H, Jasechko S. 2014. Transpiration in the global water cycle. Agricultural and Forest Meteorology, 189-190: 115-117.
doi: 10.1016/j.agrformet.2014.01.011
[47]   Shi Y, Jin N, Ma X, et al. 2020. Attribution of climate and human activities to vegetation change in China using machine learning techniques. Agricultural and Forest Meteorology, 294: 108146, doi: 10.1016/j.agrformet.2020.108146.
doi: 10.1016/j.agrformet.2020.108146
[48]   Tong S, Zhang J, Bao Y. 2017. Spatial and temporal variations of vegetation cover and the relationships with climate factors in Inner Mongolia based on GIMMS NDVI3g data. Journal of Arid Land, 9(3): 394-407.
doi: 10.1007/s40333-017-0016-4
[49]   Tucker C J, Pinzon J E, Brown M E, et al. 2005. An extended AVHRR 8‐km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. International Journal of Remote Sensing, 26(20): 4485-4498.
doi: 10.1080/01431160500168686
[50]   Vicente-Serrano S M, Beguería S, López-Moreno J I, et al. 2010. A new global 0.5 gridded dataset (1901-2006) of a multiscalar drought index: Comparison with current drought index datasets based on the Palmer Drought Severity Index. Journal of Hydrometeorology, 11(4): 1033-1043.
doi: 10.1175/2010JHM1224.1
[51]   Vicente-Serrano S M, Gouveia C, Camarero J J, et al. 2013. Response of vegetation to drought time-scales across global land biomes. Proceedings of the National Academy of Sciences, 110(1): 52-57.
[52]   Wagner W, Dorigo W, de Jeu R, et al. 2012. Fusion of active and passive microwave observations to create an essential climate variable data record on soil moisture. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 7: 315-321.
[53]   Wang S, Li R, Wu Y, et al. 2022a. Effects of multi-temporal scale drought on vegetation dynamics in Inner Mongolia from 1982 to 2015, China. Ecological Indicators, 136: 108666, doi: 10.1016/j.ecolind.2022.108666.
doi: 10.1016/j.ecolind.2022.108666
[54]   Wang S, Li R, Wu Y, et al. 2022b. Vegetation dynamics and their response to hydrothermal conditions in Inner Mongolia, China. Global Ecology and Conservation, 34: e02034, doi: 10.1016/j.gecco.2022.e02034.
doi: 10.1016/j.gecco.2022.e02034
[55]   Wang T, Wedin D A, Franz T E, et al. 2015. Effect of vegetation on the temporal stability of soil moisture in grass-stabilized semi-arid sand dunes. Journal of Hydrology, 521: 447-459.
doi: 10.1016/j.jhydrol.2014.12.037
[56]   Wang Z, Deng X, Song W, et al. 2017. What is the main cause of grassland degradation? A case study of grassland ecosystem service in the middle-south Inner Mongolia. CATENA, 150: 100-107.
doi: 10.1016/j.catena.2016.11.014
[57]   Wang Z, Ye A, Wang L, et al. 2019. Spatial and temporal characteristics of reference evapotranspiration and its climatic driving factors over China from 1979-2015. Agricultural Water Management, 213: 1096-1108.
[58]   Warter M M, Singer M B, Cuthbert M O, et al. 2021. Drought onset and propagation into soil moisture and grassland vegetation responses during the 2012-2019 major drought in Southern California. Hydrology and Earth System Sciences, 25(6): 3713-3729.
[59]   Wu D, Zhao X, Liang S, et al. 2015. Time-lag effects of global vegetation responses to climate change. Global Change Biology, 21(9): 3520-3531.
doi: 10.1111/gcb.12945 pmid: 25858027
[60]   Wu Y, Tang G, Gu H, et al. 2019. The variation of vegetation greenness and underlying mechanisms in Guangdong province of China during 2001-2013 based on MODIS data. Science of the Total Environment, 653: 536-546.
[61]   Yao X, Jiang Q, Liu Y, et al. 2021. Spatiotemporal variation of soil moisture in Northern China based on climate change initiative data. Agronomy, 113(2): 774-785.
[62]   Zhang H, Zhang X, Shang Y, et al. 2021. Continuously vegetation greening over Inner Mongolia for the past three decades. Remote Sensing, 13(13): 2446, doi: 10.3390/rs13132446.
doi: 10.3390/rs13132446
[63]   Zhang L, Xiao J, Zhou Y, et al. 2016. Drought events and their effects on vegetation productivity in China. Ecosphere, 7(12): e01591, doi: 10.1002/ecs2.1591.
doi: 10.1002/ecs2.1591
[64]   Zhang R, Zhao X, Zuo X, et al. 2019. Impacts of precipitation on ecosystem carbon fluxes in desert‐grasslands in Inner Mongolia, China. Journal of Geophysical Research: Atmospheres, 124(3): 1266-1276.
doi: 10.1029/2018JD028419
[65]   Zhou S, Williams A P, Lintner B R, et al. 2021. Soil moisture-atmosphere feedbacks mitigate declining water availability in drylands. Nature Climate Change, 11(1): 38-44.
doi: 10.1038/s41558-020-00945-z
[66]   Zhu Z, Piao S, Myneni R B, et al. 2016. Greening of the Earth and its drivers. Nature Climate Change, 6(8): 791-795.
doi: 10.1038/NCLIMATE3004
[1] ZHAO Xuqin, LUO Min, MENG Fanhao, SA Chula, BAO Shanhu, BAO Yuhai. Spatiotemporal changes of gross primary productivity and its response to drought in the Mongolian Plateau under climate change[J]. Journal of Arid Land, 2024, 16(1): 46-70.
