Please wait a minute...
Journal of Arid Land  2023, Vol. 15 Issue (11): 1355-1375    DOI: 10.1007/s40333-023-0111-7     CSTR: 32276.14.s40333-023-0111-7
Research article     
Multiple assessments, source determination, and health risk apportionment of heavy metal(loid)s in the groundwater of the Shule River Basin in northwestern China
WEN Xiaohu1, LI Leiming2,*(), WU Jun3, LU Jian4, SHENG Danrui1
1Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
2Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, China
3Yantai Research Institute, Harbin Engineering University, Yantai 264006, China
4Shandong Key Laboratory of Coastal Environmental Processes/CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Chinese Academy of Sciences, Yantai 264003, China
Download: HTML     PDF(1525KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Global ecosystems and public health have been greatly impacted by the accumulation of heavy metal(loid)s in water. Source-specific risk apportionment is needed to prevent and manage potential groundwater contamination with heavy metal(loid)s. The heavy metal(loid)s contamination status, water quality, ecological risk, and health risk apportionment of the Shule River Basin groundwater are poorly understood. Therefore, field sampling was performed to explore the water quality and risk of heavy metal(loid)s in the groundwater of the Shule River Basin in northwestern China. A total of 96 samples were collected from the study area to acquire data for water quality and heavy metal(loid)s risk. There was noticeable accumulation of ferrum in the groundwater of the Shule River Basin. The levels of pollution were considered to be moderately low, as evaluated by the degree of contamination, heavy metal evaluation index, heavy metal pollution index, and Nemerow pollution index. The ecological risks were also low. However, an assessment of the water quality index revealed that only 58.34% of the groundwater samples had good water quality. The absolute principal component scores-multiple linear regression model was more suited for this study area than the positive matrix factorization model. There were no obvious noncarcinogenic or carcinogenic concerns for all types of receptors according to the values of the total hazard index and total carcinogenic risk. The human activities and the initial geological environment factor (65.85%) was the major source of noncarcinogenic risk (residential children: 87.56%; residential adults: 87.52%; recreational children: 86.77%; and recreational adults: 85.42%), while the industrial activity factor (16.36%) was the major source of carcinogenic risk (residential receptors: 87.96%; and recreational receptors: 68.73%). These findings provide fundamental and crucial information for reducing the health issues caused by heavy metal(loid)s contamination of groundwater in arid areas.



Key wordsgroundwater      heavy metal(loid)s      ecological risk      health risk      Shule River Basin     
Received: 17 May 2023      Published: 30 November 2023
Corresponding Authors: * LI Leiming (E-mail: lileiming@isl.ac.cn)
Cite this article:

WEN Xiaohu, LI Leiming, WU Jun, LU Jian, SHENG Danrui. Multiple assessments, source determination, and health risk apportionment of heavy metal(loid)s in the groundwater of the Shule River Basin in northwestern China. Journal of Arid Land, 2023, 15(11): 1355-1375.

URL:

http://jal.xjegi.com/10.1007/s40333-023-0111-7     OR     http://jal.xjegi.com/Y2023/V15/I11/1355

Fig. 1 Distribution of sampling sites. DEM, digital elevation model.
Fig. 2 Variation of heavy metal(loid)s in groundwater samples of the Shule River Basin. Al, aluminum; Mn, manganese; Fe, ferrum; Co, cobalt; Ni, nickel; Cu, cuprum; Zn, zinc; As, arsenic; Cd, cadmium; Pb, lead; IQR, interquartile range.
Fig. 3 Spatial distribution of degree of contamination (DC; a), heavy metal evaluation index (HEI; b), heavy metal pollution index (HPI; c), and Nemerow pollution index (NP; d) for groundwater in the Shule River Basin
Fig. 4 Spatial distribution of water quality index (WQI; a) and ecological risk index (ERI; b) for groundwater in the Shule River Basin
Heavy metal(loid)s PMF model APCS-MLR model
Factor 1 (%) Factor 2 (%) Factor 3 (%) R2 Factor 1 (%) Factor 2 (%) Factor 3 (%) R2
Al 62.2 0.1 37.7 0.005 2.0 94.0 4.0 0.899
Mn 43.1 31.2 25.7 0.418 56.1 33.6 15.3 0.629
Fe 16.4 70.4 13.1 1.000 88.6 1.8 9.6 0.944
Co 21.1 65.0 13.9 0.916 89.0 0.6 10.3 0.926
Ni 18.3 66.8 14.8 0.983 88.2 1.8 10.0 0.938
Cu 12.0 48.9 39.1 0.907 90.0 0.4 9.6 0.906
Zn 17.9 51.7 30.4 0.073 14.5 1.3 84.2 0.987
As 18.4 25.6 56.0 1.000 93.3 0.3 6.4 0.876
Cd 59.2 26.4 14.4 1.000 75.9 10.3 13.8 0.834
Pb 38.3 50.4 11.4 0.765 64.1 20.3 15.6 0.882
Table 1 Contribution of each factor derived from positive matrix factorization (PMF) model and absolute principal component scores-multiple linear regression (APCS-MLR) model
Fig. 5 Scatter plot of observed data and predicted data derived from absolute principal component scores-multiple linear regression (APCS-MLR) model. (a), Al; (b), Mn; (c), Fe; (d), Co; (e), Ni; (f), Cu; (g), Zn; (h), As; (i), Cd; (j), Pb.
Fig. 6 Factor figure-prints of heavy metal(loid)s resulted from positive matrix factorization (PMF) model. Factor 1 represents human activities and the initial geological environment factor, Factor 2 represents industrial activity factor, and Factor 3 represents agricultural practices factor.
