Please wait a minute...
Journal of Arid Land
Research Articles     
Causes of recurring drought patterns in Xinjiang, China
Rashed MAHMOOD, ShuangLin LI, Babar KHAN
1 Nansen-Zhu International Research Center, Institute of Atmospheric Physics, CAS, Beijing 100029, China; 2 Xinjiang Institute of Ecology and Geography, CAS, Urumqi 830011, China
Download:   PDF(621KB)
Export: BibTeX | EndNote (RIS)      

Abstract  Xinjiang Uygur Autonomous Region of China, with its unique topography and geographical location receives very less precipitation in summer as compared with other parts of China. The region is a land locked where moisture is supplied only by westerly winds from Atlantic Ocean as the moisture coming from Indian Ocean is mostly blocked by the Himalayas Range and the Tibetan plateau. In such a scenario, Xinjiang faces severe drought conditions offering significant challenges to water management. In this paper, we analyzed the drought periods in Xinjiang and discussed the various factors that might have influenced precipitation over the past forty-four years. For this purpose, we defined three periods of consecutive four years for high and low precipitation intensities. The average observed precipitation was 1.05 mm/day and 0.7 mm/day in summer (June-July-August) for the Tianshan Mountain region and Junggar Basin of Xinjiang, respectively. The drought conditions indicated that high sea level pressure, wind divergence and low convection were the prominent features that caused the droughts, which often do not allow the condensation process to coagulate the tiny water droplets into relatively large raindrops reducing the amount of precipitation in the region. The period of 1983-1986 is the lowest precipitation interval indicating the severe drought in the western Xinjiang (i.e western Tianshan Mountain region), for which, less moisture availability, strong divergence and less convection could be the most influencing factors.

Key wordsatmospheric deposition      nitrogen      nutrient management      ecological impacts     
Received: 06 August 2010      Published: 07 December 2010
Corresponding Authors:
Cite this article:

Rashed MAHMOOD, ShuangLin LI, Babar KHAN. Causes of recurring drought patterns in Xinjiang, China. Journal of Arid Land, 2010, 2(4): 279-285.

URL:

http://jal.xjegi.com/10.3724/SP.J.1227.2010.00279     OR     http://jal.xjegi.com/Y2010/V2/I4/279

[1] HAN Qifei, XU Wei, LI Chaofan. Effects of nitrogen deposition on the carbon budget and water stress in Central Asia under climate change[J]. Journal of Arid Land, 2024, 16(8): 1118-1129.
[2] ZHANG Wenwen, PAN Yue, WEN Fuqi, FU Juanjuan, HAO Yanbin, HU Tianming, YANG Peizhi. Extreme drought with seasonal timing consistently promotes CH4 uptake through inconsistent pathways in a temperate grassland, China[J]. Journal of Arid Land, 2024, 16(6): 768-778.
[3] SU Wenhao, WU Chengcheng, Sun Xuanxuan, LEI Rongrong, LEI Li, WANG Ling, ZHU Xinping. Environmental dynamics of nitrogen and phosphorus release from river sediments of arid areas[J]. Journal of Arid Land, 2024, 16(5): 685-698.
[4] YE He, HONG Mei, XU Xuehui, LIANG Zhiwei, JIANG Na, TU Nare, WU Zhendan. Responses of plant diversity and soil microorganism diversity to nitrogen addition in the desert steppe, China[J]. Journal of Arid Land, 2024, 16(3): 447-459.
[5] GAO Yalin, QI Guangping, MA Yanlin, YIN Minhua, WANG Jinghai, WANG Chen, TIAN Rongrong, XIAO Feng, LU Qiang, WANG Jianjun. Regulation effects of water and nitrogen on yield, water, and nitrogen use efficiency of wolfberry[J]. Journal of Arid Land, 2024, 16(1): 29-45.
[6] MA Jinpeng, PANG Danbo, HE Wenqiang, ZHANG Yaqi, WU Mengyao, LI Xuebin, CHEN Lin. Response of soil respiration to short-term changes in precipitation and nitrogen addition in a desert steppe[J]. Journal of Arid Land, 2023, 15(9): 1084-1106.
[7] MA Xinxin, ZHAO Yunge, YANG Kai, MING Jiao, QIAO Yu, XU Mingxiang, PAN Xinghui. Long-term light grazing does not change soil organic carbon stability and stock in biocrust layer in the hilly regions of drylands[J]. Journal of Arid Land, 2023, 15(8): 940-959.
[8] KOU Zhaoyang, LI Chunyue, CHANG Shun, MIAO Yu, ZHANG Wenting, LI Qianxue, DANG Tinghui, WANG Yi. Effects of nitrogen and phosphorus additions on soil microbial community structure and ecological processes in the farmland of Chinese Loess Plateau[J]. Journal of Arid Land, 2023, 15(8): 960-974.
[9] SUN Mengjie, GUO Shiwen, XIONG Chunlian, LI Pinfang. Exogenous addition of nitrate nitrogen regulates the uptake and translocation of lead (Pb) by Iris lacteal Pall. var. chinensis (Fisch.) Koidz.[J]. Journal of Arid Land, 2023, 15(2): 218-230.
[10] TAN Jin, WU Xiuqin, LI Yaning, SHI Jieyu, LI Xu. Nutrient coordination mechanism of tiger nut induced by rhizosphere soil nutrient variation in an arid area, China[J]. Journal of Arid Land, 2023, 15(10): 1216-1230.
[11] JING Bo, SHI Wenjuan, DIAO Ming. Nitrogen application levels based on critical nitrogen absorption regulate processing tomatoes productivity, nitrogen uptake, nitrate distributions, and root growth in Xinjiang, China[J]. Journal of Arid Land, 2023, 15(10): 1231-1244.
[12] WANG Ziyi, LIU Xiaohong, WANG Keyi, ZENG Xiaomin, ZHANG Yu, GE Wensen, KANG Huhu, LU Qiangqiang. Tree-ring δ15N of Qinghai spruce in the central Qilian Mountains of China: Is pre-treatment of wood samples necessary?[J]. Journal of Arid Land, 2022, 14(6): 673-690.
[13] LIN En, LIU Hongguang, LI Xinxin, LI Ling, Sumera ANWAR. Promoting the production of salinized cotton field by optimizing water and nitrogen use efficiency under drip irrigation[J]. Journal of Arid Land, 2021, 13(7): 699-716.
[14] DING Wenli, XU Weizhou, GAO Zhijuan, XU Bingcheng. Effects of water and nitrogen on growth and relative competitive ability of introduced versus native C4 grass species in the semi-arid Loess Plateau of China[J]. Journal of Arid Land, 2021, 13(7): 730-743.
[15] ZHANG Hong, CAO Yingfei, LYU Jialong. Decomposition of different crop straws and variation in straw-associated microbial communities in a peach orchard, China[J]. Journal of Arid Land, 2021, 13(2): 152-164.