Please wait a minute...
Journal of Arid Land  2020, Vol. 12 Issue (5): 806-818    DOI: 10.1007/s40333-020-0074-x
Research article     
Degradation leads to dramatic decrease in topsoil but not subsoil root biomass in an alpine meadow on the Tibetan Plateau, China
ZHANG Zhenchao1,2, LIU Miao1,3, SUN Jian1,*(), WEI Tianxing4
1Synthesis Research Centre of Chinese Ecosystem Research Network, Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
2State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China
3Arid Land Research Center, Tottori University, Tottori 6800001, Japan
4School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
Download: HTML     PDF(2184KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Understanding the effects of degradation on belowground biomass (BGB) is essential for assessment of carbon budget of the alpine meadow ecosystem on the Tibetan Plateau, China. This ecosystem has been undergoing serious degradation owing to climate change and anthropogenic activities. This study examined the response of the vertical distribution of plant BGB to degradation and explored the underlying mechanisms in an alpine meadow on the Tibetan Plateau. A field survey was conducted in an alpine meadow with seven sequential degrees of degradation in the Zoige Plateau on the Tibetan Plateau during the peak growing season of 2018. We measured aboveground biomass (AGB), BGB, soil water content (SWC), soil bulk density (SBD), soil compaction (SCOM), soil organic carbon (SOC), soil total nitrogen (STN), soil total phosphorus (STP), soil available nitrogen (SAN), and soil available phosphorus (STP) in the 0-30 cm soil layers. Our results show that degradation dramatically decreased the BGB in the 0-10 cm soil layer (BGB0-10) but slightly increased the subsoil BGB. The main reason may be that the physical-chemical properties of surface soil were more sensitive to degradation than those of subsoil, as indicated by the remarked positive associations of the trade-off value of BGB0-10 with SWC, SCOM, SOC, STN, SAN, and STP, as well as the negative correlation between the trade-off value of BGB0-10 and SBD in the soil layer of 0-10 cm. In addition, an increase in the proportion of forbs with increasing degradation degree directly affected the BGB vertical distribution. The findings suggest that the decrease in the trade-off value of BGB0-10 in response to degradation might be an adaptive strategy for the degradation-induced drought and infertile soil conditions. This study can provide theoretical support for assessing the effects of degradation on the carbon budget and sustainable development in the alpine meadow ecosystem on the Tibetan Plateau as well as other similar ecosystems in the world.



Key wordsbelowground biomass      soil properties      plant community structure      degradation      alpine meadow      Tibetan Plateau     
Received: 12 March 2020      Published: 10 September 2020
Corresponding Authors:
About author: *Corresponding author: SUN Jian (E-mail: sunjian@igsnrr.ac.cn)
Cite this article:

ZHANG Zhenchao, LIU Miao, SUN Jian, WEI Tianxing. Degradation leads to dramatic decrease in topsoil but not subsoil root biomass in an alpine meadow on the Tibetan Plateau, China. Journal of Arid Land, 2020, 12(5): 806-818.

URL:

http://jal.xjegi.com/10.1007/s40333-020-0074-x     OR     http://jal.xjegi.com/Y2020/V12/I5/806

Fig. 1 Location of sampling site at the Zoige Plateau on the Tibetan Plateau of China (a), photograph showing the landscape of sampling site (b), and schematic illustration of experimental design (c)
Degradation
gradient
Coordinates Altitude (m) Main species Coverage (%)
1st 33°13′37.53′′N
102°36′51.26′′E
3678 Stipa capillata, Carex tristachya 89.00±5.13
2nd 33°13′37.44′′N
102°36′51.69′′E
3695 Stipa capillata, Anaphalis sinica 78.00±3.26
3rd 33°13′37.11′′N
102°36′50.87′′E
3702 Stipa capillata, Carex tristachya 67.00±4.15
4th 33°13′36.93′′N
102°36′51.46′′E
3721 Carex tristachya, Stipa capillata 50.00±4.71
5th 33°13′37.84′′N
102°36′51.11′′E
3725 Carex tristachya, Artemisia desertorum 38.00±3.52
6th 33°13′37.62′′N
102°36′50.97′′E
3736 Artemisia desertorum, Agrostis matsumurae 29.00±2.20
7th 33°13′37.39′′N
102°36′51.25′′E
3740 Artemisia desertorum, Oxytropis kansuensis 17.00±2.44
Table 1 Information on the seven degradation gradients
Fig. 2 Illustration of trade-offs among objective belowground biomass (BGB) values in the three soil layers (0-10, 10-20, and 20-30 cm). The zero trade-off line represents that the benefits of BGB in each layer are equal. BGB0-10, BGB10-20, and BGB20-30 represent the BGB in the 0-10, 10-20, and 20-30 cm soil layers, respectively.