Fig. 7 Spearman correlation analysis among the groundwater heavy metal(loid)s (a) and component loading of the 10 measured heavy metal (loid)s on varimax rotated factors (b). ** indicates significant correlation at the level of 0.01, and * indicates significant correlation at the level of 0.05.
Fig. 8 Spatial distribution of normalized contribution for Factor 1 (a), Factor 2 (b), and Factor 3 (c)
Fig. 9 Percentage of source-specific health risks from different source by APCS-MLR model for residential and recreational receptors
Factor 1 Factor 2 Factor 3 Total Factor 1 Factor 2 Factor 3 Total
Noncarcinogenic risk for residential adults Noncarcinogenic risk for recreational adults
Al 1.84×10-6 8.63×10-5 3.67×10-6 9.18×10-5 4.20×10-8 1.97×10-6 8.40×10-8 2.10×10-6
Mn 2.74×10-4 1.64×10-4 7.46×10-5 4.88×10-4 4.05×10-5 2.43×10-5 1.10×10-5 7.22×10-5
Fe 1.20×10-2 2.44×10-4 1.30×10-3 1.35×10-2 2.75×10-4 5.58×10-6 2.98×10-5 3.10×10-4
Co 1.43×10-3 9.61×10-6 1.65×10-4 1.60×10-3 2.76×10-5 1.86×10-7 3.19×10-6 3.10×10-5
Ni 4.64×10-3 9.47×10-5 5.26×10-4 5.26×10-3 8.42×10-5 1.72×10-6 9.55×10-6 9.55×10-5
Cu 1.75×10-3 7.79×10-6 1.87×10-4 1.95×10-3 4.01×10-5 1.78×10-7 4.28×10-6 4.46×10-5
Zn 7.32×10-5 6.57×10-6 4.25×10-4 5.05×10-4 1.51×10-6 1.35×10-7 8.76×10-6 1.04×10-5
As 1.30×10-2 4.16×10-5 8.88×10-4 1.39×10-2 2.97×10-4 9.54×10-7 2.04×10-5 3.18×10-4
Cd 1.33×10-3 1.80×10-4 2.41×10-4 1.75×10-3 3.04×10-5 4.13×10-6 5.53×10-6 4.01×10-5
Pb 6.15×10-4 1.95×10-4 1.50×10-4 9.60×10-4 1.08×10-5 3.43×10-6 2.64×10-6 1.69×10-5
THI 3.50×10-2 1.03×10-3 3.96×10-3 4.00×10-2 8.07×10-4 4.25×10-5 9.52×10-5 9.41×10-4
Noncarcinogenic risk for residential children Noncarcinogenic risk for recreational children
Al 3.47×10-6 1.63×10-4 6.95×10-6 1.74×10-4 2.26×10-7 1.06×10-5 4.52×10-7 1.13×10-5
Mn 5.05×10-4 3.02×10-4 1.38×10-4 9.00×10-4 9.87×10-5 5.91×10-5 2.69×10-5 1.76×10-4
Fe 2.27×10-2 4.60×10-4 2.46×10-3 2.56×10-2 1.48×10-3 3.01×10-5 1.60×10-4 1.67×10-3
Co 2.70×10-3 1.82×10-5 3.12×10-4 3.03×10-3 1.66×10-4 1.12×10-6 1.93×10-5 1.87×10-4
Ni 8.78×10-3 1.79×10-4 9.95×10-4 9.95×10-3 5.32×10-4 1.09×10-5 6.03×10-5 6.03×10-4
Cu 3.31×10-3 1.47×10-5 3.53×10-4 3.68×10-3 2.16×10-4 9.60×10-7 2.30×10-5 2.40×10-4
Zn 1.39×10-4 1.24×10-5 8.04×10-4 9.55×10-4 8.71×10-6 7.81×10-7 5.06×10-5 6.01×10-5
As 2.45×10-2 7.87×10-5 1.68×10-3 2.62×10-2 1.60×10-3 5.13×10-6 1.09×10-4 1.71×10-3
Cd 2.51×10-3 3.40×10-4 4.56×10-4 3.31×10-3 1.64×10-4 2.22×10-5 2.98×10-5 2.16×10-4
Pb 1.16×10-3 3.69×10-4 2.83×10-4 1.82×10-3 6.99×10-5 2.21×10-5 1.70×10-5 1.09×10-4
THI 6.63×10-2 1.94×10-3 7.48×10-3 7.56×10-2 4.33×10-3 1.63×10-4 4.97×10-4 4.99×10-3
Carcinogenic risk for residential receptors Carcinogenic risk for recreational receptors
As 6.67×10-7 3.13×10-5 1.33×10-6 3.33×10-5 2.39×10-8 1.12×10-6 4.77×10-8 1.19×10-6
Cd 1.93×10-6 1.15×10-6 5.25×10-7 3.43×10-6 4.37×10-7 2.62×10-7 1.19×10-7 7.79×10-7
TCR 2.59×10-6 3.25×10-5 1.86×10-6 3.70×10-5 4.61×10-7 1.38×10-6 1.67×10-7 2.01×10-6
Table 2 Source-specific noncarcinogenic and carcinogenic risks of heavy metal(loid)s in groundwater of the Shule River Basin from different source for four demographic categories
Parameter Minimum Maximum Mean SD CV (%) Permissible value# Percentage of SER (%)
Al (μg/L) 0.1 44.6 3.5 6.3 182.0 200.0 0.0
Mn (μg/L) 0.1 4.7 0.4 0.6 140.0 100.0 0.0
Fe (μg/L) 70.9 1300.0 358.0 306.0 85.7 300.0 39.6
Co (μg/L) 0.0 0.6 0.2 0.1 79.1 50.0 0.0
Ni (μg/L) 1.0 13.4 4.0 3.2 79.1 20.0 0.0
