Please wait a minute...
Journal of Arid Land  2014, Vol. 6 Issue (1): 37-43    DOI: 10.1007/s40333-013-0195-6
Research Articles     
Effects of moisture and carbonate additions on CO2 emission from calcareous soil during closed–jar incubation
YanJie DONG1,2, Miao CAI1,2, JianBin ZHOU1,2*
1 College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China;
2 Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling 712100, China
Download:   PDF(465KB)
Export: BibTeX | EndNote (RIS)      

Abstract  Calcareous soil contains organic and inorganic carbon (C) pools, which both contribute to CO2 emission during closed-jar incubation. The mineralization of organic C and dissolution of inorganic C are both related to soil moisture, but the exact effect of water content on CO2 emission from calcareous soil is unclear. The objective of this experiment was to determine the effect of soil water content (air-dried, 30%, 70%, and 100% water-holding capacity (WHC)), carbonate type (CaCO3 or MgCO3), and carbonate amount (0.0, 1.0%, and 2.0%) on CO2 emission from calcareous soil during closed-jar incubation. Soil CO2 emission increased significantly as the water content increased to 70% WHC, regardless of whether or not the soil was amended with carbonates. Soil CO2 emission remained the same or increased slowly as the soil water content increased from 70% WHC to 100% WHC. When the water content was ≤30% WHC, soil CO2 emission from soil amended with 1.0% inorganic C was greater than that from unamended soil. When the soil water content was 70% or 100% WHC, CO2 emission from CaCO3 amended soil was greater than that from the control. Furthermore, CO2 emission from soil amended with 2.0% CaCO3 was greater than that from soil amended with 1.0% CaCO3. Soil CO2 emission was higher in the MgCO3 amended soil than from the unamended soil. Soil CO2 emission decreased as the MgCO3 content increased. Cumulative CO2 emission was 3–6 times higher from MgCO3 amended soil than from CaCO3 amended soil. There was significant interaction effect between soil moisture and carbonates on CO2 emission. Soil moisture plays an important role in CO2 emission from calcareous soil because it affects both biotic and abiotic processes during the closed-jar incubation.

Key wordsannual halophyte      mineral elements      desert      saline-alkali soil      Northern Xinjiang     
Received: 27 December 2012      Published: 10 February 2014

This work was supported by the National Natural Science Foundation of China (40773057) and the National Technology R&D Pillar Program in the 12th Five-Year Plan of China (2012BAD15B04).

Corresponding Authors: JianBin Zhou   
Cite this article:

YanJie DONG, Miao CAI, JianBin ZHOU. Effects of moisture and carbonate additions on CO2 emission from calcareous soil during closed–jar incubation. Journal of Arid Land, 2014, 6(1): 37-43.

URL:     OR

Alef K A. 1995. Soil respiration. In: Alef K A, Nannipieri P. Methods in Applied Soil Microbiology and Biochemistry. London: Academic Press, 214−219.

Alvarez R, Díaz R A, Barbero N, et al. 1995. Soil organic carbon, microbial biomass and CO2-C production from three tillage systems. Soil and Tillage Research, 33(1): 17−28.

Bertrand I, Delfosse O, Mary B. 2007. Carbon and nitrogen mineralization in acidic, limed and calcareous agricultural soils: apparent and actual effects. Soil Biology and Biochemistry, 39(1): 276−288.

Birkeland P W. 1984. Soils and Geomorphology. Oxford: Oxford University Press, 372.

Borken W, Davidson E, Savage K, et al. 2003. Drying and wetting effects on carbon dioxide release from organic horizons. Soil Science Society of America Journal, 67(6): 1888−1896.

Bowden R D, Newkirk K M, Rullo G M. 1998. Carbon dioxide and methane fluxes by a forest soil under laboratory-controlled moisture and temperature conditions. Soil Biology and Biochemistry, 30(12): 1591−1597.

Chen X L, Zhou J B, Liu J L, et al. 2009. Effects of fertilization on carbon/nitrogen ratio of maize straw and its mineralization in soil. Chinese Journal of Applied Ecology, 20(2): 314–319. 