Table 2 Soil properties along the seven degradation gradients in the study site
Fig. 3 Changes in aboveground biomass (AGB) of graminoids and forbs along the seven degradation gradients. Information on the seven degradation gradients is shown in Table 1.
Fig. 4 Changes of belowground biomass (BGB) in the three soil layers (0-10, 10-20, and 20-30 cm) along the seven degradation gradients
Fig. 5 Changes in trade-off values of BGB in the three soil layers (0-10, 10-20, and 20-30 cm) along the seven degradation gradients. The gray area represents 95% confidence intervals.
Fig. 6 Correlations among the trade-off value of BGB in the 0-10 cm soil layer (BGB0-10), topsoil physical-chemical properties, and plant community structure. SBD, soil bulk density; SAP, soil available phosphorus; SCOM, soil compaction; SWC, soil water content; STP, soil total phosphorus; SOC, soil organic carbon; STN, soil total nitrogen; AGB(G/F), the ratio of AGB of graminoids to that of forbs; SAN, soil available nitrogen. The color depth represents correlated strength, that is, a deep color suggests a strong correlation. Blue and red represent positive and negative correlations, respectively.
[1]   Bao S D. 2000. Soil and Agricultural Chemistry Analysis. Beijing: China Agriculture Press, 263-270. (in Chinese)
[2]   Bardgett R D, Bowman W D, Kaufmann R, et al. 2005. A temporal approach to linking aboveground and belowground ecology. Trends in Ecology & Evolution, 20(11): 634-641.
doi: 10.1016/j.tree.2005.08.005 pmid: 16701447
[3]   Bradford J B, Damato A W. 2012. Recognizing trade-offs in multi-objective land management. Frontiers in Ecology and the Environment, 10(4): 210-216.
doi: 10.1890/110031
[4]   Che R X, Qin J L, Tahmasbian I, et al. 2018. Litter amendment rather than phosphorus can dramatically change inorganic nitrogen pools in a degraded grassland soil by affecting nitrogen-cycling microbes. Soil Biology and Biochemistry, 120(8): 145-152.
doi: 10.1016/j.soilbio.2018.02.006
[5]   Dlamini P, Chivenge P, Manson A, et al. 2014. Land degradation impact on soil organic carbon and nitrogen stocks of sub-tropical humid grasslands in South Africa. Geoderma, 235-236: 372-381.
doi: 10.1016/j.geoderma.2014.07.016
[6]   Dong S K, Shang Z H, Gao J X, et al. 2020. Enhancing sustainability of grassland ecosystems through ecological restoration and grazing management in an era of climate change on Qinghai-Tibetan Plateau. Agriculture Ecosystem and Environment, 287: 106684, doi: 10.1016/j.agee.2019.106684.
doi: 10.1016/j.agee.2019.106684
[7]   Dukes J S, Chiariello N R, Cleland E E, et al. 2005. Responses of grassland production to single and multiple global environmental changes. PLoS Biology, 3(10): e319, doi: 10.1371/journal.pbio.0030319.
doi: 10.1371/journal.pbio.0030319 pmid: 16076244
[8]   Duran P, Thiergart T, Garridooter R, et al. 2018. Microbial interkingdom interactions in roots promote arabidopsis survival. Cell, 175(4): 973-983.