Cu (μg/L) 0.4 14.1 2.9 2.9 97.0 1000.0 0.0
Zn (μg/L) 0.9 70.7 5.7 9.8 170.0 1000.0 0.0
As (μg/L) 0.3 5.7 1.6 1.2 74.5 10.0 0.0
Cd (μg/L) 0.0 0.2 0.0 0.0 76.3 5.0 0.0
Pb (μg/L) 0.0 0.2 0.1 0.1 91.1 10.0 0.0
TDS (mg/L) 301.0 7009.0 1731.0 1484.0 85.7 1000.0 49.0
Na+ (mg/L) 20.0 1358.0 243.0 244.0 100.0 200.0 38.5
Mg2+ (mg/L) 21.6 532.0 163.0 139.0 84.9 50.0 80.2
K+ (mg/L) 3.0 49.9 13.5 11.8 87.2 10.0 42.7
Ca2+ (mg/L) 30.6 382.0 102.0 76.2 74.9 75.0 44.8
Cl- (mg/L) 19.5 1155.0 262.0 263.0 101.0 250.0 36.5
NO3- (mg/L) 2.1 89.1 19.8 19.1 96.6 20.0 39.6
SO42- (mg/L) 76.0 3522.0 749.0 757.0 101.0 250.0 61.5
HCO3-/CO32- (mg/L) 61.0 293.0 152.0 55.7 36.7 - -
DO (mg/L) 2.8 18.5 7.4 1.9 25.5 - -
pH 7.2 9.4 8.0 0.4 5.2 6.5‒8.5 4.2
EC (μS/cm) 446.0 7480.0 2025.0 1527.0 75.4 - -
Temperature (°C) 9.8 24.8 14.3 2.9 20.4 - -
Table S1 Statistical summary of TDS, DO, pH, EC, temperature, and the concentrations of heavy metal(loid)s, anions, and cations of groundwater samples
Groundwater
or river
Al (μg/L) Mn (μg/L) Fe (μg/L) Co (μg/L) Ni (μg/L) Zn (μg/L) As (μg/L) Cd (μg/L) Pb (μg/L) Reference
Shule River Basin 3.5 0.4 358.0 0.2 4.0 5.7 1.6 0.0 0.1 This study
Rivers in NQTP 1753.0 5.6 76.7 0.3 2.4 35.2 3.4 0.2 3.0 Li et al. (2022)
Heihe River 10.5 2.6 187.0 - - - 0.8 <0.1 <0.1 Qu et al. (2019)
Buh River 18.2 3.8 198.0 - - - 0.9 N.D. <0.1 Qu et al. (2019)
Yellow River 10.2 3.3 154.0 - - - 1.2 <0.1 0.1 Qu et al. (2019)
Za'gya Zangbo River 39.8 0.3 - - - - 5.7 N.D. 0.0 Qu et al. (2019)
Yangtze River - 30.7 - 1.9 2.8 20.5 - 3.6 15.8 Qu et al. (2017)
Lancang River (Mekong River) 14.8 1.7 2.6 - - - - - - Huang et al. (2009)
Salween River (Nujiang River) 20.7 - 19.7 - - - - - - Huang et al. (2009)
Yarlung Zangbo River 20.6 12.8 - - - - 10.5 1.0 5.6 Qu et al. (2015) and Zheng et al. (2010)
Ganges River <0.2 N.D. 0.4 - - - N.D. N.D. N.D. Zhang et al. (2015)
Indus River <8.8 0.4 N.D. - - - 13.7 N.D. - Zhang et al. (2015) and Qu et al. (2019)
Chinese Loess Plateau 18.1 58.2 67.0 7.3 13.2 46.8 15.2 0.0 0.5 Xiao et al. (2019)
Tarim River Basin 32.0 80.4 219.0 0.2 0.5 10.1 5.8 0.0 0.8 Xiao et al. (2014)
Zhangye Basin 3.6 6.3 181.0 0.1 2.5 1.9 1.3 0.0 0.1 Sheng et al. (2022)
Table S2 Comparison of the average concentrations of heavy metal(loid)s in groundwater or river
Fig. S1 Spatial distribution of the concentrations of heavy metal(loid)s in groundwater of the Shule River Basin. (a), aluminum (Al); (b), manganese (Mn); (c), ferrum (Fe); (d), cobalt (Co); (e), nickel (Ni); (f), copper (Cu); (g), zinc (Zn); (h), arsenic (As); (i), cadmium (Cd); (j), lead (Pb).
Fig. S2 Contributions from three sources by absolute principal component scores-multiple linear regression (APCS-MLR) model. Factor 1 represents human activities and the initial geological environment factor, Factor 2 represents industrial activity factor, and Factor 3 represents agricultural practices factor.
Fig. S3 Hazard index (HI; a-d) and carcinogenic risk (CR; e and f) from heavy metal(loid)s for residential and recreational (b, d and f) receptors in groundwater of the Shule River Basin. HI-RES-Adult, hazard index for residential adults; HI-REC-Adult, hazard index for recreational adults; HI-RES-Child, hazard index for residential children; HI-REC-Child, hazard index for recreational children; CR-RES, carcinogenic risk for residential receptors; CR-REC, carcinogenic risk for recreational receptors.