[2] Mitiku A WORKU, Gudina L FEYISA, Kassahun T BEKETIE, Emmanuel GARBOLINO. Projecting future precipitation change across the semi-arid Borana lowland, southern Ethiopia[J]. Journal of Arid Land, 2023, 15(9): 1023-1036.
[3] QIN Guoqiang, WU Bin, DONG Xinguang, DU Mingliang, WANG Bo. Evolution of groundwater recharge-discharge balance in the Turpan Basin of China during 1959-2021[J]. Journal of Arid Land, 2023, 15(9): 1037-1051.
[4] MA Jinpeng, PANG Danbo, HE Wenqiang, ZHANG Yaqi, WU Mengyao, LI Xuebin, CHEN Lin. Response of soil respiration to short-term changes in precipitation and nitrogen addition in a desert steppe[J]. Journal of Arid Land, 2023, 15(9): 1084-1106.
[5] QIANG Yuquan, ZHANG Jinchun, XU Xianying, LIU Hujun, DUAN Xiaofeng. Stem sap flow of Haloxylon ammodendron at different ages and its response to physical factors in the Minqin oasis-desert transition zone, China[J]. Journal of Arid Land, 2023, 15(7): 842-857.
[6] ZHANG Zhen, XU Yangyang, LIU Shiyin, DING Jing, ZHAO Jinbiao. Seasonal variations in glacier velocity in the High Mountain Asia region during 2015-2020[J]. Journal of Arid Land, 2023, 15(6): 637-648.
[7] GAO Xiang, WEN Ruiyang, Kevin LO, LI Jie, YAN An. Heterogeneity and non-linearity of ecosystem responses to climate change in the Qilian Mountains National Park, China[J]. Journal of Arid Land, 2023, 15(5): 508-522.
[8] Reza DEIHIMFARD, Sajjad RAHIMI-MOGHADDAM, Farshid JAVANSHIR, Alireza PAZOKI. Quantifying major sources of uncertainty in projecting the impact of climate change on wheat grain yield in dryland environments[J]. Journal of Arid Land, 2023, 15(5): 545-561.
[9] Khouloud ZAGOUB, Khouloud KRICHEN, Mohamed CHAIEB, Lobna F MNIF. Morphological and physiological responses to drought stress of carob trees in Mediterranean ecosystems[J]. Journal of Arid Land, 2023, 15(5): 562-577.
[10] Sakine KOOHI, Hadi RAMEZANI ETEDALI. Future meteorological drought conditions in southwestern Iran based on the NEX-GDDP climate dataset[J]. Journal of Arid Land, 2023, 15(4): 377-392.
[11] Mehri SHAMS GHAHFAROKHI, Sogol MORADIAN. Investigating the causes of Lake Urmia shrinkage: climate change or anthropogenic factors?[J]. Journal of Arid Land, 2023, 15(4): 424-438.
[12] ZHANG Yixin, LI Peng, XU Guoce, MIN Zhiqiang, LI Qingshun, LI Zhanbin, WANG Bin, CHEN Yiting. Temporal and spatial variation characteristics of extreme precipitation on the Loess Plateau of China facing the precipitation process[J]. Journal of Arid Land, 2023, 15(4): 439-459.
[13] LI Hongfang, WANG Jian, LIU Hu, MIAO Henglu, LIU Jianfeng. Responses of vegetation yield to precipitation and reference evapotranspiration in a desert steppe in Inner Mongolia, China[J]. Journal of Arid Land, 2023, 15(4): 477-490.
[14] Adnan ABBAS, Asher S BHATTI, Safi ULLAH, Waheed ULLAH, Muhammad WASEEM, ZHAO Chengyi, DOU Xin, Gohar ALI. Projection of precipitation extremes over South Asia from CMIP6 GCMs[J]. Journal of Arid Land, 2023, 15(3): 274-296.
[15] REN Xiaohui, YU Ruihong, LIU Xinyu, SUN Heyang, GENG Yue, QI Zhen, ZHANG Zhuangzhuang, LI Xiangwei, WANG Jun, ZHU Penghang, GUO Zhiwei, WANG Lixin, XU Jifei. Spatial changes and driving factors of lake water quality in Inner Mongolia, China[J]. Journal of Arid Land, 2023, 15(2): 164-179.