doi: 10.1016/j.cell.2018.10.020 pmid: 30388454
[9]   Fu T G, Chen H S, Zhang W, et al. 2015. Vertical distribution of soil saturated hydraulic conductivity and its influencing factors in a small karst catchment in Southwest China. Environmental Monitoring and Assessment, 187(3): 92-104.
doi: 10.1007/s10661-015-4320-1 pmid: 25663401
[10]   Gląb T, Szewczyk W. 2014. Influence of simulated traffic and roots of turfgrass species on soil pore characteristics. Geoderma, 230-231: 221-228.
doi: 10.1016/j.geoderma.2014.04.015
[11]   Gruber B D, Giehl R F H, Friedel S, et al. 2013. Plasticity of the arabidopsis root system under nutrient deficiencies. Plant Physiology, 163(1): 161-179.
doi: 10.1104/pp.113.218453
[12]   Guo Q. 2003. Temporal species richness-biomass relationships along successional gradients. Journal of Vegetation Science, 14(1): 121-128.
doi: 10.1111/jvs.2003.14.issue-1
[13]   Haichar F Z, Marol C, Berge O, et al. 2008. Plant host habitat and root exudates shape soil bacterial community structure. ISME Journal, 2(12): 1221-1230.
doi: 10.1038/ismej.2008.80 pmid: 18754043
[14]   Han D M, Wang G Q, Xue B L, et al. 2018. Evaluation of semiarid grassland degradation in North China from multiple perspectives. Ecological Engineering, 112: 41-50.
doi: 10.1016/j.ecoleng.2017.12.011
[15]   Han L H, Shang Z H, Ren G H, et al. 2011. The response of plants and soil on black soil patch of the Qinghai-Tibetan Plateau to variation of bare-patch areas. Acta Prataculturae Sinica, 20(1): 4-9. (in Chinese)
[16]   Harris R B. 2010. Rangeland degradation on the Qinghai-Tibetan plateau: A review of the evidence of its magnitude and causes. Journal of Arid Environments, 74(1): 1-12.
doi: 10.1016/j.jaridenv.2009.06.014
[17]   Hewins D B, Fatemi F R, Adams B W, et al. 2015. Grazing, regional climate and soil biophysical impacts on microbial enzyme activity in grassland soil of western Canada. Pedobiologia, 58(5-6): 201-209.
doi: 10.1016/j.pedobi.2015.10.003
[18]   Hortal S, Lozano Y M, Bastida F, et al. 2017. Plant-plant competition outcomes are modulated by plant effects on the soil bacterial community. Scientific Reports, 7(1): 1-9.
doi: 10.1038/s41598-016-0028-x pmid: 28127051
[19]   Hu J, Hopping K A, Bump J K, et al. 2013. Climate change and water use partitioning by different plant functional groups in a grassland on the Tibetan Plateau. PloS ONE, 8(9): e75503, doi: 10.1371/journal.pone.0075503.
doi: 10.1371/journal.pone.0075503 pmid: 24069425
[20]   Huo L L, Chen Z K, Zou Y C, et al. 2013. Effect of Zoige alpine wetland degradation on the density and fractions of soil organic carbon. Ecological Engineering, 51(1): 287-295.
doi: 10.1016/j.ecoleng.2012.12.020
[21]   Jackson R B, Canadell J, Ehleringer J R, et al. 1996. A global analysis of root distributions for terrestrial biomes. Oecologia, 108(3): 389-411.
doi: 10.1007/BF00333714 pmid: 28307854
[22]   Li P, Deng W, Zhang H, et al. 2019. Focus on economy or ecology? A three-dimensional trade-off based on ecological carrying capacity in Southwest China. Natural Resource Modeling, 32(2): e12201, doi: 10.1111/nrm.12201.
doi: 10.1111/nrm.2019.32.issue-2
[23]   Li X J, Zhang X Z, Wu J S, et al. 2011. Root biomass distribution in alpine ecosystems of the northern Tibetan Plateau. Environmental Earth Sciences, 64(7): 1911-1919.