[1]   Adegbola I P, Aborisade B A, Adetutu A. 2021. Health risk assessment and heavy metal accumulation in fish species (Clarias gariepinus and Sarotherodon melanotheron) from industrially polluted Ogun and Eleyele Rivers, Nigeria. Toxicology Reports, 8: 1445-1460.
doi: 10.1016/j.toxrep.2021.07.007
[2]   Backman B, Bodiš D, Lahermo P, et al. 1998. Application of a groundwater contamination index in Finland and Slovakia. Environmental Geology, 36: 55-64.
doi: 10.1007/s002540050320
[3]   Cai L M, Wang Q S, Wen H H, et al. 2019. Heavy metals in agricultural soils from a typical township in Guangdong Province, China: Occurrences and spatial distribution. Ecotoxicological and Environmental Safety, 168: 184-191.
doi: 10.1016/j.ecoenv.2018.10.092
[4]   Canpolat Ö, Varol M, et al.Okan Ö Ö, 2020. comparison of trace element concentrations in surface and deep water of the Keban Dam Lake (Turkey) and associated health risk assessment. Environment Research, 190: 110012, doi: 10.1016/j.envres.2020.110012.
[5]   Chai L, Wang Y H, Wang X, et al. 2021. Pollution characteristics, spatial distributions, and source apportionment of heavy metals in cultivated soil in Lanzhou, China. Ecological Indicators, 125: 107507, doi: 10.1016/j.ecolind.2021.107507.
[6]   Chen J W, Zhang H, Xue J Z, et al. 2022. Study on spatial distribution, potential sources and ecological risk of heavy metals in the surface water and sediments at Shanghai Port, China. Marine Pollution Bulletin, 181: 113923, doi: 10.1016/j.marpolbul.2022.113923
[7]   Cui L, Li J, Gao X Y, et al. 2022. Human health ambient water quality criteria for 13 heavy metals and health risk assessment in Taihu Lake. Frontiers of Environmental Science & Engineering, 16(4): 41, doi: 10.1007/s11783-021-1475-6.
[8]   de Carvalho V S, dos Santos I F, Almeida L C, et al. 2021. Spatio-temporal assessment, sources and health risks of water pollutants at trace levels in public supply river using multivariate statistical techniques. Chemosphere, 282: 130942, doi: 10.1016/j.chemosphere.2021.130942.
[9]   Edet A E, Offiong O E. 2002. Evaluation of water quality pollution indices for heavy metal contamination monitoring. A study case from Akpabuyo-Odukpani area, Lower Cross River Basin (southeastern Nigeria). GeoJournal, 57: 295-304.
doi: 10.1023/B:GEJO.0000007250.92458.de
[10]   Florescu D, Ionete R E, Sandru C, et al. 2011. The influence of pollution monitoring parameters in characterizing the surface water quality from Romania southern area. Romanian Journal of Physics, 56(7-8): 1001-1010.
[11]   Gansu Provincial Water Resources Department. 2020. Water Resources Bulletin of Gansu. [2023-05-10]. http://slt.gansu.gov.cn/lt/c106726/c106732/c106773/c106775/202110/1853946/files/d7c09d4d6a714a83ad058afddf9a492c.pdf.
[12]   Gao X Y, Wang X N, Li J, et al. 2020. Aquatic life criteria derivation and ecological risk assessment of DEET in China. Ecotoxicological and Environmental Safety, 188: 109881, doi: 10.1016/j.ecoenv.2019.109881.
[13]   Githaiga K B, Njuguna S M, Gituru R W, et al. 2021. Water quality assessment, multivariate analysis and human health risks of heavy metals in eight major lakes in Kenya. Journal of Environmental Management, 297: 113410, doi: 10.1016/j.jenvman.2021.113410.
[14]   Guo G H, Wang Y T, Zhang D G, et al. 2021. Source-specific ecological and health risks of potentially toxic elements in agricultural soils in Southern Yunnan Province and associated uncertainty analysis. Journal of Hazardous Materials, 417: 126144, doi: 10.1016/j.jhazmat.2021.126144.
[15]   Guo X Y, Feng Q, Liu W, et al. 2015. Stable isotopic and geochemical identification of groundwater evolution and recharge sources in the arid Shule River Basin of Northwestern China. Hydrological Processes, 29(22): 4703-4718.
doi: 10.1002/hyp.v29.22
[16]   Hakanson L, Håkanson L, Hakansonn L. 1980. An ecological risk index for aquatic pollution control: a sediment ecological approach. Water Research, 14: 975-1001.
doi: 10.1016/0043-1354(80)90143-8
[17]   Hasan M, Rahman M al Ahmed A, et al. 2022. Heavy metal pollution and ecological risk assessment in the surface water from a marine protected area, Swatch of No Ground, north-western part of the Bay of Bengal. Regional Studies in Marine Science, 52: 102278, doi: 10.1016/j.rsma.2022.102278.
[18]   Huang X, Sillanpää M, Gjessing E T, et al. 2009. Water quality in the Tibetan Plateau: major ions and trace elements in the headwaters of four major Asian rivers. Science of the Total Environment, 407(24): 6242-6254.
doi: 10.1016/j.scitotenv.2009.09.001
[19]   Huang X G, Chen L H, Ma Z Q, et al. 2022. Cadmium removal mechanistic comparison of three Fe-based nanomaterials: Water-chemistry and roles of Fe dissolution. Frontiers of Environmental Science & Engineering, 16(12): 15-29.
[20]   Jabbo J N, Isa N M, Aris A Z, et al. 2022. Geochemometric approach to groundwater quality and health risk assessment of heavy metals of Yankari Game Reserve and its environs, Northeast Nigeria. Journal of Cleaner Production, 330: 129916, doi: 10.1016/j.jclepro.2021.129916.