Chen Y, Barak P. 1982. Iron nutrition of plants in calcareous soils. Advances in Agronomy, 35: 217−240.

Freer-Smith P H, Broadmeadow M S J, Lynch J M. 2008. Forestry and Climate Change. Trowbridge: Cromwell Press.

Guo Z. 1992. Shaanxi Soil. Beijing: Science Press, 630.

Inglima I, Alberti G, Bertolini T, et al. 2009. Precipitation pulses enhance respiration of Mediterranean ecosystems: the balance between organic and inorganic components of increased soil CO2 efflux. Global Change Biology, 15(5): 1289−1301.

IPCC. 2001. Climate Change 2001: The Scientific Basis. In: Houghton J T, Ding Y, Griggs D J, et al. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge and New York: Cambridge University Press, 881.

Jia B, Zhou G, Wang F, et al. 2006. Effects of temperature and soil water-content on soil respiration of grazed and ungrazed Leymus chinensis steppes, Inner Mongolia. Journal of Arid Environments, 67(1): 60−76.

Leirós M, Trasar-Cepeda C, Seonane S, et al. 1999. Dependence of mineralization of soil organic matter on temperature and moisture. Soil Biology and Biochemistry, 31(3): 327−335.

Merbold L, Ardö J, Arneth A, et al. 2009. Precipitation as driver of carbon fluxes in 11 African ecosystems. Biogeosciences, 6: 1027−1041.

Muhr J, Franke J, Borken W. 2010. Drying–rewetting events reduce C and N losses from a Norway spruce forest floor. Soil Biology and Biochemistry, 42(8): 1303−1312.

Patnaik P. 2003. Handbook of Inorganic Chemicals. New York: McGraw-Hill, 1086.

Raich J W, Potter C S. 1995. Global patterns of carbon dioxide emissions from soils. Global Biogeochemical Cycles, 9(1): 23−36.

Raich J W, Potter C S, Bhagawati D. 2002. Interannual variability in global soil respiration, 1980–94. Global Change Biology, 8(8): 800−812.

Rey A, Petsikos C, Jarvis P G, et al. 2005. Effect of temperature and moisture on rates of carbon mineralization in a Mediterranean oak forest soil under controlled and field conditions. European Journal of Soil Science, 56(5): 589−599.

Ryskov Y G, Demkin V, Oleynik S A, et al. 2008. Dynamics of pe-dogenic carbonate for the last 5000 years and its role as a buffer reservoir for atmospheric carbon dioxide in soils of Russia. Global and Planetary Change, 61(1): 63−69.

Schlesinger W H. 1982. Carbon storage in the caliche of arid soils: a case study from Arizona. Soil Science, 133(4): 247−255.

Schlesinger W H, Andrews J A. 2000. Soil respiration and the global carbon cycle. Biogeochemistry, 48(1): 7−20.

Wang X, Li X, Hu Y, et al. 2010. Effect of temperature and moisture on soil organic carbon mineralization of predominantly permafrost peatland in the Great Hing’an Mountains, Northeastern China. Journal of Environmental Sciences, 22(7): 1057−1066.