doi: 10.1007/s12665-011-1004-1
[24]   Li Y H, Luo T X, Lu Q J. 2008. Plant height as a simple predictor of the root to shoot ratio: Evidence from alpine grasslands on the Tibetan Plateau. Journal of Vegetation Science, 19(2): 245-252.
doi: 10.3170/2007-8-18365
[25]   Li Y Y, Dong S K, Wen L, et al. 2013. The effects of fencing on carbon stocks in the degraded alpine grasslands of the Qinghai-Tibetan Plateau. Journal of Environmental Management, 128(20): 393-399.
doi: 10.1016/j.jenvman.2013.05.058
[26]   Liu M, Zhang Z C, Sun J, et al. 2020a. Restoration efficiency of short-term grazing exclusion is the highest at the stage shifting from light to moderate degradation at Zoige, Tibetan Plateau. Ecological Indicators, 114: 106323, doi: 10.1016/j.ecolind.2020.106323.
doi: 10.1016/j.ecolind.2020.106323
[27]   Liu M, Zhang Z C, Sun J, et al. 2020b. One-year grazing exclusion remarkably restores degraded alpine meadow at Zoige, eastern Tibetan Plateau. Global Ecology and Conservation, 22: e00951, doi: 10.1016/j.gecco.2020.e00951.
doi: 10.1016/j.gecco.2020.e00951
[28]   Lynch J P, Brown K M. 2012. New roots for agriculture: Exploiting the root phenome. Philosophical Transactions of the Royal Society of London, 367(1595): 1598-1604.
doi: 10.1098/rstb.2011.0243 pmid: 22527403
[29]   Ma W H, Yang Y H, He J S, et al. 2008. Biomass and its relations with environmental factors in temperate zone grassland of Inner Mongolia. Science China-Life Sciences, 38(1): 84-92.
[30]   Ma Y S, Lang B N, Li Q Y, et al. 2002. Study on rehabilitating and rebuilding technologies for degenerated alpine meadow in the Changjiang and Yellow river source region. Pratacultural Science, 19(9): 1-5. (in Chinese)
[31]   Macinnis-Ng C M O, Fuentes S, O'Grady A P, et al. 2010. Root biomass distribution and soil properties of an open woodland on a duplex soil. Plant and Soil, 327: 377-388.
doi: 10.1007/s11104-009-0061-7
[32]   Marriott C A, Bolton G R, Barthram G T, et al. 2002. Early changes in species composition of upland sown grassland under extensive grazing management. Applied Vegetation Science, 5(1): 87-98.
doi: 10.1111/avsc.2002.5.issue-1
[33]   Mehta N, Dinakaran J, Patel S, et al. 2013. Changes in litter decomposition and soil organic carbon in a reforested tropical deciduous cover (India). Ecological Research, 28(2): 239-248.
doi: 10.1007/s11284-012-1011-z
[34]   Mokany K, Raison R, Prokushkin A. 2010. Critical analysis of root: shoot ratios in terrestrial biomes. Global Change Biology, 12(1): 84-96.
doi: 10.1111/gcb.2006.12.issue-1
[35]   Olsen S R, Cole C V, Watanabe F S, et al. 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA Circular, 93(9): 1-19.
[36]   Pan T, Hou S, Wu S H, et al. 2017. Variation of soil hydraulic properties with alpine grassland degradation in the eastern Tibetan Plateau. Hydrology and Earth System Sciences, 21(4): 2249-2261.
doi: 10.5194/hess-21-2249-2017
[37]   Piao S L, Tan K, Nan H J, et al. 2012. Impacts of climate and CO2 changes on the vegetation growth and carbon balance of Qinghai-Tibetan grasslands over the past five decades. Global and Planetary Change, 98: 73-80.