[21]   Jaskuła J, Sojka M. 2022. Assessment of spatial distribution of sediment contamination with heavy metals in the two biggest rivers in Poland. CATENA, 211: 105959, doi: 10.1016/j.catena.2021.105959.
[22]   Karunanidhi D, Aravinthasamy P, Subramani T, et al. 2022. Provincial and seasonal influences on heavy metals in the Noyyal River of South India and their human health hazards. Environmental Research, 204: 111998, doi: 10.1016/j.envres.2021.111998.
[23]   Lei M, Li K, Guo G H, et al. 2022. Source-specific health risks apportionment of soil potential toxicity elements combining multiple receptor models with Monte Carlo simulation. Science of the Total Environment, 817: 152899, doi: 10.1016/j.scitotenv.2021.152899.
[24]   Li B, Chen Y, Chen Z, et al. 2013. Variations of temperature and precipitation of snowmelt period and its effect on runoff in the mountainous areas of Northwest China. Journal of Geographical Sciences, 23(1): 17-30.
doi: 10.1007/s11442-013-0990-1
[25]   Li L M, Wu J, Lu J, et al. 2018. Distribution, pollution, bioaccumulation, and ecological risks of trace elements in soils of the northeastern Qinghai-Tibet Plateau. Ecotoxicological and Environmental Safety, 166: 345-353.
doi: 10.1016/j.ecoenv.2018.09.110
[26]   Li L M, Wu J, Lu J, et al. 2020a. Speciation, risks and isotope-based source apportionment of trace elements in soils of the northeastern Qinghai-Tibet Plateau. Geochemistry: Exploration Environment Analysis, 20: 315-322.
doi: 10.1144/geochem2019-042
[27]   Li L M, Wu J, Lu J, et al. 2020b. Trace elements in Gobi soils of the northeastern Qinghai-Tibet Plateau. Chemistry and Ecology, 36(10): 967-981.
doi: 10.1080/02757540.2020.1817403
[28]   Li L M, Wu J, Lu J, et al. 2022. Water quality evaluation and ecological-health risk assessment on trace elements in surface water of the northeastern Qinghai-Tibet Plateau. Ecotoxicological and Environmental Safety, 241: 10, doi: 10.1016/j.ecoenv.2022.113775.
[29]   Liu K H, Guan X J, Li C M, et al. 2022. Global perspectives and future research directions for the phytoremediation of heavy metal-contaminated soil: A knowledge mapping analysis from 2001 to 2020. Frontiers of Environmental Science & Engineering, 16(6): 73, doi: 10.1007/s11783-021-1507-2.
[30]   Liu L L, Tang Z, Kong M, et al. 2019. Tracing the potential pollution sources of the coastal water in Hong Kong with statistical models combining APCS-MLR. Journal of Environmental Management, 245(1): 143-150.
doi: 10.1016/j.jenvman.2019.05.066
[31]   Lu J, Wu J, Wang J H. 2022a. Metagenomic analysis on resistance genes in water and microplastics from a mariculture system. Frontiers of Environmental Science & Engineering, 16(1): 4, doi: 10.1007/s11783-021-1438-y.
[32]   Lu J, Zhang Y X, Wu J, et al. 2022b. Intervention of antimicrobial peptide usage on antimicrobial resistance in aquaculture. Journal of Hazardous Materials, 427: 128154, doi: 10.1016/j.jhazmat.2021.128154.
[33]   Ministry of Health of the People's Republic of China. 2006. Standards for Drinking Water Quality (GB5749-2006). [2023-05-10]. https://std.samr.gov.cn/gb/search/gbDetailed?id=71F772D7FC82D3A7E05397BE0A0AB82A.
[34]   Mohan S V, Nithila P, Reddy S J. 1996. Estimation of heavy metal in drinking water and development of heavy metal pollution index. Journal of Environment Science, 31(2): 283-289.
[35]   Mukherjee I, Singh U K, Singh R P, et al. 2020. Characterization of heavy metal pollution in an anthropogenically and geologically influenced semi-arid region of east India and assessment of ecological and human health risks. Science of the Total Environment, 705: 135801, doi: 10.1016/j.scitotenv.2019.135801.
[36]   Pan N H, Guan Q Y, Wang Q Z, et al. 2021. Spatial differentiation and driving mechanisms in ecosystem service value of arid region: A case study in the middle and lower reaches of Shule River Basin, NW China. Journal of Cleaner Production, 319: 128718, doi: 10.1016/j.jclepro.2021.128718.
[37]   Prabakaran K, Eswaramoorthi S, Nagarajan R, et al. 2020. Geochemical behaviour and risk assessment of trace elements in a tropical river, Northwest Borneo. Chemosphere, 252: 126430, doi: 10.1016/j.chemosphere.2020.126430.
[38]   Proshad R, Uddin M, Idris A M, et al. 2022. Receptor model-oriented sources and risks evaluation of metals in sediments of an industrial affected riverine system in Bangladesh. Science of the Total Environment, 838(1): 156029, doi: 10.1016/j.scitotenv.2022.156029.
[39]   Qiao J B, Zhu Y J, Jia X X, et al. 2020. Distributions of arsenic and other heavy metals, and health risk assessments for groundwater in the Guanzhong Plain region of China. Environmental Research, 181: 108957, doi: 10.1016/j.envres.2019.108957.
[40]   Qi J H, Niu S W, Zhao Y F, et al. 2017. Responses of vegetation growth to climatic factors in Shule River Basin in Northwest China: A panel analysis. Sustainability, 9(3): 368, doi: 10.3390/su9030368.
[41]   Qin W J, Han D M, Song X F, et al. 2021. Sources and migration of heavy metals in a karst water system under the threats of an abandoned Pb-Zn mine, Southwest China. Environmental Pollution, 277: 116774, doi: 10.1016/j.envpol.2021.116774.