Zhang X, Li L, Pan G. 2007. Topsoil organic carbon mineralization and CO2 evolution of three paddy soils from South China and the temperature dependence. Journal of Environmental Sciences, 19(3): 319−326.
[1] Hossein GHAZANFARPOUR, Mohsen POURKHOSRAVANI, Sayed H MOUSAVI, Ali MEHRABI. Mathematical and statistical modeling of morphometric and planar parameters of barchans in Pashoeyeh Erg in the west of Lut Desert, Iran[J]. Journal of Arid Land, 2021, 13(8): 801-813.
[2] Batjargal BUYANTOGTOKH, Yasunori KUROSAKI, Atsushi TSUNEKAWA, Mitsuru TSUBO, Batdelger GANTSETSEG, Amarsaikhan DAVAADORJ, Masahide ISHIZUKA, Tsuyoshi T SEKIYAMA, Taichu Y TANAKA, Takashi MAKI. Effect of stones on the sand saltation threshold during natural sand and dust storms in a stony desert in Tsogt-Ovoo in the Gobi Desert, Mongolia[J]. Journal of Arid Land, 2021, 13(7): 653-673.
[3] Benjamin DAVIDSON, Elli GRONER. An arthropod community beyond the dry limit of plant life[J]. Journal of Arid Land, 2021, 13(6): 629-638.
[4] DUN Hongchao, HUANG Ning, ZHANG Jie. Optimization designs of artificial facilities in deserts based on computational simulation[J]. Journal of Arid Land, 2021, 13(3): 290-302.
[5] HU Haiying, ZHU Lin, LI Huixia, XU Dongmei, XIE Yingzhong. Seasonal changes in the water-use strategies of three herbaceous species in a native desert steppe of Ningxia, China[J]. Journal of Arid Land, 2021, 13(2): 109-122.
[6] Hossein BASHARI, SeyedMehrdad KAZEMI, Soghra POODINEH, Mohammad R MOSADDEGHI, Mostafa TARKESH, SeyedMehdi ADNANI. Interactions between vegetation dynamic and edaphic factors in the Great Salt Desert of central Iran[J]. Journal of Arid Land, 2021, 13(2): 123-134.
[7] LI Congjuan, WANG Yongdong, LEI Jiaqiang, XU Xinwen, WANG Shijie, FAN Jinglong, LI Shengyu. Damage by wind-blown sand and its control measures along the Taklimakan Desert Highway in China[J]. Journal of Arid Land, 2021, 13(1): 98-106.
[8] Arvind BHATT, David J GALLACHER, Paulo R M SOUZA-FILHO. Germination strategies of annual and short-lived perennial species in the Arabian Desert[J]. Journal of Arid Land, 2020, 12(6): 1071-1082.
[9] Anlifeire ANNIWAER, SU Yangui, ZHOU Xiaobing, ZHANG Yuanming. Impacts of snow on seed germination are independent of seed traits and plant ecological characteristics in a temperate desert of Central Asia[J]. Journal of Arid Land, 2020, 12(5): 775-790.
[10] PANG Yingjun, WU Bo, LI Yonghua, XIE Shengbo. Morphological characteristics and dynamic changes of seif dunes in the eastern margin of the Kumtagh Desert, China[J]. Journal of Arid Land, 2020, 12(5): 887-902.
[11] DONG Yiqiang, SUN Zongjiu, AN Shazhou, JIANG Shasha, WEI Peng. Community structure and carbon and nitrogen storage of sagebrush desert under grazing exclusion in Northwest China[J]. Journal of Arid Land, 2020, 12(2): 239-251.
[12] DONG Zhengwu, LI Shengyu, ZHAO Ying, LEI Jiaqiang, WANG Yongdong, LI Congjuan. Stable oxygen-hydrogen isotopes reveal water use strategies of Tamarix taklamakanensis in the Taklimakan Desert, China[J]. Journal of Arid Land, 2020, 12(1): 115-129.
[13] Arvind BHATT, Narayana R BHAT, Afaf AL-NASSER, María M CARÓN, Andrea SANTO. Inter-population variabilities in seed mass and germination of Panicum turgidum and Pennisetum divisum in the desert of Kuwait[J]. Journal of Arid Land, 2020, 12(1): 144-153.
[14] WANG Cui, LI Shengyu, LEI Jiaqiang, LI Zhinong, CHEN Jie. Effect of the W-beam central guardrails on wind-blown sand deposition on desert expressways in sandy regions[J]. Journal of Arid Land, 2020, 12(1): 154-165.
[15] RANJBAR Abolfazl, HEYDARNEJAD Somayeh, H MOUSAVI Sayed, MIRZAEI Roohallah. Mapping desertification potential using life cycle assessment method: a case study in Lorestan Province, Iran[J]. Journal of Arid Land, 2019, 11(5): 652-663.