[38]   Pieterse C M, Zamioudis C, Berendsen R L, et al. 2014. Induced systemic resistance by beneficial microbes. Annual Review of Phytopathology, 52: 347-375.
doi: 10.1146/annurev-phyto-082712-102340
[39]   Qin X J, Sun J, Wang X D. 2018. Plant coverage is more sensitive than species diversity in indicating the dynamics of the above-ground biomass along a precipitation gradient on the Tibetan Plateau. Ecological Indicators, 84(3): 507-514.
doi: 10.1016/j.ecolind.2017.09.013
[40]   Qiu L P, Wei X R, Zhang X C, et al. 2013. Ecosystem carbon and nitrogen accumulation after grazing exclusion in semiarid grassland. PloS ONE, 8(1): e55433, doi: 10.1371/journal.pone.0055433.
doi: 10.1371/journal.pone.0055433 pmid: 23383191
[41]   Quesada C A, Lloyd J, Schwarz M, et al. 2009. Regional and large-scale patterns in Amazon forest structure and function are mediated by variations in soil physical and chemical properties. Biogeosciences Discussions, 6(2): 3993-4057.
doi: 10.5194/bgd-6-3993-2009
[42]   R Core Team. 2016. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria.
[43]   Reed S C, Cleveland C C, Townsend A R. 2011. Functional ecology of free-Living nitrogen fixation: a contemporary perspective. Annual Review of Ecology, Evolution, and Systematics, 42(1): 489-512.
doi: 10.1146/annurev-ecolsys-102710-145034
[44]   Rey T, Schornack S. 2013. Interactions of beneficial and detrimental root-colonizing filamentous microbes with plant hosts. Genome Biology, 14(6): 121-121.
doi: 10.1186/gb-2013-14-6-121 pmid: 23796072
[45]   Rodrigues R R, Pineda R P, Barney J N, et al. 2015. Plant invasions associated with change in root-zone microbial community structure and diversity. PloS ONE, 10(10): e0141424, doi: 10.1371/journal.pone.0141424.
doi: 10.1371/journal.pone.0141424 pmid: 26505627
[46]   Rodriguez M V, Bertiller M B, Bisigato A. 2007. Are fine roots of both shrubs and perennial grasses able to occupy the upper soil layer? A case study in the arid Patagonian Monte with non-seasonal precipitation. Plant and Soil, 300: 281-288.
doi: 10.1007/s11104-007-9415-1
[47]   Rogers E D, Benfey P N. 2015. Regulation of plant root system architecture: Implications for crop advancement. Current Opinion in Biotechnology, 32: 93-98.
doi: 10.1016/j.copbio.2014.11.015 pmid: 25448235
[48]   Silva P D, Adriana B F, Cezar J, et al. 2014. Soil structure and its influence on microbial biomass in different soil and crop management systems. Soil and Tillage Research, 142(1): 42-53.
doi: 10.1016/j.still.2014.04.006
[49]   Sun G, Luo P, Wu N, et al. 2009. Stellera chamaejasme L. increases soil N availability, turnover rates and microbial biomass in an alpine meadow ecosystem on the eastern Tibetan Plateau of China. Soil Biology and Biochemistry, 41(1): 86-91.
doi: 10.1016/j.soilbio.2008.09.022
[50]   Sun J, Cheng G W, Li W P. 2013. Meta-analysis of relationships between environmental factors and aboveground biomass in the alpine grassland on the Tibetan Plateau. Biogeosciences, 10(3): 1707-1715.
doi: 10.5194/bg-10-1707-2013
[51]   Sun J, Wang X D, Cheng G W, et al. 2014. Effects of grazing regimes on plant traits and soil nutrients in an alpine steppe, northern Tibetan Plateau. PloS ONE, 9(9): e108821, doi: 10.1371/journal.pone.0108821.
doi: 10.1371/journal.pone.0108821
[52]   Sun J, Wang H M. 2016. Soil nitrogen and carbon determine the trade-off of the above- and below-ground biomass across alpine grasslands, Tibetan Plateau. Ecological Indicators, 60(60): 1070-1076.
doi: 10.1016/j.ecolind.2015.08.038
[53]   Sun J, Niu S L, Wang J N. 2018a. Divergent biomass partitioning to aboveground and belowground across forests in China. Journal of Plant Ecology, 11(3): 484-492.