[42]   Qu B, Sillanpää M, Zhang Y L, et al. 2015. Water chemistry of the headwaters of the Yangtze River. Environmental Earth Sciences, 74(8): 6443-6458.
doi: 10.1007/s12665-015-4174-4
[43]   Qu B, Zhang Y L, Kang S C, et al. 2017. Water chemistry of the southern Tibetan Plateau: an assessment of the Yarlung Tsangpo river basin. Environmental Earth Sciences, 76(2): 74, doi: 10.1007/s12665-017-6393-3.
[44]   Qu B, Zhang Y L, Kang S C, et al. 2019. Water quality in the Tibetan Plateau: Major ions and trace elements in rivers of the "Water Tower of Asia". Science of the Total Environment, 649: 571-581.
doi: 10.1016/j.scitotenv.2018.08.316
[45]   Rahman M S, Gagnon G A. 2014. Bench-scale evaluation of drinking water treatment parameters on iron particles and water quality. Water Research, 48: 137-147.
doi: 10.1016/j.watres.2013.09.018 pmid: 24075475
[46]   Rajasekhar B, Nambi I M, Govindarajan S K. 2020. Human health risk assessment for exposure to BTEXN in an urban aquifer using deterministic and probabilistic methods: A case study of Chennai City, India. Environmental Pollution, 265(Part B): 114814, doi: 10.1016/j.envpol.2020.114814.
[47]   Ravindra K, Thind P S, Mor S, et al. 2019. Evaluation of groundwater contamination in Chandigarh: Source identification and health risk assessment. Environmental Pollution, 255: 113062, doi: 10.1016/j.envpol.2019.113062.
[48]   Saha N, Rahman M S, Ahmed M B, et al. 2017. Industrial metal pollution in water and probabilistic assessment of human health risk. Journal of Environmental Management, 185: 70-78.
doi: S0301-4797(16)30804-0 pmid: 28029481
[49]   Saleem M, Iqbal J, Shah M H. 2019. Seasonal variations, risk assessment and multivariate analysis of trace metals in the freshwater reservoirs of Pakistan. Chemosphere, 216: 715-724.
doi: S0045-6535(18)32044-7 pmid: 30391893
[50]   Şener Ş, Şener E, Davraz A. 2017. Evaluation of water quality using water quality index (WQI) method and GIS in Aksu River (SW-Turkey). Science of the Total Environment, 584-585: 131-144.
[51]   Sharma K, Raju N J, Neelratan S, et al. 2022. Heavy metal pollution in groundwater of urban Delhi environs: Pollution indices and health risk assessment. Urban Climate, 45: 101233, doi: 10.1016/j.uclim.2022.101233.
[52]   Sheng D R, Wen X H, Wu J, et al. 2021. Comprehensive probabilistic health risk assessment for exposure to arsenic and cadmium in groundwater. Environmental Management, 67(4): 779-792.
doi: 10.1007/s00267-021-01431-8 pmid: 33606066
[53]   Sheng D, Meng X H, Wen X H, et al. 2022. Contamination characteristics, source identification, and source-specific health risks of heavy metals in groundwater of an arid oasis region in Northwest China. Science of the Total Environment, 841: 156733, doi: 10.1016/j.scitotenv.2022.156733.
[54]   Tiwari T N, Mishra M. 1985. A preliminary assignment of water quality index of major Indian rivers. Indian Journal of Environmental Protection, 5(4): 276-279.
[55]   USEPA. 2004. Risk Assessment Guidance for Superfund Volume I. Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment). [2023-05-02]. https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab=OSRTI&dirEntryId=82966.
[56]   USEPA. 2011. Exposure Factors Handbook 2011 Edition (Final Report). [2023-05-02]. https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=236252.
[57]   Ustaoğlu F, Tepe Y, Tas B. 2020. Assessment of stream quality and health risk in a subtropical Turkey river system: A combined approach using statistical analysis and water quality index. Ecological Indicators, 113: 105815, doi: 10.1016/j.ecolind.2019.105815.
[58]   Vatanpour N, Feizy J, Talouki H H, et al. 2020. The high levels of heavy metal accumulation in cultivated rice from the Tajan river basin: Health and ecological risk assessment. Chemosphere, 245: 125639, doi: 10.1016/j.chemosphere.2019.125639.
[59]   Wei Z S, Tang M R, Huang Z S, et al. 2022. Mercury removal from flue gas using nitrate as an electron acceptor in a membrane biofilm reactor. Frontiers of Environmental Science & Engineering, 16(2): 20, doi: 10.1007/s11783-021-1454-y.
[60]   Wen X H, Lu J, Wu J, et al. 2019. Influence of coastal groundwater salinization on the distribution and risks of heavy metals. Science of the Total Environment, 652: 267-277.
doi: 10.1016/j.scitotenv.2018.10.250
[61]   World Health Organization. 2011. Guidelines for Drinking-water Quality. [2023-05-02]. https://www.who.int/publications/i/item/9789240045064.
[62]   Wu H H, Xu C B, Wang J H, et al. 2021. Health risk assessment based on source identification of heavy metals: A case study of Beiyun River, China. Ecotoxicological and Environmental Safety, 213: 112046, doi: 10.1016/j.ecoenv.2021.112046.