doi: 10.1093/jpe/rtx021
[54]   Sun J, Ma B B, Lu X Y. 2018b. Grazing enhances soil nutrient effects: Trade-offs between aboveground and belowground biomass in alpine grasslands of the Tibetan Plateau. Land Degradation and Development, 29(2): 337-348.
doi: 10.1002/ldr.v29.2
[55]   Sun J, Zhang Z C, Dong S K. 2019a. Adaptive management of alpine grassland ecosystems over Tibetan Plateau. Pratacultural Science, 36(4): 933-938. (in Chinese)
[56]   Sun J, Liu B Y, You Y, et al. 2019b. Solar radiation regulates the leaf nitrogen and phosphorus stoichiometry across alpine meadows of the Tibetan Plateau. Agricultural and Forest Meteorology, 271: 92-101.
doi: 10.1016/j.agrformet.2019.02.041
[57]   Swift M J, Izac A M N, Noordwijk M V. 2004. Biodiversity and ecosystem services in agricultural landscapes—are we asking the right questions? Agriculture Ecosystems & Environment, 104(1): 113-134.
[58]   Tingey D T, Phillips D L, Johnson M G. 2010. Elevated CO2 and conifer roots: Effects on growth, life span and turnover. New Phytologist, 147(1): 87-103.
doi: 10.1046/j.1469-8137.2000.00684.x
[59]   Verbon E H, Liberman L M. 2016. Beneficial microbes affect endogenous mechanisms controlling root development. Trends in Plant Science, 21(3): 218-229.
doi: 10.1016/j.tplants.2016.01.013 pmid: 26875056
[60]   Vo S T K, Johnson E A. 2001. Alpine plant life: Functional plant ecology of high mountain ecosystems. In: Christian K. Mountain Research and Development, 21(2): 202.
[61]   Wang C T, Wang Q J, Long R J, et al. 2004. Changes in plant species diversity and productivity along an elevation gradient in an alpine meadow. Acta Phytoecologica Sinica, 28(2): 240-245. (in Chinese)
[62]   Wang C T, Long R J, Wang Q J, et al. 2009. Changes in plant diversity, biomass and soil C, in alpine meadows at different degradation stages in the headwater region of three rivers, China. Land Degradation and Development, 20(2): 187-198.
doi: 10.1002/ldr.v20:2
[63]   Wang G X, Li Y S, Wang Y B, et al. 2008. Effects of permafrost thawing on vegetation and soil carbon pool losses on the Qinghai-Tibet Plateau, China. Geoderma, 143(1-2): 143-152.
doi: 10.1016/j.geoderma.2007.10.023
[64]   Wang W Y, Wang Q J, Wang H C. 2006. The effect of land management on plant community composition, species diversity, and productivity of alpine Kobersia steppe meadow. Ecological Research, 21(2): 181-187.
doi: 10.1007/s11284-005-0108-z
[65]   Wei Q, Wang F, Chen W Y, et al. 2010. Soil physical characteristics on different degraded alpine grasslands in Maqu County in upper Yellow River. Bulletin of Soil and Water Conservation, 30(5): 19-24. (in Chinese)
[66]   Wen L, Dong S K, Li Y Y, et al. 2013. The impact of land degradation on the C pools in alpine grasslands of the Qinghai-Tibet Plateau. Plant and Soil, 368: 329-340.
doi: 10.1007/s11104-012-1500-4
[67]   Wu G L, Du G Z, Liu Z H, et al. 2009. Effect of fencing and grazing on a Kobresia-dominated meadow in the Qinghai-Tibetan Plateau. Plant and Soil, 319: 115-126.
doi: 10.1007/s11104-008-9854-3
[68]   Wu G L, Ren G H, Dong Q M, et al. 2014. Above- and belowground response along degradation gradient in an alpine grassland of the Qinghai-Tibetan Plateau. Clean-Soil Air Water, 42(3): 319-323.
doi: 10.1002/clen.201200084
[69]   Wu Y B, Wu J, Deng Y C, et al. 2011. Comprehensive assessments of root biomass and production in a Kobresia humilis meadow on the Qinghai-Tibetan Plateau. Plant and Soil, 338: 497-510.
doi: 10.1007/s11104-010-0562-4
[70]   Yan Z, Bondlamberty B, Toddbrown K E O, et al. 2018. A moisture function of soil heterotrophic respiration that incorporates microscale processes. Nature Communications, 9(1): 2562, doi: 10.1038/s41467-018-04971-6.
doi: 10.1038/s41467-018-04971-6 pmid: 29967415
[71]   Yang Y H, Fang J Y, Tang Y H, et al. 2008. Storage, patterns and controls of soil organic carbon in the Tibetan grasslands. Global Change Biology, 14(7): 1592-1599.
doi: 10.1111/gcb.2008.14.issue-7
[72]   Yang Y H, Fang J Y, Ji C J, et al. 2009. Above- and belowground biomass allocation in Tibetan grasslands. Journal of Vegetation Science, 20(1): 177-184.
doi: 10.1111/jvs.2009.20.issue-1
[73]   Yi X S, Li G S, Yin Y Y. 2012. The impacts of grassland vegetation degradation on soil hydrological and ecological effects in the source region of the Yellow River-A case study in Junmuchang region of Maqin country. Procedia Environmental Sciences, 13(3): 967-981.
doi: 10.1016/j.proenv.2012.01.090
[74]   Yue K, Peng Y, Fornara D A, et al. 2019. Responses of nitrogen concentrations and pools to multiple environmental change drivers: A meta-analysis across terrestrial ecosystems. Global Ecology and Biogeography, 28(5): 690-724.
doi: 10.1111/geb.v28.5
[75]   Zhang B W, Cadotte M W, Chen S, et al. 2019. Plants alter their vertical root distribution rather than biomass allocation in response to changing precipitation. Ecology, 100(11): e02828, doi: 10.1002/ecy.2828.
doi: 10.1002/ecy.2828 pmid: 31323118
[76]   Zhang Z C, Hou G, Liu M, et al. 2019. Degradation induces changes in the soil C:N:P stoichiometry of alpine steppe on the Tibetan Plateau. Journal of Mountain Science, 16(10): 2348-2360.
doi: 10.1007/s11629-018-5346-y
[77]   Zheng D, Zhang Q S, Wu S H. 2000. Mountain geoecology and sustainable development of the Tibetan Plateau. Geojournal Library, 57(2): 203-204.
[78]   Zheng M, Chen H, Li D, et al. 2019. Substrate stoichiometry determines nitrogen fixation throughout succession in southern Chinese forests. Ecology Letters, 23(2): 336-347.
doi: 10.1111/ele.13437 pmid: 31802606
[79]   Zhu M Y, Tan S D, Dang H S, et al. 2011. Rare earth elements tracing the soil erosion processes on slope surface under natural rainfall. Journal of Environmental Radioactivity, 102(12): 1078-1084.
doi: 10.1016/j.jenvrad.2011.07.007
[1] Orhan DENGİZ, İnci DEMİRAĞ TURAN. Soil quality assessment for desertification based on multi-indicators with the best-worst method in a semi-arid ecosystem[J]. Journal of Arid Land, 2023, 15(7): 779-796.
[2] M'hammed BOUALLALA, Souad NEFFAR, Lyès BRADAI, Haroun CHENCHOUNI. Do aeolian deposits and sand encroachment intensity shape patterns of vegetation diversity and plant functional traits in desert pavements?[J]. Journal of Arid Land, 2023, 15(6): 667-694.
[3] LI Chunming, MA Jiahui, LI Liangyu, HUANG Junlin, LU Jinhua, HUANG Mei, Allan DEGEN, SHANG Zhanhuan. Effects of degradation and species composition on soil seed density in the alpine grasslands, China[J]. Journal of Arid Land, 2023, 15(12): 1510-1528.