[63]   Wu J, Duan D P, Lu J, et al. 2016. Inorganic pollution around the Qinghai-Tibet Plateau: An overview of the current observations. Science of the Total Environment, 550: 628-636.
doi: 10.1016/j.scitotenv.2016.01.136
[64]   Wu J, Lu J, Li L M, et al. 2018. Pollution, ecological-health risks, and sources of heavy metals in soil of the northeastern Qinghai-Tibet Plateau. Chemosphere, 201: 234-242.
doi: S0045-6535(18)30334-5 pmid: 29524824
[65]   Wu Y M, Leng Z R, Li J, et al. 2022. Sulfur mediated heavy metal biogeochemical cycles in coastal wetlands: From sediments, rhizosphere to vegetation. Frontiers of Environmental Science & Engineering, 16(8): 102, doi: 10.1007/s11783-022-1523-x.
[66]   Xiao J, Jin Z D, Wang J. 2014. Geochemistry of trace elements and water quality assessment of natural water within the Tarim River Basin in the extreme arid region, NW China. Journal of Geochemical Exploration, 136: 118-126.
doi: 10.1016/j.gexplo.2013.10.013
[67]   Xiao J, Wang L Q, Deng L, et al. 2019. Characteristics, sources, water quality and health risk assessment of trace elements in river water and well water in the Chinese Loess Plateau. Science of the Total Environment, 650(2): 2004-2012.
doi: 10.1016/j.scitotenv.2018.09.322
[68]   Xu S, Lang Y C, Zhong J, et al. 2020. Coupled controls of climate, lithology and land use on dissolved trace elements in a karst river system. Journal of Hydrology, 591: 125328, doi: 10.1016/j.jhydrol.2020.125328.
[69]   Yu H, Lin M L, Peng W H, et al. 2022. Seasonal changes of heavy metals and health risk assessment based on Monte Carlo simulation in alternate water sources of the Xinbian River in Suzhou City, Huaibei Plain, China. Ecotoxicological and Environmental Safety, 236: 113445, doi: 10.1016/j.ecoenv.2022.113445.
[70]   Yue D X, Zhou Y Y, Guo J J, et al. 2022a. Relationship between net primary productivity and soil water content in the Shule River Basin. CATENA, 105770: 208, doi: 10.1016/j.catena.2021.105770.
[71]   Yue D X, Zhou Y Y, Guo J J, et al. 2022b. Ecosystem service evaluation and optimisation in the Shule River Basin, China. CATENA, 215: 106320, doi: 10.1016/j.catena.2022.106320.
[72]   Zhang G L, Bai J H, Zhao Q Q, et al. 2016. Heavy metals in wetland soils along a wetland-forming chronosequence in the yellow river delta of China: Levels, sources and toxic risks. Ecological Indicators, 69: 331-339.
doi: 10.1016/j.ecolind.2016.04.042
[73]   Zhang Y L, Sillanpää M, Li C L, et al. 2015. River water quality across the Himalayan regions: elemental concentrations in headwaters of Yarlung Tsangbo, Indus and Ganges River. Environmental Earth Sciences, 73(8): 4151-4163.
doi: 10.1007/s12665-014-3702-y
[74]   Zheng W, Kang S C, Feng X B, et al. 2010. Mercury speciation and spatial distribution in surface waters of the Yarlung Zangbo River, Tibet. Chinese Science Bulletin, 55(24): 2697-2703.
doi: 10.1007/s11434-010-4001-y
[75]   Huang X, Sillanpää M, Gjessing E T, et al. 2009. Water quality in the Tibetan Plateau: major ions and trace elements in the headwaters of four major Asian rivers. Science of the Total Environment, 407(24): 6242-6254.
doi: 10.1016/j.scitotenv.2009.09.001
[76]   Li L M, Wu J, Lu J, et al. 2022. Water quality evaluation and ecological-health risk assessment on trace elements in surface water of the northeastern Qinghai-Tibet Plateau. Ecotoxicological and Environmental Safety, 241: 10, doi: 10.1016/j.ecoenv.2022.113775.
[77]   Ministry of Health of the People's Republic of China. 2006. Standards for Drinking Water Quality (GB5749-2006). [2023-05-10]. https://std.samr.gov.cn/gb/search/gbDetailed?id=71F772D7FC82D3A7E05397BE0A0AB82A.
[78]   Qu B, Sillanpää M, Zhang Y L, et al. 2015. Water chemistry of the headwaters of the Yangtze River. Environmental Earth Sciences, 74(8): 6443-6458.
doi: 10.1007/s12665-015-4174-4
[79]   Qu B, Zhang Y L, Kang S C, et al. 2017. Water chemistry of the southern Tibetan Plateau: an assessment of the Yarlung Tsangpo river basin. Environmental Earth Sciences, 76(2): 74, doi: 10.1007/s12665-017-6393-3.
[80]   Qu B, Zhang Y L, Kang S C, et al. 2019. Water quality in the Tibetan Plateau: Major ions and trace elements in rivers of the "Water Tower of Asia". Science of the Total Environment, 649: 571-581.
doi: 10.1016/j.scitotenv.2018.08.316
[81]   Sheng D, Meng X H, Wen X H, et al. 2022. Contamination characteristics, source identification, and source-specific health risks of heavy metals in groundwater of an arid oasis region in Northwest China. Science of Total Environment, 841: 156733, doi: 10.1016/j.scitotenv.2022.156733.
[82]   World Health Organization. 2011. Guidelines for Drinking-water Quality. [2023-05-10]. https://www.who.int/publications/i/item/9789240045064.