[4] YANG Jingyi, LUO Weicheng, ZHAO Wenzhi, LIU Jiliang, WANG Dejin, LI Guang. Soil seed bank is affected by transferred soil thickness and properties in the reclaimed coal mine in the Qilian Mountains, China[J]. Journal of Arid Land, 2023, 15(12): 1529-1543.
[5] ZHANG Yan, ZHANG Zhengcai, MA Pengfei, PAN Kaijia, ZHA Duo, CHEN Dingmei, SHEN Caisheng, LIANG Aimin. Wind regime features and their impacts on the middle reaches of the Yarlung Zangbo River on the Tibetan Plateau, China[J]. Journal of Arid Land, 2023, 15(10): 1174-1195.
[6] XU Mengran, ZHANG Jing, LI Zhenghai, MO Yu. Attribution analysis and multi-scenario prediction of NDVI drivers in the Xilin Gol grassland, China[J]. Journal of Arid Land, 2022, 14(9): 941-961.
[7] WANG Hongwei, QI Yuan, LIAN Xihong, ZHANG Jinlong, YANG Rui, ZHANG Meiting. Effects of climate change and land use/cover change on the volume of the Qinghai Lake in China[J]. Journal of Arid Land, 2022, 14(3): 245-261.
[8] Mona KARAMI, Mehdi HEYDARI, Ali SHEYKHOLESLAMI, Majid ESHAGH NIMVARI, Reza OMIDIPOUR, YUAN Zuoqiang, Bernard PREVOSTO. Dieback intensity but not functional and taxonomic diversity indices predict forest productivity in different management conditions: Evidence from a semi-arid oak forest ecosystem[J]. Journal of Arid Land, 2022, 14(2): 225-244.
[9] Carlos R PINHEIRO JUNIOR, Conan A SALVADOR, Tiago R TAVARES, Marcel C ABREU, Hugo S FAGUNDES, Wilk S ALMEIDA, Eduardo C SILVA NETO, Lúcia H C ANJOS, Marcos G PEREIRA. Lithic soils in the semi-arid region of Brazil: edaphic characterization and susceptibility to erosion[J]. Journal of Arid Land, 2022, 14(1): 56-69.
[10] BAI Jie, LI Junli, BAO Anmin, CHANG Cun. Spatial-temporal variations of ecological vulnerability in the Tarim River Basin, Northwest China[J]. Journal of Arid Land, 2021, 13(8): 814-834.
[11] XIANG Zeyu, Arvind BHATT, TANG Zhongbin, PENG Yansong, WU Weifeng, ZHANG Jiaxin, WANG Jingxuan, David GALLACHER, ZHOU Saixia. Disturbance of plateau zokor-made mound stimulates plant community regeneration in the Qinghai-Tibetan Plateau, China[J]. Journal of Arid Land, 2021, 13(10): 1054-1070.
[12] YANG Junhuai, XIA Dunsheng, WANG Shuyuan, TIAN Weidong, MA Xingyue, CHEN Zixuan, GAO Fuyuan, LING Zhiyong, DONG Zhibao. Near-surface wind environment in the Yarlung Zangbo River basin, southern Tibetan Plateau[J]. Journal of Arid Land, 2020, 12(6): 917-936.
[13] DING Jinchen, CHEN Yunzhi, WANG Xiaoqin, CAO Meiqin. Land degradation sensitivity assessment and convergence analysis in Korla of Xinjiang, China[J]. Journal of Arid Land, 2020, 12(4): 594-608.
[14] WEN Jing, QIN Ruimin, ZHANG Shixiong, YANG Xiaoyan, XU Manhou. Effects of long-term warming on the aboveground biomass and species diversity in an alpine meadow on the Qinghai-Tibetan Plateau of China[J]. Journal of Arid Land, 2020, 12(2): 252-266.
[15] SONG Yongyong, XUE Dongqian, DAI Lanhai, WANG Pengtao, HUANG Xiaogang, XIA Siyou. Land cover change and eco-environmental quality response of different geomorphic units on the Chinese Loess Plateau[J]. Journal of Arid Land, 2020, 12(1): 29-43.