[83]   Xiao J, Jin Z D, Wang J. 2014. Geochemistry of trace elements and water quality assessment of natural water within the Tarim River Basin in the extreme arid region, NW China. Journal of Geochemical Exploration, 136: 118-126.
doi: 10.1016/j.gexplo.2013.10.013
[84]   Xiao J, Wang L Q, Deng L, et al. 2019. Characteristics, sources, water quality and health risk assessment of trace elements in river water and well water in the Chinese Loess Plateau. Science of the Total Environment, 650(2): 2004-2012.
doi: 10.1016/j.scitotenv.2018.09.322
[85]   Zhang Y L, Sillanpää M, Li C L, et al. 2015. River water quality across the Himalayan regions: elemental concentrations in headwaters of Yarlung Tsangbo, Indus and Ganges River. Environmental Earth Sciences, 73(8): 4151-4163.
doi: 10.1007/s12665-014-3702-y
[86]   Zheng W, Kang S C, Feng X B, et al. 2010. Mercury speciation and spatial distribution in surface waters of the Yarlung Zangbo River, Tibet. Chinese Science Bulletin, 55(24): 2697-2703.
doi: 10.1007/s11434-010-4001-y
[1] CHANG Sen, WEI Yaqi, DAI Zhenzhong, XU Wen, WANG Xing, DUAN Jiajia, ZOU Liang, ZHAO Guorong, REN Xiaoying, FENG Yongzhong. Landscape ecological risk assessment and its driving factors in the Weihe River basin, China[J]. Journal of Arid Land, 2024, 16(5): 603-614.
[2] Noua ALLAOUA, Hinda HAFID, Haroun CHENCHOUNI. Exploring groundwater quality in semi-arid areas of Algeria: Impacts on potable water supply and agricultural sustainability[J]. Journal of Arid Land, 2024, 16(2): 147-167.
[3] QIN Guoqiang, WU Bin, DONG Xinguang, DU Mingliang, WANG Bo. Evolution of groundwater recharge-discharge balance in the Turpan Basin of China during 1959-2021[J]. Journal of Arid Land, 2023, 15(9): 1037-1051.
[4] Mutawakil OBEIDAT, Ahmad AL-AJLOUNI, Eman BANI-KHALED, Muheeb AWAWDEH, Muna ABU-DALO. Integrating stable isotopes and factor analysis to delineate the groundwater provenance and pollution sources in the northwestern part of the Amman-Al Zarqa Basin, Jordan[J]. Journal of Arid Land, 2023, 15(12): 1490-1509.
[5] WANG Wang, CHEN Jiaqi, CHEN Jiansheng, WANG Tao, ZHAN Lucheng, ZHANG Yitong, MA Xiaohui. Contribution of groundwater to the formation of sand dunes in the Badain Jaran Desert, China[J]. Journal of Arid Land, 2023, 15(11): 1340-1354.
[6] XIE Shicheng, LAN Tian, XING An, CHEN Chen, MENG Chang, WANG Shuiping, XU Mingming, HONG Mei. Spatial distribution and ecological risk of heavy metals and their source apportionment in soils from a typical mining area, Inner Mongolia, China[J]. Journal of Arid Land, 2023, 15(10): 1196-1215.
[7] Youssef HAJHOUJI, Younes FAKIR, Simon GASCOIN, Vincent SIMONNEAUX, Abdelghani CHEHBOUNI. Dynamics of groundwater recharge near a semi-arid Mediterranean intermittent stream under wet and normal climate conditions[J]. Journal of Arid Land, 2022, 14(7): 739-752.
[8] LI Qian, MA Long, LIU Tingxi. Transformation among precipitation, surface water, groundwater, and mine water in the Hailiutu River Basin under mining activity[J]. Journal of Arid Land, 2022, 14(6): 620-636.
[9] LI Leiming, WU Jun, LU Jian, ZHANG Xiying, XU Juan. Geochemical signatures and human health risk evaluation of rare earth elements in soils and plants of the northeastern Qinghai-Tibet Plateau, China[J]. Journal of Arid Land, 2022, 14(11): 1258-1273.
[10] LING Xinying, MA Jinzhu, CHEN Peiyuan, LIU Changjie, Juske HORITA. Isotope implications of groundwater recharge, residence time and hydrogeochemical evolution of the Longdong Loess Basin, Northwest China[J]. Journal of Arid Land, 2022, 14(1): 34-55.
[11] CHEN Shumin, JIN Zhao, ZHANG Jing, YANG Siqi. Soil quality assessment in different dammed-valley farmlands in the hilly-gully mountain areas of the northern Loess Plateau, China[J]. Journal of Arid Land, 2021, 13(8): 777-789.
[12] WANG Yuejian, GU Xinchen, YANG Guang, YAO Junqiang, LIAO Na. Impacts of climate change and human activities on water resources in the Ebinur Lake Basin, Northwest China[J]. Journal of Arid Land, 2021, 13(6): 581-598.
[13] JIA Wuhui, YIN Lihe, ZHANG Maosheng, ZHANG Xinxin, ZHANG Jun, TANG Xiaoping, DONG Jiaqiu. Quantification of groundwater recharge and evapotranspiration along a semi-arid wetland transect using diurnal water table fluctuations[J]. Journal of Arid Land, 2021, 13(5): 455-469.
[14] Kei SAITOH, Rysbek SATYLKANOV, Kenji OKUBO. Mass balance of saline lakes considering inflow loads of rivers and groundwater: the case of Lake Issyk- Kul, Central Asia[J]. Journal of Arid Land, 2021, 13(12): 1260-1273.
[15] SUN Lingxiao, YU Yang, GAO Yuting, ZHANG Haiyan, YU Xiang, HE Jing, WANG Dagang, Ireneusz MALIK, Malgorzata WISTUBA, YU Ruide. Temporal and spatial variations of net primary productivity and its response to groundwater of a typical oasis in the Tarim Basin, China[J]. Journal of Arid Land, 2021, 13(11): 1142-1154.